
Blockchain Privacy Preserving Techniques

XU Cheng <chengxu@comp.hkbu.edu.hk>
October 12, 2019 @ NDBC 2019

Department of Computer Science, Hong Kong Baptist University

mailto:chengxu@comp.hkbu.edu.hk

Blockchain Technology

• Blockchain: Append-only data structure
collectively maintained by a network of
(untrusted) nodes

• Hash chain
• Consensus

• Immutability
• Decentralization

• A wide range of applications
• Digital identities
• Decentralized notary
• Distributed storage
• Smart Contracts
• · · ·

Blockchain Structure [Credit: Wikipedia]

1/17

https://commons.wikimedia.org/wiki/File:Blockchain_workflow.png

Blockchain Technology

• Blockchain: Append-only data structure
collectively maintained by a network of
(untrusted) nodes

• Hash chain
• Consensus

• Immutability
• Decentralization

• A wide range of applications
• Digital identities
• Decentralized notary
• Distributed storage
• Smart Contracts
• · · ·

Blockchain Applications [Credit: FAHM Technology Partners]

1/17

http://www.fahmpartners.com/solutions/blockchain/

Smart Contract

• A trusted program to execute user-defined
computation upon the blockchain

• Smart Contract reads and writes blockchain
data

• Execution integrity is ensured by the
consensus protocol

• Offer trusted storage and computation
capabilities

• Function as a trusted virtual machine

Traditional
Computer

Blockchain
VM

Storage RAM Blockchain

Computation CPU Smart Contract

2/17

Privacy Issues in Blockchain

• Blockchain data is public and transparent
• Cannot store confidential data

• E.g., health records, bank accounts, business contracts

• Any interaction with the smart contract is also public
• Limit the application of blockchain technology

• Blockchain data is immutable
• Once data is written into blockchain, it cannot be removed
• Cannot fulfill the right to be forgotten
• Incompatible with GDPR

[Credit: Gergely Acs]

[Credit: David Alayón]

3/17

https://tresorit.com/blog/personal-data-under-the-gdpr/
https://medium.com/future-today/the-right-to-be-forgotten-e20829574927

Privacy Issues in Blockchain

• Blockchain data is public and transparent
• Cannot store confidential data

• E.g., health records, bank accounts, business contracts

• Any interaction with the smart contract is also public
• Limit the application of blockchain technology

• Blockchain data is immutable
• Once data is written into blockchain, it cannot be removed
• Cannot fulfill the right to be forgotten
• Incompatible with GDPR

[Credit: Gergely Acs]

[Credit: David Alayón]

3/17

https://tresorit.com/blog/personal-data-under-the-gdpr/
https://medium.com/future-today/the-right-to-be-forgotten-e20829574927

Strawman Approach

• Problem: blockchain data is public

• Strawman Approach
• Encrypt the data before writing into the blockchain

• Limitations
• Smart contract cannot process ciphertext
• Computation can only be done locally

• decrypt→ process→ encrypt

• Encrypted computation results cannot be publicly verified
• Access pattern still leaks confidential information

[Credit: Pixabay]

4/17

https://pixabay.com/vectors/scarecrow-straw-halloween-autumn-576497/

Strawman Approach

• Problem: blockchain data is public

• Strawman Approach
• Encrypt the data before writing into the blockchain

• Limitations
• Smart contract cannot process ciphertext
• Computation can only be done locally

• decrypt→ process→ encrypt

• Encrypted computation results cannot be publicly verified
• Access pattern still leaks confidential information [Credit: Pixabay]

4/17

https://pixabay.com/vectors/scarecrow-straw-halloween-autumn-576497/

Homomorphic Encryption

• An encryption technique allows mathematical operations
on plaintext to be carried out on ciphertext

• Enable smart contract to process encrypted data directly

• State-of-the-art
• Fully homomorphic encryption:
Expressive but high overhead

• Partial homomorphic encryption:
Efficient but limited functions

• Example of partial homomorphic encryption (ElGamal)
• enc(m) = (gy,mhy)
• enc(m1) · enc(m2) = (gy1+y2 ,m1m2hy1+y2) = enc(m1 ·m2)

enc(m) enc(f (m))

m f (m)

eval

f
enc enc

A. Acar et al., “A survey on homomorphic encryption schemes,” ACM Computing Surveys, 2018

5/17

Homomorphic Encryption

• An encryption technique allows mathematical operations
on plaintext to be carried out on ciphertext

• Enable smart contract to process encrypted data directly

• State-of-the-art
• Fully homomorphic encryption:
Expressive but high overhead

• Partial homomorphic encryption:
Efficient but limited functions

• Example of partial homomorphic encryption (ElGamal)
• enc(m) = (gy,mhy)
• enc(m1) · enc(m2) = (gy1+y2 ,m1m2hy1+y2) = enc(m1 ·m2)

enc(m) enc(f (m))

m f (m)

eval

f
enc enc

A. Acar et al., “A survey on homomorphic encryption schemes,” ACM Computing Surveys, 2018

5/17

Homomorphic Encryption

• An encryption technique allows mathematical operations
on plaintext to be carried out on ciphertext

