TG jl Blockchain
@ HONG KO?VTU BAPTIST UNIVERSITY B%%?)ase L & FinTech Lab

vChain: Enabling Verifiable Boolean Range Queries over
Blockchain Databases

Cheng Xu Ce Zhang Jianliang Xu
{chengxu, cezhang, xujl}@comp.hkbu.edu.hk

July 2, 2019 @ SIGMOD 19

Department of Computer Science
Hong Kong Baptist University

mailto:\protect \TU\textbraceleft chengxu, cezhang, xujl\protect \TU\textbraceright @comp.hkbu.edu.hk

- Blockchain: Append-only data structure
collectively maintained by a network of
(untrusted) nodes

- Hash chain - Immutability
- Consensus - Decentralization

HOW THE

BLOCKCHAIN

WORKS

Blockchain Structure [credit: wikipedia]

1/15

https://commons.wikimedia.org/wiki/File:Blockchain_workflow.png

Background

Blockchain: Append-only data structure
collectively maintained by a network of
(untrusted) nodes

- Hash chain
- Consensus

- Immutability
- Decentralization

- A wide range of applications
- Digital identities
- Decentralized notary
- Distributed storage
+ Smart Contracts

Fund Higher Education
Student Financial Aid
Global Payments

@ Remittance
@ P2P Lending

Microfinance

@ Intellectual Property

Healthcare

@ Title Records
Debt
Ownership

Crowdfunding @ 9 e@@ Voting
IDI

Derivatives Higher Education Student Records

Blockchain
Equity @
Private Markets @

Blockchain Applications [credit: FAHM Technology Partners]

1/15

http://www.fahmpartners.com/solutions/blockchain/

Blockchain Database Solutions

- Increasing demand to search the data stored in blockchains

- Blockchain database solutions to support SQL-like queries

__:j:?s ORACLE SAP Leonardo

» HYPERLEDGER Cloud

B|GCHA|N ® %Flureen: WON

.-.-. bluzelle SwarmDB

Blockchain Database Solutions

2/15

Blockchain Database Solutions

- Increasing demand to search the data stored in blockchains

- Blockchain database solutions to support SQL-like queries

O eeen J/ N
Q 5 fetch data | @ ;
.......... -~ =))
— .8 8,
ey Trusted Service Provider gigckchain Network

Workflow of Existing Solutions

- Issue: relying on a trusted party who can faithfully answer user queries

2/15

Secure Blockchain Search

- The assumption of trusted party may not always hold

3/15

Secure Blockchain Search

- The assumption of trusted party may not always hold
- Basic solution to integrity-assured blockchain search
- Becoming full node
- High cost
- Storage: to store a complete replicate (240 GB for Bitcoin as of June 2019)
- Computation: to verify the consensus proofs
- Network: to synchronize with the network

3/15

Secure Blockchain Search

- The assumption of trusted party may not always hold
- Basic solution to integrity-assured blockchain search
- Becoming full node
- High cost
- Storage: to store a complete replicate (240 GB for Bitcoin as of June 2019)
- Computation: to verify the consensus proofs
- Network: to synchronize with the network
- Better Solution: becoming light node and outsource computation

- Low cost: maintaining block headers only (< 50 MB for Bitcoin)
Light Node

ﬂw \4,\
Miner @ . Full Node

Full Node Miner

3/15

Secure Blockchain Search

- The assumption of trusted party may not always hold
- Basic solution to integrity-assured blockchain search
- Becoming full node
- High cost
- Storage: to store a complete replicate (240 GB for Bitcoin as of June 2019)
- Computation: to verify the consensus proofs
- Network: to synchronize with the network
- Better Solution: becoming light node and outsource computation

- Low cost: maintaining block headers only (< 50 MB for Bitcoin)
Light Node

j SR
= g
Miner @ - Full Node

Full Node Miner

- Challenge: how to maintain query integrity?
3/15

mart Contract

- Atrusted program to execute user-defined
computation upon the blockchain

- Smart Contract reads and writes blockchain

Traditional Blockchain
data Computer VM
- Execution integrity is ensured by the :
Storage RAM Blockchain
consensus protocol Computation CPU Smart Contract

