SH = E4
é % 12 @' ji = SF SIMON FRASER
HONG KONG BAPTIST UNIVERSITY U UNIVERSITY

SlimChain: Scaling Blockchain Transactions through Off-
Chain Storage and Parallel Processing

Cheng Xu' 2, Ce Zhang?, Jianliang Xu?, and Jian Pei?
1Simon Fraser University, Canada
’Hong Kong Baptist University, Hong Kong

SH = E4
é % 12 @' ji = SF SIMON FRASER
HONG KONG BAPTIST UNIVERSITY U UNIVERSITY

Blockchain Overview

* Append-only data structure
collectively maintained by a
network of untrusted nodes

* Hash chain

* Consensus

* Immutability

* Decentralization

value #ABCD

Hash of Block 49

Timestamp

3 3= E4
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Current Blockchain System

 Features

* Every node keeps a full
replication of transaction
history and ledger states

* Every node validates all O

transactions in blocks @ TX E]

* Easy to maintain the same
order of transactions

e Easy to ensure execution
integrity

* Bad for high storage and
execution overhead

3 3= E4
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

NENF NENE

g
NENE

Current Blockchain System

 Features

* Every node keeps a full
replication of transaction
history and ledger states

* Every node validates all O

transactions in blocks @ TX E]

* Easy to maintain the same
order of transactions

e Easy to ensure execution
integrity

* Bad for high storage and
execution overhead

g g
EENE, EEER,

Chain data size in GB

900

800

700

600

500

400

300

200

HHR g KRE

S F SIMON FRASER
HONG KONG BAPTIST UNIVERSITY

UNIVERSITY

Current Blockchain System

847 GB

Ethereum Full Node Sync (Default) Chart

Source: Etherscan.io
Click and drag in the plot area to zoom in

1. May 1. Sep 1.]lan 1. May
TimeLine

-®- GETH Default

Chain data size in GB

3 = E4,
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Current Blockchain System

847 GB

Ethereum Full Node Sync (Default) Chart

Source: Etherscan.io
Click and drag in the plot area to zoom in

1. May

-®- GETH Default

Undermine system security and robustness by making the network more centralized!

4

3 3= E4
HEHRgREB SF SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Possible Solution: Sharding

 General idea [1, 2]
* Horizontally partition the blockchain w
into multiple parallel chains

* Reduce storage and computation
duplications among shards

* Drawback
* Only alleviate the problem by a
constant factor (# shards) A
* Introduce new problems (e.g., cross- B
shard tx) c

[1] M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: Scaling blockchain via full sharding. ACM CCS, 2018 5
[2] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy. BlockchainDB: A shared database on blockchains. VLDB 2019

3 = B
HEHRgREB SF SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

New Concept: Stateless Blockchain

 General idea [3, 4]

* Move ledger states and transaction executions off-chain to a subset of nodes
* Reduce the on-chain overhead

* Drawback
» Designed particularly for cryptocurrencies
* Cannot work for general-purpose blockchain that supports smart contracts

[3] A. Chepurnoy, C. Papamanthou, and Y. Zhang. EDRAX: A cryptocurrency with stateless transaction validation. Cryptology ePrint Archive, 2018
[4] D. Boneh, B. Biinz, and B. Fisch. Batching techniques for accumulators with applications to iops and stateless blockchains. In Annual International Cryptology Conference, 2019 6

HHR g KRE
@ HONG KONG BAPTISTTN[VERSITY 3%31;;;??1{

Stateless blockchain with smart contracts

Transaction contains arbitrary logic

Transaction introduces arbitrary

sized read/write set

Transaction should be processed in
parallel

HHR g KRE
@ HONG KONG BAPTISTTN[VERSITY 3%31;;;??1{

Stateless blockchain with smart contracts

. : : . Novel proof techniques to ensure
Transaction contains arbitrary logic -

integrity of transaction execution

Transaction introduces arbitrary
sized read/write set

Transaction should be processed in
parallel

HHR g KRE
@ HONG KONG BAPTISTTN[VERSITY 3%31;;;??1{

Stateless blockchain with smart contracts

Novel proof techniques to ensure

Transaction contains arbitrary logic - : : : :
integrity of transaction execution

Transaction introduces arbitrary Extra design to support on-chain
sized read/write set commitment updates

Transaction should be processed in
parallel

HHR g KRE
@ HONG KONG BAPTISTTN[VERSITY 3%31;;;??1{

Stateless blockchain with smart contracts

Novel proof techniques to ensure

Transaction contains arbitrary logic # : : : :
integrity of transaction execution