• Enable smart contract to process encrypted data directly

• State-of-the-art
• Fully homomorphic encryption:
Expressive but high overhead

• Partial homomorphic encryption:
Efficient but limited functions

• Example of partial homomorphic encryption (ElGamal)
• enc(m) = (gy,mhy)
• enc(m1) · enc(m2) = (gy1+y2 ,m1m2hy1+y2) = enc(m1 ·m2)

enc(m) enc(f (m))

m f (m)

eval

f
enc enc

A. Acar et al., “A survey on homomorphic encryption schemes,” ACM Computing Surveys, 2018

5/17

Zero-Knowledge Proofs (ZKP)

• Zero-Knowledge Proofs allow
• Publicly verify some statement
• Leak no information beyond the statement itself
(e.g., internal states, private inputs, etc.)

• zk-SNARKs
(Zero-Knowledge Succinct Non-Interactive ARguments of Knowledge)

• Zero-Knowledge: the verifier learns nothing apart from the
validity of the statement

• Succinct: the size of the message is tiny in comparison to the
length of the actual computation

• Non-interactive: there is no or only little interaction
• Arguments: the verifier is only protected against computa-
tionally limited provers

[Credit: Vitalik Buterin]

A. Kosba et al., “Hawk: The blockchain model of cryptography and privacy-preserving smart contracts,” in IEEE S&P, 2016

6/17

https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/

Zero-Knowledge Proofs (ZKP)

• Zero-Knowledge Proofs allow
• Publicly verify some statement
• Leak no information beyond the statement itself
(e.g., internal states, private inputs, etc.)

• zk-SNARKs
(Zero-Knowledge Succinct Non-Interactive ARguments of Knowledge)

• Zero-Knowledge: the verifier learns nothing apart from the
validity of the statement

• Succinct: the size of the message is tiny in comparison to the
length of the actual computation

• Non-interactive: there is no or only little interaction
• Arguments: the verifier is only protected against computa-
tionally limited provers

[Credit: Vitalik Buterin]

A. Kosba et al., “Hawk: The blockchain model of cryptography and privacy-preserving smart contracts,” in IEEE S&P, 2016

6/17

https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/

zk-SNARKs

Program
A program can be viewed as C(x, w) -> {0, 1}.
• x is the public input.

• w is the secret witness input.

Example
function C(x, w) { return sha256(w) == x; }

zk-SNARKs
zk-SNARKs consist of a tupe of PPT algorithms (KeyGen, Prove, Verify)
• KeyGen(1λ, C) → (pk, vk) Generate proving key pk and verification key vk for program C.

• Prove(pk, x,w) → π Generate the proof π w.r.t. pk, x,w.

• Verify(vk, x, π) → {0, 1} Output 1 iff ∃w s.t. C(x,w) = 1.

B. Parno et al., “Pinocchio: Nearly practical verifiable computation,” in IEEE S&P, 2013
7/17

zk-SNARKs

Program
A program can be viewed as C(x, w) -> {0, 1}.
• x is the public input.

• w is the secret witness input.

Example
function C(x, w) { return sha256(w) == x; }

zk-SNARKs
zk-SNARKs consist of a tupe of PPT algorithms (KeyGen, Prove, Verify)
• KeyGen(1λ, C) → (pk, vk) Generate proving key pk and verification key vk for program C.

• Prove(pk, x,w) → π Generate the proof π w.r.t. pk, x,w.

• Verify(vk, x, π) → {0, 1} Output 1 iff ∃w s.t. C(x,w) = 1.

B. Parno et al., “Pinocchio: Nearly practical verifiable computation,” in IEEE S&P, 2013
7/17

zk-SNARKs

Program
A program can be viewed as C(x, w) -> {0, 1}.
• x is the public input.

• w is the secret witness input.

Example
function C(x, w) { return sha256(w) == x; }

zk-SNARKs
zk-SNARKs consist of a tupe of PPT algorithms (KeyGen, Prove, Verify)
• KeyGen(1λ, C) → (pk, vk) Generate proving key pk and verification key vk for program C.

• Prove(pk, x,w) → π Generate the proof π w.r.t. pk, x,w.

• Verify(vk, x, π) → {0, 1} Output 1 iff ∃w s.t. C(x,w) = 1.