- Offer trusted storage and computation
capabilities

- Function as a trusted virtual machine

4/15

Solution #1: Smart Contract

- Leverage Smart Contract for trusted computation
- Users submit query parameters to blockchain

e o
- Miners execute computation and write results into blockchain H > @ > g‘o

- Users read results from blockchain PARTIES SMART CONTRACT EXECUTION

SMART CONTRACT

[Credit: Oscar W]

S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets blockchain: A decentralized, reliable
and fair realization,” in IEEE INFOCOM, Honolulu, HI, USA, 2018, pp. 792-800.

5/15

https://hackernoon.com/ai-smart-contracts-the-past-present-and-future-625d3416807b

Solution mart Contract

- Leverage Smart Contract for trusted computation
- Users submit query parameters to blockchain

e o
- Miners execute computation and write results into blockchain H > @ > %‘o

- Users read results from blockchain PARTIES SMART CONTRACT EXECUTION

SMART CONTRACT

- Drawbacks [Credit: Oscar w]

- Long latency: long time for consensus protocol to confirm a block

- Poor scalability: transaction rate of the blockchain is limited

- Privacy concern: query history is permanently and publicly stored in blockchain

- High cost: executing smart contract in ETH requires paying gas to miners
(INFOCOM 20178 requires 4201232 gas = 0.18 Ether = 24 USD per query)

S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets blockchain: A decentralized, reliable
and fair realization,” in IEEE INFOCOM, Honolulu, HI, USA, 2018, pp. 792-800.

5/15

https://hackernoon.com/ai-smart-contracts-the-past-present-and-future-625d3416807b

Solution #2: Verifiable Computation

- Verifiable Computation (VC)
- Computation is outsourced to untrusted service provider
- Service provider returns results with cryptographic proof
- Users verify integrity of results using the proof

6/15

Solution #2: Verifiable Computation

- Verifiable Computation (VC)
- Computation is outsourced to untrusted service provider
- Service provider returns results with cryptographic proof
- Users verify integrity of results using the proof

- Outsource queries to full node and verify the results using VC
- General VC: Expressive but high overhead
- Authenticated Data Structure (ADS)-based VC: Efficient but requiring customized designs

sichronize @ :
(R, proof} @

User Full Node Blockcham Network

vChain

6/15

Our Solution: vChain

- Problem: Integrity-assured Search over Blockchain Data

synchromze @ N
”””” ol
(R, proof} /

User Full Node ockcham Netvvork

7/15

Our Solution: vChain

- Problem: Integrity-assured Search over Blockchain Data

- System Model:
- Users become light nodes

- Queries are outsourced to full node T
synchromze g \‘
(R, proof} //

User Full Node ockcham Netvvork

7/15

Our Solution: vChain

- Problem: Integrity-assured Search over Blockchain Data

- System Model:
- Users become light nodes

-+ Queries are outsourced to full node T
synchromze N

- Full node nottrusted M A " he—rog- 0 @)
(R, proof} /,

- Program glitches
- Security vulnerabilities
- Commercial interest

User Full Node ockcham Netvvork

7/15

Our Solution: vChain

- Problem: Integrity-assured Search over Blockchain Data

- System Model:
- Users become light nodes

- Queries are outsourced to full node T
synchromze N

- Full node nottrusted = N A Mg @)
(R, proof} /,

- Program glitches
- Security vulnerabilities
- Commercial interest

User Full Node ockcham Netvvork

- Security requirements

- Soundness: none of the objects returned as results have been tampered with and all of
them satisfy the query conditions
- Completeness: no valid result is missing regarding the query conditions

7/15

- Miner: constructs each block with additional
ADS to achieve VC scheme

- Service Provider: is a full node and computes
the results with the verification object (VO)

- Query User: is a light node; uses the VO and
block header to verify the results

[Block Header & Data
[Block Header ,

& (Light Node)
{HH -

O I abvor | 1 : ([t], [1,2], b

L Mebvor 62 (- [1,2],cvd)

