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- Blockchain: Append-only data structure
collectively maintained by a network of
(untrusted) nodes

- Hash chain - Immutability
- Consensus - Decentralization

HOW THE

BLOCKCHAIN

WORKS

Blockchain Structure [credit: wikipedia]
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https://commons.wikimedia.org/wiki/File:Blockchain_workflow.png

Background

Blockchain: Append-only data structure
collectively maintained by a network of
(untrusted) nodes

- Hash chain
- Consensus

- Immutability
- Decentralization

- A wide range of applications
- Digital identities
- Decentralized notary
- Distributed storage
+ Smart Contracts
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Blockchain Applications [credit: FAHM Technology Partners]
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http://www.fahmpartners.com/solutions/blockchain/

Blockchain Database Solutions

- Increasing demand to search the data stored in blockchains

- Blockchain database solutions to support SQL-like queries
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Blockchain Database Solutions
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Blockchain Database Solutions

- Increasing demand to search the data stored in blockchains

- Blockchain database solutions to support SQL-like queries
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Workflow of Existing Solutions

- Issue: relying on a trusted party who can faithfully answer user queries
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Secure Blockchain Search

- The assumption of trusted party may not always hold
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- Challenge: how to maintain query integrity?
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mart Contract

- Atrusted program to execute user-defined
computation upon the blockchain

- Smart Contract reads and writes blockchain

Traditional Blockchain
data Computer VM
- Execution integrity is ensured by the :
Storage RAM Blockchain
consensus protocol Computation CPU Smart Contract

- Offer trusted storage and computation
capabilities

- Function as a trusted virtual machine
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Solution #1: Smart Contract

- Leverage Smart Contract for trusted computation
- Users submit query parameters to blockchain

e o
- Miners execute computation and write results into blockchain H > @ > g‘o

- Users read results from blockchain PARTIES  SMART CONTRACT EXECUTION

SMART CONTRACT

[Credit: Oscar W]

S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets blockchain: A decentralized, reliable
and fair realization,” in IEEE INFOCOM, Honolulu, HI, USA, 2018, pp. 792-800.
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https://hackernoon.com/ai-smart-contracts-the-past-present-and-future-625d3416807b

Solution mart Contract

- Leverage Smart Contract for trusted computation
- Users submit query parameters to blockchain
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SMART CONTRACT

- Drawbacks [Credit: Oscar w]

- Long latency: long time for consensus protocol to confirm a block

- Poor scalability: transaction rate of the blockchain is limited

- Privacy concern: query history is permanently and publicly stored in blockchain

- High cost: executing smart contract in ETH requires paying gas to miners
(INFOCOM 20178 requires 4201232 gas = 0.18 Ether = 24 USD per query)

S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets blockchain: A decentralized, reliable
and fair realization,” in IEEE INFOCOM, Honolulu, HI, USA, 2018, pp. 792-800.
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Solution #2: Verifiable Computation

- Verifiable Computation (VC)
- Computation is outsourced to untrusted service provider
- Service provider returns results with cryptographic proof
- Users verify integrity of results using the proof
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Solution #2: Verifiable Computation

- Verifiable Computation (VC)
- Computation is outsourced to untrusted service provider
- Service provider returns results with cryptographic proof
- Users verify integrity of results using the proof

- Outsource queries to full node and verify the results using VC
- General VC: Expressive but high overhead
- Authenticated Data Structure (ADS)-based VC: Efficient but requiring customized designs
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vChain
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Our Solution: vChain

- Problem: Integrity-assured Search over Blockchain Data
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- Program glitches
- Security vulnerabilities
- Commercial interest

User Full Node ockcham Netvvork

- Security requirements

- Soundness: none of the objects returned as results have been tampered with and all of
them satisfy the query conditions
- Completeness: no valid result is missing regarding the query conditions
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- Miner: constructs each block with additional
ADS to achieve VC scheme

- Service Provider: is a full node and computes
the results with the verification object (VO)

- Query User: is a light node; uses the VO and
block header to verify the results

[ Block Header & Data
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System Model of vChain
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vChain — Data Model & Queries

- Data Model
- Each block contains several temporal objects {01,0,,...,0n}
- 0j is represented by (t;, Vi, W;)
(timestamp, multi-dimensional vector, set valued attribute)

- Boolean Range Queries
- Find all Bitcoin transactions happening in certain period
Tx: (time, transfer amount, {“send address”, “receive address"})
g = ([2018-05,2018-06], [10, +oc], “send:1FFYC" A “receive:2DAAT")
- Subscribe to car rental messages with certain price and keywords

Tx: (time, rental price, {“type”, “model"})
q = (—,[200,250], “Sedan” A (“Benz” v “BMW”))
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Challenges

- How to construct ADS for unbounded and append-only blockchain data?