B. Parno et al., “Pinocchio: Nearly practical verifiable computation,” in IEEE S&P, 2013
7/17

Example of Confidential Transactions
mapping(address => bytes32) balanceHashes;

function senderFunction(x, w) {
return (w.senderBalanceBefore > w.value && sha256(w.value) == x.hashValue &&

sha256(w.senderBalanceBefore) == x.hashSenderBalanceBefore &&
sha256(w.senderBalanceBefore - w.value) == x.hashSenderBalanceAfter);

}

function receiverFunction(x, w) {
return (sha256(w.value) == x.hashValue &&

sha256(w.receiverBalanceBefore) == x.hashReceiverBalanceBefore &&
sha256(w.receiverBalanceBefore + w.value) == x.hashReceiverBalanceAfter);

}

function transfer(address _to, bytes32 hashValue, bytes32 hashSenderBalanceAfter,
bytes32 hashReceiverBalanceAfter, bytes zkProofSender, bytes zkProofReceiver) {
bytes32 hashSenderBalanceBefore = balanceHashes[msg.sender];
bytes32 hashReceiverBalanceBefore = balanceHashes[_to];
bool senderProofIsCorrect = zksnarkverify(confTxSenderVk,

[hashSenderBalanceBefore, hashSenderBalanceAfter, hashValue], zkProofSender);
bool receiverProofIsCorrect = zksnarkverify(confTxReceiverVk,

[hashReceiverBalanceBefore, hashReceiverBalanceAfter, hashValue],
zkProofReceiver);

if (senderProofIsCorrect && receiverProofIsCorrect) {
balanceHashes[msg.sender] = hashSenderBalanceAfter;
balanceHashes[_to] = hashReceiverBalanceAfter;

}
}

[Credit: Christian Lundkvist]

• Blockchain stores balance hashes

• Sender proves
• balancet > spent
• balancet+1 = balancet − spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Recipient proves
• balancet+1 = balancet + spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Drawbacks
• Sender and recipient identities are not
protected

• Recipient need to participate transaction

8/17

https://media.consensys.net/introduction-to-zksnarks-with-examples-3283b554fc3b

Example of Confidential Transactions
mapping(address => bytes32) balanceHashes;

function senderFunction(x, w) {
return (w.senderBalanceBefore > w.value && sha256(w.value) == x.hashValue &&

sha256(w.senderBalanceBefore) == x.hashSenderBalanceBefore &&
sha256(w.senderBalanceBefore - w.value) == x.hashSenderBalanceAfter);

}

function receiverFunction(x, w) {
return (sha256(w.value) == x.hashValue &&

sha256(w.receiverBalanceBefore) == x.hashReceiverBalanceBefore &&
sha256(w.receiverBalanceBefore + w.value) == x.hashReceiverBalanceAfter);

}

function transfer(address _to, bytes32 hashValue, bytes32 hashSenderBalanceAfter,
bytes32 hashReceiverBalanceAfter, bytes zkProofSender, bytes zkProofReceiver) {
bytes32 hashSenderBalanceBefore = balanceHashes[msg.sender];
bytes32 hashReceiverBalanceBefore = balanceHashes[_to];
bool senderProofIsCorrect = zksnarkverify(confTxSenderVk,

[hashSenderBalanceBefore, hashSenderBalanceAfter, hashValue], zkProofSender);
bool receiverProofIsCorrect = zksnarkverify(confTxReceiverVk,

[hashReceiverBalanceBefore, hashReceiverBalanceAfter, hashValue],
zkProofReceiver);

if (senderProofIsCorrect && receiverProofIsCorrect) {
balanceHashes[msg.sender] = hashSenderBalanceAfter;
balanceHashes[_to] = hashReceiverBalanceAfter;

}
}

[Credit: Christian Lundkvist]

• Blockchain stores balance hashes

• Sender proves
• balancet > spent
• balancet+1 = balancet − spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Recipient proves
• balancet+1 = balancet + spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Drawbacks
• Sender and recipient identities are not
protected

• Recipient need to participate transaction

8/17

https://media.consensys.net/introduction-to-zksnarks-with-examples-3283b554fc3b

Example of Confidential Transactions
mapping(address => bytes32) balanceHashes;

function senderFunction(x, w) {
return (w.senderBalanceBefore > w.value && sha256(w.value) == x.hashValue &&

sha256(w.senderBalanceBefore) == x.hashSenderBalanceBefore &&
sha256(w.senderBalanceBefore - w.value) == x.hashSenderBalanceAfter);

}

function receiverFunction(x, w) {
return (sha256(w.value) == x.hashValue &&

sha256(w.receiverBalanceBefore) == x.hashReceiverBalanceBefore &&
sha256(w.receiverBalanceBefore + w.value) == x.hashReceiverBalanceAfter);

}

function transfer(address _to, bytes32 hashValue, bytes32 hashSenderBalanceAfter,
bytes32 hashReceiverBalanceAfter, bytes zkProofSender, bytes zkProofReceiver) {
bytes32 hashSenderBalanceBefore = balanceHashes[msg.sender];
bytes32 hashReceiverBalanceBefore = balanceHashes[_to];
bool senderProofIsCorrect = zksnarkverify(confTxSenderVk,

[hashSenderBalanceBefore, hashSenderBalanceAfter, hashValue], zkProofSender);
bool receiverProofIsCorrect = zksnarkverify(confTxReceiverVk,