Transaction introduces arbitrary Extra design to support on-chain
sized read/write set commitment updates

Transaction should be processed in » New method for validating and

parallel committing concurrent transactions

3 = E4,
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Our Solution: SlimChain

* SlimChain: a stateless blockchain system that scales transactions
through off-chain storage and parallel processing

Off-chain storage nodes store ledger states and
simulate smart contract execution

On-chain consensus nodes maintain only the short
commitments of ledger states

3 = E4,
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Our Solution: SlimChain

* SlimChain: a stateless blockchain system that scales transactions
through off-chain storage and parallel processing

Off-chain storage nodes store ledger states and
simulate smart contract execution

On-chain consensus nodes maintain only the short
commitments of ledger states

Develop a verifiable transaction » Compute extra info to facilitate on-

execution algorithm chain transaction commitment

3 = E4,
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Our Solution: SlimChain

* SlimChain: a stateless blockchain system that scales transactions
through off-chain storage and parallel processing

Off-chain storage nodes store ledger states and
simulate smart contract execution
On-chain consensus nodes maintain only the short

commitments of ledger states

Develop a verifiable transaction » Compute extra info to facilitate on-
execution algorithm chain transaction commitment

Enable transaction validation,
concurrency control, and commitment

Design on-chain temporary state

3 3= E4
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

SlimChain System Overview

¢ |
* Send TX Storage Node

-

Consensus Node

X inpu \
O (txinput» Utx) @ _> t .._’..]
O 18

(txinput: Otx» aux))

g
- | amg |]

tx input

_>
_ (txl-nput, Ot aux)j .. _’..]

O (tx input, O-tx)
& ’

3 3= E4
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

SlimChain System Overview

I |
¢ Send TX Storage Node Consensus Node

(txinput \
O (txinput: Utx) @ _> .. _’..
O 18

(txinput: Otx» aux))

e Verifiable tx execution

g
- | amg |]

tx input

O (txinput: O-tx)’ — ;
> SHR
_ (txl-nput, Ot aux)j HE —HR

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SlimChain System Overview

e Send TX
e Verifiable tx execution

O (tx input, O-tx)

>

 Broadcast

O

SIMON FRASER
UNIVERSITY

'

Storage Node

-

tx input

S. @

O (txinputr O-tx)
& ’

Consensus Node

| amg |]

(txinput» Otx» aux))

_
-

tx input

.

| amg |]

tx; (0} aux
k (mpu‘t: tx» >j

HE—HE]

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SlimChain System Overview

e Send TX
e Verifiable tx execution

O (tx input, O-tx)

>

 Broadcast

)
* Validate & append to

ledger

O (txinputr O-tx)
O

SIMON FRASER
UNIVERSITY

'

Storage Node

-

tx input

> @:

Consensus Node

| g | |]

S. @

(txinput» Otx» aux))

-
("

tx input

| g | |]

tx; (0} aux
k (mpu‘t: tx» >j

| faag | |]

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SlimChain System Overview

e Send TX
e Verifiable tx execution
 Broadcast

* Validate & append to
ledger

e Synchronize

O (txinput: O-tx)

>

O

O (txinputr O-tx)
O

SIMON FRASER
UNIVERSITY

v

Storage Node

-

tx input

> @:

Consensus Node

| g | |]

S. @

(txinput» Otx» aux))

-
("

tx input

| g | |]

K (txmpuf, O-tx, auxb

| faag | |]

3 = B
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Preliminaries

e Merkle Hash Tree Hyoot

* Support verifiable membership testing with
logarithmic complexity

* Hash function combining the child nodes n;
* Proof: sibling hashes along the search path
* Verify: reconstructing the root hash

* Verifiable Computing

* Ensure the integrity of computations
performed by untrusted parties

* One possible implementation: TEE (Intel SGX) Verifygf‘;i? 1)‘ y,my) =1
[u) =y

F
Compute F

10

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

Off-chain Transaction Execution

Input:
' enerte 1) bl it

SIMON FRASER
S F U UNIVERSITY

Hyq

* Trpp €nsures execution
LUNLLIE Getmpeqq and verify wirt. integrity and read integrity
TEE UJex "} Whtar Hotar Twrite

provide enough information for

: on-chain validation and
e IWhixs Hota commitment

Compute mrgg W.I.t. tx,

tXsubmit
— (txinputr {r}txr {W}txr Hold: TTTEE, nWrite)

11

SIMON FRASER
S F U UNIVERSITY

On-chain Transaction Commitment

Validate g, Ty rite

12

3 = E4,
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

On-chain Transaction Commitment

Validate g, Ty rite

Check conflict of {r}sy, {W}iy

12

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SFU [
On-chain Transaction Commitment

Validate g, Ty rite

Check conflict of {r}sy, {W}iy

Update ledger state commitment and generate new block

12

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SFU [
On-chain Transaction Commitment

How to update the state commitment
without access to the full tree?