,,,,,,,,,,,,,,,,,, g:: (—[1,2,and

Service Provider (SP) Query User

System Model of vChain

8/15

vChain — Data Model & Queries

- Data Model
- Each block contains several temporal objects {01,0,,...,0n}
- 0j is represented by (t;, Vi, W;)
(timestamp, multi-dimensional vector, set valued attribute)

- Boolean Range Queries
- Find all Bitcoin transactions happening in certain period
Tx: (time, transfer amount, {“send address”, “receive address"})
g = ([2018-05,2018-06], [10, +oc], “send:1FFYC" A “receive:2DAAT")
- Subscribe to car rental messages with certain price and keywords

Tx: (time, rental price, {“type”, “model"})
q = (—,[200,250], “Sedan” A (“Benz” v “BMW”))

9/15

Challenges

- How to construct ADS for unbounded and append-only blockchain data?

- How to design a one-size-fits-all ADS scheme that supports dynamic queries over
arbitrary attributes?

- How to leverage intra/inter-block optimization techniques to improve query efficiency?

- How to make the system highly scalable to a large number of subscription queries?

10/15

Cryptographic Building Block

- Merkle Hash Tree [Mer89]
- Support efficient membership/range queries
- Limitations (=R [=n
- An MHT supports only the query keys on which the Merkle tree is built
- MHTs do not work with set-valued attributes
- MHTs of different blocks cannot be aggregated

©)]

Merkle Hash Tree

11/15

Cryptographic Building Block

- Merkle Hash Tree [Mer89]
- Support efficient membership/range queries
- Limitations =l IERoIn
- An MHT supports only the query keys on which the Merkle tree is built
- MHTs do Qot work with set-valued attributes Merkle Hash Tree
- MHTs of different blocks cannot be aggregated

= Ho)]

- Cryptographic Multiset Accumulator [PTT11]
- Map a multiset to an element in cyclic multiplicative group in a collision resistant fashion
- Utility: prove set disjoint
- Protcols:
- KeyGen(1*) — (sk, pk): generate keys
- Setup(X, pk) — acc(X): return the accumulative value w.rt. X
- ProveDisjoint(X, Xy, pR) —
on input two multisets Xy and X,, where X; N X, = @, output a proof =
- VerifyDisjoint(acc(Xy), acc(Xz), w, pk) — {0,1}:
on input the accumulative values acc(X1), acc(Xz), and a proof «r, output 1iff X1 N X, = @
11/15

Basic Solution

- Consider a single object and boolean query
- Each block stores a single object o; = (t;, W,)

12/15

Basic Solution

- Consider a single object and boolean query
- Each block stores a single object o; = (t;, W,)
- ADS generation (Miner)

- Extend the block header with AttDigest

- AttDigest = acc(W;) = Setup(W;, pk)
- Constant size regardless of number of elements in W;
- Support ProveDisjoint(-) & VerifyDisjoint(-)

block;
o <—{ PreBkHash \Ts \ cOnsProof\ ObjectHash \ AttDigest \ —

Extended Block Structure

12/15

Basic Solution

- Consider a single object and boolean query
- Each block stores a single object o; = (t;, W,)
- ADS generation (Miner)
- Extend the block header with AttDigest plock
) o <—{ PreBkHash \Ts \ cOnsProof\ ObjectHash \ AttDigest \ —
- AttDigest = acc(W;) = Setup(W;, pk)
- Constant size regardless of number of elements in W;
- Support ProveDisjoint(-) & VerifyDisjoint(-)
- Verifiable Query
- Match:
- Mismatch:

Extended Block Structure

12/15

Basic Solution

- Consider a single object and boolean query
- Each block stores a single object o; = (t;, W,)
- ADS generation (Miner)
- Extend the block header with AttDigest plock
) - ~—{[PreBkHash [TS ConsProof | ObjectHash [AttDigest | l—
- AttDigest = acc(W;) = Setup(W;, pk)
- Constant size regardless of number of elements in W;
- Support ProveDisjoint(-) & VerifyDisjoint(-)
- Verifiable Query
- Match: return o; as a result; integrity is ensured by the ObjectHash in the block header
- Mismatch:

Extended Block Structure

12/15

Basic Solution

- Consider a single object and boolean query
- Each block stores a single object o; = (t;, W,)
- ADS generation (Miner)
- Extend the block header with AttDigest plock
) - ~—{[PreBkHash [TS ConsProof | ObjectHash [AttDigest | l—
- AttDigest = acc(W;) = Setup(W;, pk)
- Constant size regardless of number of elements in W;
- Support ProveDisjoint(-) & VerifyDisjoint(-)
- Verifiable Query
- Match: return o; as a result; integrity is ensured by the ObjectHash in the block header
- Mismatch: use AttDigest to prove the mismatch of o;

Extended Block Structure

12/15

Basic Solution

- Consider a single object and boolean query
- Each block stores a single object o; = (t;, W,)
- ADS generation (Miner)
- Extend the block header with AttDigest
- AttDigest = acc(W;) = Setup(W;, pk)
- Constant size regardless of number of elements in W;
- Support ProveDisjoint(-) & VerifyDisjoint(-)
- Verifiable Query
- Match: return o; as a result; integrity is ensured by the ObjectHash in the block header
- Mismatch: use AttDigest to prove the mismatch of o;

block;

ConsProof] ObjectHash [AttDigest] -——

- —{[PreBkHash [TS

Extended Block Structure

Example of Mismatch

- Transform query condition to a list of sets: g = “Sedan” A (“Benz” v “BMW") — {“Sedan”}, {“Benz”, “BMW"}
- Consider o; : {"Van", “Benz"}, we have {“Sedan”} n {“Van", “Benz"} = &
- Apply ProveDisjoint({“Van”, “Benz"}, {“Sedan"}, pk) to compute proof =

- User retrieves AttDigest = acc({“Van”, “Benz"}) from the block header and uses
VerifyDisjoint(AttDigest, acc({“Sedan”}), =, pR) to verify the mismatch 12/15

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes

Example of Transformation

13/15

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes

- Numerical value can be transformed into a set of
binary prefix elements
- Example: trans(4) = {1x,10%,100}
* denotes wildcard matching operator

Example of Transformation

13/15

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes

- Numerical value can be transformed into a set of
binary prefix elements
- Example: trans(4) = {1x,10%,100}
* denotes wildcard matching operator
- Range can be transformed into an equivalent
boolean expression using a binary tree
- Example: [0,6] — 0% Vv 10 V 110
Equivalence set: {0x, 10,110}

Example of Transformation

13/15

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes

- Numerical value can be transformed into a set of
binary prefix elements
- Example: trans(4) = {1x,10%,100}
* denotes wildcard matching operator
- Range can be transformed into an equivalent
boolean expression using a binary tree
- Example: [0,6] — 0% Vv 10 V 110
Equivalence set: {0x, 10,110}

Example of Transformation

- Range queries can be processed in a similar manner as boolean queries

- Transform v; € [a, 8] — trans(v;) N EquiSet([e, £]) # @
- Example:
- 4 €1[0,6] — {1x,10%,100} N {0x,10%, 110} = {10} # @

13/15

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes

- Numerical value can be transformed into a set of
binary prefix elements
- Example: trans(4) = {1x,10%,100}
* denotes wildcard matching operator

- Range can be transformed into an equivalent
boolean expression using a binary tree

- Example: [0,6] — 0% Vv 10 V 110 Example of Transformation
Equivalence set: {0x, 10,110}

- Range queries can be processed in a similar manner as boolean queries
- Transform v; € [a, 8] — trans(v;) N EquiSet([e, £]) # @
- Example:
- 4 € [0,6] — {1,10%,100} N {0%,10%,110} = {10} # @
+ 7¢1[0,6] = {1%,11%,111} N {0%,10%,110} = &

13/15

Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition
- Idea: we can aggregate them to speed up query processing

14/15

Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition
- Idea: we can aggregate them to speed up query processing
- Intra-Block Index: aggregate objects inside same block using MHT

block;

Intra-Block Index

14/15

Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition
- Idea: we can aggregate them to speed up query processing