[hashReceiverBalanceBefore, hashReceiverBalanceAfter, hashValue],
zkProofReceiver);

if (senderProofIsCorrect && receiverProofIsCorrect) {
balanceHashes[msg.sender] = hashSenderBalanceAfter;
balanceHashes[_to] = hashReceiverBalanceAfter;

}
}

[Credit: Christian Lundkvist]

• Blockchain stores balance hashes

• Sender proves
• balancet > spent
• balancet+1 = balancet − spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Recipient proves
• balancet+1 = balancet + spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Drawbacks
• Sender and recipient identities are not
protected

• Recipient need to participate transaction

8/17

https://media.consensys.net/introduction-to-zksnarks-with-examples-3283b554fc3b

Example of Confidential Transactions
mapping(address => bytes32) balanceHashes;

function senderFunction(x, w) {
return (w.senderBalanceBefore > w.value && sha256(w.value) == x.hashValue &&

sha256(w.senderBalanceBefore) == x.hashSenderBalanceBefore &&
sha256(w.senderBalanceBefore - w.value) == x.hashSenderBalanceAfter);

}

function receiverFunction(x, w) {
return (sha256(w.value) == x.hashValue &&

sha256(w.receiverBalanceBefore) == x.hashReceiverBalanceBefore &&
sha256(w.receiverBalanceBefore + w.value) == x.hashReceiverBalanceAfter);

}

function transfer(address _to, bytes32 hashValue, bytes32 hashSenderBalanceAfter,
bytes32 hashReceiverBalanceAfter, bytes zkProofSender, bytes zkProofReceiver) {
bytes32 hashSenderBalanceBefore = balanceHashes[msg.sender];
bytes32 hashReceiverBalanceBefore = balanceHashes[_to];
bool senderProofIsCorrect = zksnarkverify(confTxSenderVk,

[hashSenderBalanceBefore, hashSenderBalanceAfter, hashValue], zkProofSender);
bool receiverProofIsCorrect = zksnarkverify(confTxReceiverVk,

[hashReceiverBalanceBefore, hashReceiverBalanceAfter, hashValue],
zkProofReceiver);

if (senderProofIsCorrect && receiverProofIsCorrect) {
balanceHashes[msg.sender] = hashSenderBalanceAfter;
balanceHashes[_to] = hashReceiverBalanceAfter;

}
}

[Credit: Christian Lundkvist]

• Blockchain stores balance hashes

• Sender proves
• balancet > spent
• balancet+1 = balancet − spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Recipient proves
• balancet+1 = balancet + spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Drawbacks
• Sender and recipient identities are not
protected

• Recipient need to participate transaction

8/17

https://media.consensys.net/introduction-to-zksnarks-with-examples-3283b554fc3b

Example of Confidential Transactions
mapping(address => bytes32) balanceHashes;

function senderFunction(x, w) {
return (w.senderBalanceBefore > w.value && sha256(w.value) == x.hashValue &&

sha256(w.senderBalanceBefore) == x.hashSenderBalanceBefore &&
sha256(w.senderBalanceBefore - w.value) == x.hashSenderBalanceAfter);

}

function receiverFunction(x, w) {
return (sha256(w.value) == x.hashValue &&

sha256(w.receiverBalanceBefore) == x.hashReceiverBalanceBefore &&
sha256(w.receiverBalanceBefore + w.value) == x.hashReceiverBalanceAfter);

}

function transfer(address _to, bytes32 hashValue, bytes32 hashSenderBalanceAfter,
bytes32 hashReceiverBalanceAfter, bytes zkProofSender, bytes zkProofReceiver) {
bytes32 hashSenderBalanceBefore = balanceHashes[msg.sender];
bytes32 hashReceiverBalanceBefore = balanceHashes[_to];
bool senderProofIsCorrect = zksnarkverify(confTxSenderVk,

[hashSenderBalanceBefore, hashSenderBalanceAfter, hashValue], zkProofSender);
bool receiverProofIsCorrect = zksnarkverify(confTxReceiverVk,

[hashReceiverBalanceBefore, hashReceiverBalanceAfter, hashValue],
zkProofReceiver);

if (senderProofIsCorrect && receiverProofIsCorrect) {
balanceHashes[msg.sender] = hashSenderBalanceAfter;
balanceHashes[_to] = hashReceiverBalanceAfter;

}
}

[Credit: Christian Lundkvist]

• Blockchain stores balance hashes

• Sender proves
• balancet > spent
• balancet+1 = balancet − spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Recipient proves
• balancet+1 = balancet + spent
• balancet , balancet+1 are well formed
w.r.t. hashes

• Drawbacks
• Sender and recipient identities are not
protected

• Recipient need to participate transaction

8/17

https://media.consensys.net/introduction-to-zksnarks-with-examples-3283b554fc3b

Zerocash

• ZCASH uses zk-SNARKs and UTXO model to achieve unlink-
able transactions

• Transactions can be verified publicly
• Sender, recipient and amount of a transaction remain private