How to check conflict among
transactions and ensure serializability?

13

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SFU [
On-chain Transaction Commitment

How to update the state commitment

without access to the full tree? Keep track of temp state of

recent blocks
Temp state should handle state
commitment and tx conflict

How to check conflict among
transactions and ensure serializability?

13

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SFU [
On-chain Transaction Commitment

How to update the state commitment

without access to the full tree? Keep track of temp state of

recent blocks
Temp state should handle state
commitment and tx conflict

How to check conflict among
transactions and ensure serializability?

* Temporary states
* J,,: a partial Merkle tree w.r.t. the write set in the past k blocks
* M;,, M;_,,,: map between block height to read, write addresses

* M,.;, M, ;: map between read, write addresses to an ordered list of block
heights

13

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SIMON FRASER
S F U UNIVERSITY

Conflict Check

Height 101, Check tx4

* Optimistic Concurrency Block id
Control (OCC)

* Check whether other
committed transactions
have modified the data that
the current transaction
accessed (read or wrote)

14

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SIMON FRASER
S F U UNIVERSITY

Conflict Check

Height 101, Check tx4

* Optimistic Concurrency Block id
Control (OCC)

* Check whether other
committed transactions
have modified the data that
the current transaction
accessed (read or wrote)

Check 1y, and M,,.,; > 10 € M,,,.;

14

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SIMON FRASER
S F U UNIVERSITY

Conflict Check

Height 101, Check tx4

* Optimistic Concurrency Block id
Control (OCC)

* Check whether other
committed transactions
have modified the data that
the current transaction
accessed (read or wrote)

Check 1y, and M,,,,; 2 A0 &€ M,,.;
Check wg,, and M, 5; - 10 € M,,,,,;

14

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SIMON FRASER
S F U UNIVERSITY

Conflict Check

Height 101, Check tx4

* Optimistic Concurrency Block id
Control (OCC)

* Check whether other
committed transactions
have modified the data that
the current transaction
accessed (read or wrote)

Check 1y, and M,,,,; 2 A0 &€ M,,.;

Check wg,, and M, 5; - 10 € M,,,,,;
txs is valid!

14

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SIMON FRASER
S F U UNIVERSITY

Conflict Check

Height 101, Check tx,

* Optimistic Concurrency Block id
Control (OCC)

* Check whether other
committed transactions
have modified the data that
the current transaction
accessed (read or wrote)

15

SIMON FRASER
S F U UNIVERSITY

Conflict Check

Height 101, Check tx,

* Optimistic Concurrency Block id
Control (OCC)

* Check whether other
committed transactions
have modified the data that
the current transaction
accessed (read or wrote)

Check ry,, and M,,,.,; —» 101 > 100

15

HHR g KRE
HONG KONG BAPTIST UNIVERSITY

SIMON FRASER
S F U UNIVERSITY

Conflict Check

Height 101, Check tx,

* Optimistic Concurrency Block id
Control (OCC)

* Check whether other
committed transactions
have modified the data that
the current transaction
accessed (read or wrote)

Check ry,, and M,,,.,; —» 101 > 100

tx, reads 00 during blockgg
00 is written by tx, committed in blockqyq
tx, is invalid under OCC!

15

3 = B
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Partial Merkle Tree 7, T,

* Features of 7,

* Enable the consensus node to update the state root
digest without accessing the full Merkle tree

* Only the tree nodes corresponding to the written
values happening in the past k blocks as well as
their Merkle paths are materialized

* Maintenance of 7,

* Update operation: take the Merkle proof m,,,;te
and write set {w};, to apply the writes from the
transaction

* Tidy operation: remove the write addresses whose
age is more than k blocks

16

3 = E4,
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Partial Merkle Tree 7;,,