- How to design a one-size-fits-all ADS scheme that supports dynamic queries over
arbitrary attributes?

- How to leverage intra/inter-block optimization techniques to improve query efficiency?

- How to make the system highly scalable to a large number of subscription queries?
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Cryptographic Building Block

- Merkle Hash Tree [Mer89]
- Support efficient membership/range queries
- Limitations (=R [=n
- An MHT supports only the query keys on which the Merkle tree is built
- MHTs do not work with set-valued attributes
- MHTs of different blocks cannot be aggregated

©)]

Merkle Hash Tree

11/15



Cryptographic Building Block

- Merkle Hash Tree [Mer89]
- Support efficient membership/range queries
- Limitations =l IERoIn
- An MHT supports only the query keys on which the Merkle tree is built
- MHTs do Qot work with set-valued attributes Merkle Hash Tree
- MHTs of different blocks cannot be aggregated

= Ho)]

- Cryptographic Multiset Accumulator [PTT11]
- Map a multiset to an element in cyclic multiplicative group in a collision resistant fashion
- Utility: prove set disjoint
- Protcols:
- KeyGen(1*) — (sk, pk): generate keys
- Setup(X, pk) — acc(X): return the accumulative value w.rt. X
- ProveDisjoint(X, Xy, pR) —
on input two multisets Xy and X,, where X; N X, = @, output a proof =
- VerifyDisjoint(acc(Xy), acc(Xz), w, pk) — {0,1}:
on input the accumulative values acc(X1), acc(Xz), and a proof «r, output 1iff X1 N X, = @
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Basic Solution

- Consider a single object and boolean query
- Each block stores a single object o; = (t;, W,)
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- Extend the block header with AttDigest

- AttDigest = acc(W;) = Setup(W;, pk)
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block;
o <—{ PreBkHash \Ts \ cOnsProof\ ObjectHash \ AttDigest \ —

Extended Block Structure
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Extended Block Structure

Example of Mismatch

- Transform query condition to a list of sets: g = “Sedan” A (“Benz” v “BMW") — {“Sedan”}, {“Benz”, “BMW"}
- Consider o; : {"Van", “Benz"}, we have {“Sedan”} n {“Van", “Benz"} = &
- Apply ProveDisjoint({“Van”, “Benz"}, {“Sedan"}, pk) to compute proof =

- User retrieves AttDigest = acc({“Van”, “Benz"}) from the block header and uses
VerifyDisjoint(AttDigest, acc({“Sedan”}), =, pR) to verify the mismatch 12/15



Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes

Example of Transformation
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- ldea: transform numerical attributes into set-valued attributes

- Numerical value can be transformed into a set of
binary prefix elements
- Example: trans(4) = {1x,10%,100}
* denotes wildcard matching operator

- Range can be transformed into an equivalent
boolean expression using a binary tree

- Example: [0,6] — 0% Vv 10 V 110 Example of Transformation
Equivalence set: {0x, 10,110}

- Range queries can be processed in a similar manner as boolean queries
- Transform v; € [a, 8] — trans(v;) N EquiSet([e, £]) # @
- Example:
- 4 € [0,6] — {1,10%,100} N {0%,10%,110} = {10} # @
+ 7¢1[0,6] = {1%,11%,111} N {0%,10%,110} = &
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Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition
- Idea: we can aggregate them to speed up query processing
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Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition
- Idea: we can aggregate them to speed up query processing

- Intra-Block Index: aggregate objects inside same block using MHT
- Inter-Block Index: aggregate objects across blocks using skip list
- Inverted Prefix Tree: aggregate similar subscription queries from users

block;

block;_,, block;_, block;
Ty —T! PreBkHash ; “— —1—{ PreBkHash ... | . Jj~— -+ ~+—{ PreBkHash [ MerkleRoot [ SkipListRoot |
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Performance Evaluation
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Thanks
Questions?
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