• Each transaction consists of inputs and outputs
Each coin has serial number and owner address

• To spend, sender proves that in zero-knowledge
•
∑
inputs =

∑
outputs

• inputs ∈ {previous outputs}
• Sender has private keys w.r.t. inputs’s owner address
• Serial numbers are correct w.r.t. inputs’s coins

• Miner verifies the proof and serial numbers are never spent

[Credit: Paige Peterson]

[Credit: Jack Gavigan]

E. B. Sasson et al., “Zerocash: Decentralized anonymous payments from bitcoin,” in IEEE S&P, 2014

9/17

https://electriccoin.co/blog/anatomy-of-zcash/
https://electriccoin.co/blog/zsl/

Zerocash

• ZCASH uses zk-SNARKs and UTXO model to achieve unlink-
able transactions

• Transactions can be verified publicly
• Sender, recipient and amount of a transaction remain private

• Each transaction consists of inputs and outputs
Each coin has serial number and owner address

• To spend, sender proves that in zero-knowledge
•
∑
inputs =

∑
outputs

• inputs ∈ {previous outputs}
• Sender has private keys w.r.t. inputs’s owner address
• Serial numbers are correct w.r.t. inputs’s coins

• Miner verifies the proof and serial numbers are never spent

[Credit: Paige Peterson]

[Credit: Jack Gavigan]

E. B. Sasson et al., “Zerocash: Decentralized anonymous payments from bitcoin,” in IEEE S&P, 2014

9/17

https://electriccoin.co/blog/anatomy-of-zcash/
https://electriccoin.co/blog/zsl/

Zerocash

• ZCASH uses zk-SNARKs and UTXO model to achieve unlink-
able transactions

• Transactions can be verified publicly
• Sender, recipient and amount of a transaction remain private

• Each transaction consists of inputs and outputs
Each coin has serial number and owner address

• To spend, sender proves that in zero-knowledge
•
∑
inputs =

∑
outputs

• inputs ∈ {previous outputs}
• Sender has private keys w.r.t. inputs’s owner address
• Serial numbers are correct w.r.t. inputs’s coins

• Miner verifies the proof and serial numbers are never spent

[Credit: Paige Peterson]

[Credit: Jack Gavigan]

E. B. Sasson et al., “Zerocash: Decentralized anonymous payments from bitcoin,” in IEEE S&P, 2014

9/17

https://electriccoin.co/blog/anatomy-of-zcash/
https://electriccoin.co/blog/zsl/

Zerocash

• ZCASH uses zk-SNARKs and UTXO model to achieve unlink-
able transactions

• Transactions can be verified publicly
• Sender, recipient and amount of a transaction remain private

• Each transaction consists of inputs and outputs
Each coin has serial number and owner address

• To spend, sender proves that in zero-knowledge
•
∑
inputs =

∑
outputs

• inputs ∈ {previous outputs}
• Sender has private keys w.r.t. inputs’s owner address
• Serial numbers are correct w.r.t. inputs’s coins

• Miner verifies the proof and serial numbers are never spent

[Credit: Paige Peterson]

[Credit: Jack Gavigan]

E. B. Sasson et al., “Zerocash: Decentralized anonymous payments from bitcoin,” in IEEE S&P, 2014

9/17

https://electriccoin.co/blog/anatomy-of-zcash/
https://electriccoin.co/blog/zsl/

Trusted Execution Environment

• Intel SGX (Software Guard Extension) allows to create a
reverse sandbox that protects enclaves from:

• OS or hypervisor
• BIOS, firmware, drivers

• Intel ME
• Any remote attack

• Pros
• More efficient than zk-SNARKs
• Support arbitrary computation tasks
• Offer guarantees for both data integrity and confidentiality

• Cons
• Hardware instead of cryptographic based security guarantee
• You need to trust Intel (a centralized party)
• Recent attacks through Spectre and Meltdown

[Credit: Alexandre Adamski]

V. Costan et al., Intel SGX explained, Cryptology ePrint Archive, Report 2016/086, 2016
R. Cheng et al., “Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts,” in IEEE

EuroS&P, 2019 10/17

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

Trusted Execution Environment

• Intel SGX (Software Guard Extension) allows to create a
reverse sandbox that protects enclaves from:

• OS or hypervisor
• BIOS, firmware, drivers

• Intel ME
• Any remote attack

• Pros
• More efficient than zk-SNARKs
• Support arbitrary computation tasks
• Offer guarantees for both data integrity and confidentiality

• Cons
• Hardware instead of cryptographic based security guarantee
• You need to trust Intel (a centralized party)
• Recent attacks through Spectre and Meltdown

[Credit: Alexandre Adamski]

V. Costan et al., Intel SGX explained, Cryptology ePrint Archive, Report 2016/086, 2016
R. Cheng et al., “Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts,” in IEEE