Twrite O £X
Height: 101 W write ™
Insert tx3 to Blocky> Hyo1 Hi00
0|1 0

1
~.
Ol 1
B .o

17

3 = E4,
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Partial Merkle Tree 7;,,

k=2
Twrite OF tX
Height: 101 write T s
Insert tx; to Blocky, H1o0
0|1

Wiex {10 v6}

17

3 = E4,
HEHRgREB SF SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Partial Merkle Tree 7;,,

Twrite O £X
Height: 101 W write ™
Insert tx3 to Blocky> Hyo1 Hi00
0|1 0|1

~
0]1

B .o

17

3 = E4,
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Partial Merkle Tree 7;,,

k=2 Update Root .
Height: 101 Digest Tw TwriteOf 1X3
Insert tx3 to Blocky> Hyo2 Hi00

0|1

~.
Ol 1
B .o

Apply write
value

17

@ EN‘G%KO?I\I%G EP?IET%\J[VERSITY SIMON FRASER
Partial Merkle Tree 7;,,

Height: 102 W

Remove write addr

Hio, Tidy:
Blocko contains write set: {01: v,}

18

@ EN‘G%KO?I\I%G EP?IET%\J[VERSITY SIMON FRASER
Partial Merkle Tree 7;,,
k =2

Height: 102
Remove write addr

Tidy:
Blocko contains write set: {01: v,}

18

@ EN‘G%KO?I\I%G EP?IET%\J[VERSITY SIMON FRASER
Partial Merkle Tree 7;,,

Height: 102 W

Remove write addr

Hio, Tidy:
Blocko contains write set: {01: v,}

18

@ EN‘G%KO?I\I%G EP?IET%\J[VERSITY SIMON FRASER
Partial Merkle Tree 7;,,

Height: 102 W

Remove write addr

Hio, Tidy:
Blocko contains write set: {01: v,}

18

3 = B
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Node Synchronization

* Block Observer
» Validate and log blocks created by the block proposers

e Storage Node
* Execute a similar procedure as on-chain transaction commitment
* Keep transaction data and state data
* Maintain full Merkle tree instead of partial tree 7,,,

19

3 = B
HEHRgREB SFU SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Implementation

Block
Block

* Imp lement in Rust program Storage Node @ Block Proposer Block Observer

language (LOC: 26,000)

SlimChain

TX Execution | Block Propose | Block Synchronization
* Two consensus protocols are | --s=se=eemsmmeemmemmmmeeeemeean

. Off-chain Stat On-chain Stat
implemented: PoW, Raft cam o n-chain State
Consensus TX Engine
* Source code available at Low-level Modules
* http://git-iO/S“mChain Storage Merkle Trie Network SGX Enclave

20

http://git.io/slimchain

Consensus Node Storage Size

Classic mm Stateful == Classic mm Stateful == Slimchain =2
Fabric# —1 Slimchain = 20K ! ! I I I
20K I I T T

15.2k

o
N
|
—
an
PN
|

10.9k

%))
P

5.1kg gk 9.1k q g

Storage Size (B/tx)
=
P
Storage Size (B/tx)
o
=
I

5K
0 1@65 I%% 0 ﬁ E 63 63
CPU CPU 1O KV SB
(} Smart Contract (Permissioned) [b} Smart Contract (Permissionless)

 SlimChain reduces on-chain storage requirements for consensus nodes by 97%-99%

* The on-chain storage size of SlimChain remains constant regardless of smart
contracts

21

Classic == Stateful ==
Fabric# &1 Slimchain =

3 = E4
HEHRgREB SF SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

System Throughput and Latency

Classic — SlimChain — propose ™
Fabric# — exec @@ valdate m

Stateful — wait-prop = net+raft =

|
— _12“[] | | | | |
[Fpal =
_ 95 _
e, o 10 8.1 e 20 B.2
3 900 685 1 = 8 es e [i
£ . i syl) 6 L % 2 _
2 600 = 5]
o :::::j: = ::::.:ﬁ ilﬂu 4 3 2 & .
= - e o o ' '
= 30 b B 1 RS 2 Fi L E -
D :':..‘ ":. ;::‘ D A T .. 5 ! N [5 W =
DN CPU 10 B DN CPU 10 KV SB

(a) Smart Contract

e 1.6X-11.3X against Classic
e 1.4X-2.6X against FabricSharp

* SlimChain has the lowest latency

(b) Smart Contract

e SlimChain achieves the highest throughput

22

3 = E4,
HEHRgREB SF SIMON FRASER
HONG KONG BAPTIST UNIVERSITY UNIVERSITY

Thanks
Q&A

23