- Intra-Block Index: aggregate objects inside same block using MHT
- Inter-Block Index: aggregate objects across blocks using skip list

block;

block;_s, block;_, block;
T —T! PreBkHash ; “— —1—{ PreBkHash ... | . Jj~— -+ ~+—{PreBkHash [MerkleRoot | SkipListRoot | |-—
W B W, = {"Sedan’, "Benz’} ‘
[0 ", "Audi’; 1 L hreskippedriash, ™
N | o 3 -
Ne | o

Intra-Block Index Inter-Block Index

14/15

Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition
- Idea: we can aggregate them to speed up query processing

- Intra-Block Index: aggregate objects inside same block using MHT
- Inter-Block Index: aggregate objects across blocks using skip list
- Inverted Prefix Tree: aggregate similar subscription queries from users

block;

block;_,, block;_, block;
Ty —T! PreBkHash ; “— —1—{ PreBkHash ... | . Jj~— -+ ~+—{ PreBkHash [MerkleRoot [SkipListRoot |
W B W, = {"Sedan’, "Benz’} ‘
[0 ", "Audi’; 1 L hreskippedriash, ™
N | o 3 -
Ne | o

Intra-Block Index Inter-Block Index Inverted Prefix Tree

14/15

Performance Evaluation

° i i — nil-acct intra-acc2 — nil-acct intra-acc2 — nil-acct intra-acc2
Evaluation metrics ! y 4 ' fa-acc ! ;
~< nil-acc2 both-acc1 - nil-acc2 both-acci -+ nil-acc2 both-accl
Quer\/ processmg cost in 400 - intra-acct = both-acc2 aWOO intra-acc1 = both-acc2 10t intra-acc1 = both-acc2
i @ S 00 |- TORER L wotp Joothzacco g
<P CPU time goor 1 Bl 1 it 4
terms of SP CPU time 45Q S| | = =0
. . . =} r ~ 2 L i
Query verification cost in S 100 L él3 0.1 e S0 T b
-] e
terms of user CPU time 5 =t 2001 b ;%ﬁ*—e—““ = T; 4=, —
. 1
Size of VO transmitted (240) (480) (720) (960) (1200) (240) (480) (720) (960) (1200) (240) (480) (720) (960) (1200)
Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks)
from the SP to the user
- Numerical range selectivity
Y hikacet intra-acc2 " T nikacel & intra-aced F - niacet & intra-acc2’]
10% for 45Q < nil-acc2 both-accl ~ nilacc2 both-acc1 .| > nicacc2 both-acct
50% for ETH =150 |~ intra-acct - both-ace2, | @ 409 intra-acc1 & both-acc2 | 10" |- = intra-acci & both-acc2, |
o Tor @ e o] el e |
@ - 10 =
£ 100 - 1 E 1°F 1=
.. . . = —+ g 2 L 4
- Disjunctive Boolean function ETH 51 12 1 g0 =
2 0.1 L —o——e——° |
size e 8 | Bl] QO o
_— : . 3 0. F—5—H 5 L . . .
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
3 for 45Q (480) (960) (1440) (1920) (2400) (480) (960) (1440) (1920) (2400) (480) (960) (1440) (1920) (2400)
9 for ETH Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks)

Time-Window Query Performance

15/15

Thanks
Questions?

References

[HCW+18] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets blockchain: A
decentralized, reliable and fair realization,” in IEEE INFOCOM, Honolulu, HI, USA, 2018, pp. 792-800.

[ICDE19] C.Zhang, C. Xu,). Xu, Y. Tang, and B. Choi, “GEM?-Tree: A gas-efficient structure for authenticated range
queries in blockchain,” in IEEE ICDE, Macau SAR, China, 2019.

[Mer89] R. C. Merkle, “A certified digital signature,” in CRYPTO, 1989, pp. 218-238.

[PTT11] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Optimal verification of operations on dynamic sets,” in

CRYPTO, Santa Barbara, CA, USA, 2011, pp. 91-110.

[SIGMOD19] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling verifiable boolean range queries over blockchain databases,” in
ACM SIGMOD, Amsterdam, Netherlands, 2019.

	Appendix
	References