EuroS&P, 2019 10/17

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

Trusted Execution Environment

• Intel SGX (Software Guard Extension) allows to create a
reverse sandbox that protects enclaves from:

• OS or hypervisor
• BIOS, firmware, drivers

• Intel ME
• Any remote attack

• Pros
• More efficient than zk-SNARKs
• Support arbitrary computation tasks
• Offer guarantees for both data integrity and confidentiality

• Cons
• Hardware instead of cryptographic based security guarantee
• You need to trust Intel (a centralized party)
• Recent attacks through Spectre and Meltdown

[Credit: Alexandre Adamski]

V. Costan et al., Intel SGX explained, Cryptology ePrint Archive, Report 2016/086, 2016
R. Cheng et al., “Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts,” in IEEE

EuroS&P, 2019 10/17

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

Oblivious Data Access

• Side-Channel Attack
• Data access pattern can leak critical information

• Oblivious Algorithms
• Process data in oblivious manner
• Tailor to the specific task, relatively efficient
• Example: oblivious sort, oblivious join, oblivious graph query processing, etc.

• Oblivious RAM (ORAM)
• General memory access model: Read(k),Write(k, v)
• Allow access the data in arbitrary orders
• Leak no information from the access pattern

K. Nayak et al., “GraphSC: Parallel secure computation made easy,” in IEEE S&P, 2015
E. Cecchetti et al., “Solidus: Confidential distributed ledger transactions via PVORM,” in ACM CCS, 2017

11/17

Oblivious Data Access

• Side-Channel Attack
• Data access pattern can leak critical information

• Oblivious Algorithms
• Process data in oblivious manner
• Tailor to the specific task, relatively efficient
• Example: oblivious sort, oblivious join, oblivious graph query processing, etc.

• Oblivious RAM (ORAM)
• General memory access model: Read(k),Write(k, v)
• Allow access the data in arbitrary orders
• Leak no information from the access pattern

K. Nayak et al., “GraphSC: Parallel secure computation made easy,” in IEEE S&P, 2015
E. Cecchetti et al., “Solidus: Confidential distributed ledger transactions via PVORM,” in ACM CCS, 2017

11/17

Oblivious Data Access

• Side-Channel Attack
• Data access pattern can leak critical information

• Oblivious Algorithms
• Process data in oblivious manner
• Tailor to the specific task, relatively efficient
• Example: oblivious sort, oblivious join, oblivious graph query processing, etc.

• Oblivious RAM (ORAM)
• General memory access model: Read(k),Write(k, v)
• Allow access the data in arbitrary orders
• Leak no information from the access pattern

K. Nayak et al., “GraphSC: Parallel secure computation made easy,” in IEEE S&P, 2015
E. Cecchetti et al., “Solidus: Confidential distributed ledger transactions via PVORM,” in ACM CCS, 2017

11/17

Path ORAM

root

0 1 2 3path

Stash

Block B0 B1 B2 B3 B4
Path

Position Map

Untrusted Memory (Blockchain)

Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree

• Trusted memory consists of
• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash
• Unused untrusted memory is filled with dummy block

• Access Block B1

• Lookup position map to locate the block B1
• Read all blocks on path 3 to the stash
• Apply operation
• Remap B1 to a new random path
• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Path ORAM

root

0 1 2 3path

Stash

Block B0 B1 B2 B3 B4
Path

Position Map

Untrusted Memory (Blockchain)Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree
• Trusted memory consists of

• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash
• Unused untrusted memory is filled with dummy block

• Access Block B1

• Lookup position map to locate the block B1
• Read all blocks on path 3 to the stash
• Apply operation
• Remap B1 to a new random path
• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Path ORAM

(B3, 0)

root

(B0, 0)

0 1

(B2, 3)

2

(B1, 3)

3path

(B4, 1)

Stash

Block B0 B1 B2 B3 B4
Path 0 3 3 0 1

Position Map

Untrusted Memory (Blockchain)Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree
• Trusted memory consists of

• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash

• Unused untrusted memory is filled with dummy block

• Access Block B1

• Lookup position map to locate the block B1
• Read all blocks on path 3 to the stash
• Apply operation
• Remap B1 to a new random path
• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Path ORAM

(B3, 0)

root

(B0, 0)

dummy

0

dummy

1

(B2, 3)

dummy

2

(B1, 3)

3path

(B4, 1)

Stash

Block B0 B1 B2 B3 B4
Path 0 3 3 0 1

Position Map

Untrusted Memory (Blockchain)Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree
• Trusted memory consists of

• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash
• Unused untrusted memory is filled with dummy block

• Access Block B1

• Lookup position map to locate the block B1
• Read all blocks on path 3 to the stash
• Apply operation
• Remap B1 to a new random path
• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Path ORAM

(B3, 0)

root

(B0, 0)

dummy

0

dummy

1

(B2, 3)

dummy

2

(B1, 3)

3path

(B4, 1)

Stash

Block B0 B1 B2 B3 B4
Path 0 3 3 0 1

Position Map

Untrusted Memory (Blockchain)Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree
• Trusted memory consists of

• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash
• Unused untrusted memory is filled with dummy block

• Access Block B1
• Lookup position map to locate the block B1

• Read all blocks on path 3 to the stash
• Apply operation
• Remap B1 to a new random path
• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Path ORAM

root

(B0, 0)

dummy

0

dummy

1

dummy

2 3path

(B4, 1) (B1, 3) (B2, 3) (B3, 0)

Stash

Block B0 B1 B2 B3 B4
Path 0 3 3 0 1

Position Map

Untrusted Memory (Blockchain)Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree
• Trusted memory consists of

• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash
• Unused untrusted memory is filled with dummy block

• Access Block B1
• Lookup position map to locate the block B1
• Read all blocks on path 3 to the stash

• Apply operation
• Remap B1 to a new random path
• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Path ORAM

root

(B0, 0)

dummy

0

dummy

1

dummy

2 3path

(B4, 1) (B1, 3) (B2, 3) (B3, 0)

Stash

Block B0 B1 B2 B3 B4
Path 0 3 3 0 1

Position Map

Untrusted Memory (Blockchain)Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree
• Trusted memory consists of

• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash
• Unused untrusted memory is filled with dummy block

• Access Block B1
• Lookup position map to locate the block B1
• Read all blocks on path 3 to the stash
• Apply operation

• Remap B1 to a new random path
• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Path ORAM

root

(B0, 0)

dummy

0

dummy

1

dummy

2 3path

(B4, 1) (B1, 1) (B2, 3) (B3, 0)

Stash

Block B0 B1 B2 B3 B4
Path 0 1 3 0 1

Position Map

Untrusted Memory (Blockchain)Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree
• Trusted memory consists of

• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash
• Unused untrusted memory is filled with dummy block

• Access Block B1
• Lookup position map to locate the block B1
• Read all blocks on path 3 to the stash
• Apply operation
• Remap B1 to a new random path

• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Path ORAM

(B3, 0)

root

(B0, 0)

dummy

0

dummy

1

dummy

dummy

2

(B2, 3)

3path

(B4, 1) (B1, 1)

Stash

Block B0 B1 B2 B3 B4
Path 0 1 3 0 1

Position Map

Untrusted Memory (Blockchain)Trusted Memory (Client)

• Data Structures
• Untrusted memory is structured as a binary tree
• Trusted memory consists of

• Position Map: map block to a random path
• Stash: temporary storage

• A block is stored in the untrusted memory or stash
• Unused untrusted memory is filled with dummy block

• Access Block B1
• Lookup position map to locate the block B1
• Read all blocks on path 3 to the stash
• Apply operation
• Remap B1 to a new random path
• Write as many blocks as possible back to path 3

E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM protocol,” in ACM CCS, 2013 12/17

Redactable Blockchain

• Fulfill the right to be forgotten

• Chameleon Hash Function allows authorized party to generate hash collisions

• CHGen(1λ) → (csk, cpk): generate key pair (csk, cpk)
• Ch(m; r) → hash: on input messagem and some randomness
r, output a hash value hash

• Col(csk,m, r,m′) → r′: on input secret key csk, old message
m, old randomness r and a new message m′, output r′ such
that Ch(m; r) = Ch(m′; r′)

• The secret key is shared among miners using secret shares. When there are enough
consensus to overwrite a block, multi-party computation is used to compute the
updated block.

G. Ateniese et al., “Redactable blockchain–or–rewriting history in bitcoin and friends,” in IEEE EuroS&P, 2017
D. Derler et al., “Fine-grained and controlled rewriting in blockchains: Chameleon-hashing gone attribute-based,” in NDSS, 2019

13/17

Redactable Blockchain

• Fulfill the right to be forgotten

• Chameleon Hash Function allows authorized party to generate hash collisions

• CHGen(1λ) → (csk, cpk): generate key pair (csk, cpk)
• Ch(m; r) → hash: on input messagem and some randomness
r, output a hash value hash

• Col(csk,m, r,m′) → r′: on input secret key csk, old message
m, old randomness r and a new message m′, output r′ such
that Ch(m; r) = Ch(m′; r′)

• The secret key is shared among miners using secret shares. When there are enough
consensus to overwrite a block, multi-party computation is used to compute the
updated block.

G. Ateniese et al., “Redactable blockchain–or–rewriting history in bitcoin and friends,” in IEEE EuroS&P, 2017
D. Derler et al., “Fine-grained and controlled rewriting in blockchains: Chameleon-hashing gone attribute-based,” in NDSS, 2019

13/17

Redactable Blockchain

• Fulfill the right to be forgotten

• Chameleon Hash Function allows authorized party to generate hash collisions

• CHGen(1λ) → (csk, cpk): generate key pair (csk, cpk)
• Ch(m; r) → hash: on input messagem and some randomness
r, output a hash value hash

• Col(csk,m, r,m′) → r′: on input secret key csk, old message
m, old randomness r and a new message m′, output r′ such
that Ch(m; r) = Ch(m′; r′)

• The secret key is shared among miners using secret shares. When there are enough
consensus to overwrite a block, multi-party computation is used to compute the
updated block.

G. Ateniese et al., “Redactable blockchain–or–rewriting history in bitcoin and friends,” in IEEE EuroS&P, 2017
D. Derler et al., “Fine-grained and controlled rewriting in blockchains: Chameleon-hashing gone attribute-based,” in NDSS, 2019

13/17

Redactable Blockchain

• Issues
• Cannot distinguish between normal block and redacted block
• Requires heavily cryptographic operation
• System involves trapdoor keys
• Original miners control the redaction process

• Desired Features
• Make redaction transparent and accountable
• Avoid using multi-party computation
• Avoid introducing secret keys
• Current miners control the redaction process

[Credit: Pixabay]

14/17

https://pixabay.com/illustrations/caution-label-warning-red-mark-943376/

Redactable Blockchain

• Issues
• Cannot distinguish between normal block and redacted block
• Requires heavily cryptographic operation
• System involves trapdoor keys
• Original miners control the redaction process

• Desired Features
• Make redaction transparent and accountable
• Avoid using multi-party computation
• Avoid introducing secret keys
• Current miners control the redaction process

[Credit: Pixabay]

14/17

https://pixabay.com/illustrations/caution-label-warning-red-mark-943376/

Redactable Blockchain

• Redaction procedure consists of: proposal→ vote→ accept

D. Deuber et al., “Redactable blockchain in the permissionless setting,” in IEEE S&P, 2019

15/17

Redactable Blockchain

• If accepting redaction:
• Replace redacted transaction to its hash
• Add updated transaction

• To validate the redacted block:
• hold blk = H(hprev|nonce|original Merkle root)
• hnew blk = H(hprev|nonce|updated Merkle root)
• Check consensus protocol (e.g. PoW, PoS) with respect to hold blk
• Check redaction block (hnew blk) was approved by policy P
• Check validity of data in block

hprev
nonce
…
tx
…

Original Block

hprev
nonce
…

h(tx), tx′

…

Redacted Block

D. Deuber et al., “Redactable blockchain in the permissionless setting,” in IEEE S&P, 2019

16/17

Redactable Blockchain

• If accepting redaction:
• Replace redacted transaction to its hash
• Add updated transaction

• To validate the redacted block:
• hold blk = H(hprev|nonce|original Merkle root)
• hnew blk = H(hprev|nonce|updated Merkle root)
• Check consensus protocol (e.g. PoW, PoS) with respect to hold blk
• Check redaction block (hnew blk) was approved by policy P
• Check validity of data in block

hprev
nonce
…
tx
…

Original Block

hprev
nonce
…

h(tx), tx′

…

Redacted Block

D. Deuber et al., “Redactable blockchain in the permissionless setting,” in IEEE S&P, 2019

16/17

Open Problems

• Search on encrypted blockchain data

• Data sharing with fine-grained access control

• Data integrity meets confidentiality

• Security and privacy for off-chain storage

• …
[Credit: Pixabay]

17/17

https://pixabay.com/photos/problem-solution-help-support-2731501/

Thanks
Questions?

17/17

References

[AAUC18] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes,” ACM Computing
Surveys, 2018.

[AMVA17] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable blockchain–or–rewriting history in bitcoin and
friends,” in IEEE EuroS&P, 2017.

[CD16] V. Costan and S. Devadas, Intel SGX explained, Cryptology ePrint Archive, Report 2016/086, 2016.

[CZJ+17] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi, “Solidus: Confidential distributed ledger transactions via
PVORM,” in ACM CCS, 2017.

[CZK+19] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels, A. Miller, and D. Song, “Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contracts,” in IEEE EuroS&P, 2019.

[DMT19] D. Deuber, B. Magri, and S. A. K. Thyagarajan, “Redactable blockchain in the permissionless setting,” in IEEE S&P,
2019.

[DSSS19] D. Derler, K. Samelin, D. Slamanig, and C. Striecks, “Fine-grained and controlled rewriting in blockchains:
Chameleon-hashing gone attribute-based,” in NDSS, 2019.

[KMS+16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts,” in IEEE S&P, 2016.

References

[NWI+15] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi, “GraphSC: Parallel secure computation made
easy,” in IEEE S&P, 2015.

[PHGR13] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical verifiable computation,” in IEEE S&P,
2013.

[SCG+14] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, “Zerocash: Decentralized
anonymous payments from bitcoin,” in IEEE S&P, 2014.

[SVS+13] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas, “Path ORAM: An extremely simple
oblivious RAM protocol,” in ACM CCS, 2013.

	Appendix
	References

