
Authenticated Keyword Search in
Scalable Hybrid-Storage Blockchain

Ce Zhang, Cheng Xu, Haixin Wang, Jianliang Xu, Byron Choi
Hong Kong Baptist University

Blockchain Technology

• Distributed ledger maintained by a network of mutually
untrusted nodes
• Consensus

• Immutability

• Provenance

4/14/2021 2

h(𝑡𝑥𝐷)

h𝐴𝐵 h𝐶𝐷

h(𝑡𝑥𝐴) h(𝑡𝑥𝐵) h(𝑡𝑥𝐶)

Merkle Tree

Genesis Block 1 Block 2 Block 3

h𝐴𝐵𝐶𝐷
h(Block3)
Timestamp
Nonce

𝑡𝑥𝐴 𝑡𝑥𝐵 𝑡𝑥𝐶 𝑡𝑥𝐷

Smart Contract

• A user-defined program executed by the blockchain network
• Interact with the data stored in the blockchain

• Execution integrity is ensured by the consensus protocol

• Smart contract makes blockchain to be programmable
• Facilitate automatic logics without participation of third parties

Traditional
Computer

Blockchain
VM

Storage RAM Blockchain

Computation CPU
Smart

Contract

3

Blockchain Scalability

• Storing any information on chain
is not scalable
• Large size: document, image, etc.

• 500KB per TX x 500 TX per sec
=> 2 Gb per sec => 8,000 TB
annually

• Off-chain storage:
• Raw data is stored outside of the

blockchain

• A hash of the data is kept on chain
to ensure integrity

Example: BACK ALLEY CODER

4

http://www.backalleycoder.com/

Hybrid Storage Blockchain

Hybrid Storage Blockchain

Storage Service Provider

Blockchain

𝑜 = 𝑖𝑑, 𝑣

𝑜 = 𝑖𝑑, h(𝑜)

𝑄

𝑅, 𝑉𝑂𝑠𝑝

𝑉𝑂𝑐ℎ𝑎𝑖𝑛
Data Owner Client

ADS

• Integrity-assured queries needed as the SP is not fully trustful

• Key idea: authenticated query processing
• Use an authenticated data structure (ADS) to support queries

• Leverage both smart contract and SP to maintain the ADS

ADS

5

Keyword Search Queries

• Keywords are expressed in the disjunctive normal form (DNF)

• 𝑄 = 𝑞1 ∨ 𝑞2 ∨ ⋯∨ 𝑞𝑛, where 𝑞𝑖 = 𝑤1 ∧ 𝑤2 ∧ ⋯∧ 𝑤𝑙

• Example: "COVID−19" ∧ "Vaccine" ∨ ("SARS−CoV−2" ∧
"Vaccine")

• Seen as the union of the results from each conjunctive
component

• Focus on conjunctive keyword search

6

Challenge

• High update cost: each on-chain update requires a transaction

• Transaction fee for smart contract execution
• Modeled by gas for storage and computation (Ethereum)

• Challenge: how to design gas-efficient ADS to be maintained
by the smart contract while supporting efficient keyword
search

Ethereum Gas Cost Model

Operation Gas Used Explanation

𝐶𝑠𝑙𝑜𝑎𝑑 200 load a word from storage

𝐶𝑠𝑠𝑡𝑜𝑟𝑒 20,000 save a word to storage

𝐶𝑠𝑢𝑝𝑑𝑎𝑡𝑒 5,000 update a word to storage

𝐶𝑚𝑒𝑚 3 access a word in memory

𝐶ℎ𝑎𝑠ℎ 30 + 6 ∙ 𝑥 hash a 𝑥-word message

𝐶𝑡𝑥 21,000 execute a transaction

𝐶𝑡𝑥𝑑𝑎𝑡𝑎 68 transact a byte of data

7

Contributions

• Suppressed Merkle𝑖𝑛𝑣 index
• Reduce the ADS maintenance cost in terms of gas

• Chameleon𝑖𝑛𝑣 index
• Further reduce the ADS maintenance cost to a constant level

while still supporting efficient queries

• Optimized Chameleon𝑖𝑛𝑣∗ index
• Enhance the query and verification performance of the
Chameleon𝑖𝑛𝑣 index

8

Preliminaries

• ADS: Merkle Hash Tree (MHT)
• Binary tree

• Hash function combining the
child nodes

• Verification object (VO): sibling
hashes along the search path

• Verify: reconstructing the root
hash

• Merkle B-tree (MB-tree)
• Integrate B-tree with MHT

To authenticate object: 14
VO: h 25 , ℎ1, ℎ6

ℎ(3) ℎ(8) ℎ(14) ℎ(25) ℎ(32) ℎ(37) ℎ(40) ℎ(44)

ℎ1 ℎ2 ℎ3 ℎ4

ℎ5 ℎ6

ℎ7

3 8 14 25 32 37 40 44

9

Preliminaries

• Authenticated join with
MB-tree
• Executed in rounds and

each round has a target
with matching and
boundary objects

• Proof includes the
Merkle path of the
targets and boundary
objects

• Verification: reconstruct
the Merkle roots and
check the boundary
objects with the
corresponding targets

10

Baseline Solution

• Merkle𝑖𝑛𝑣 index
• Build an inverted index
• Maintain an MB-tree for

each keyword’s object list
• MB-tree’s search key is

object ID

• Query processing: a
conjunctive keyword
query is equivalent to
joining keywords’ object
lists

11

Baseline Solution

• Merkle𝑖𝑛𝑣 index
• Maintained by both the smart contract and the SP

Smart Contract

SP

𝑉𝑂𝑠𝑝: Merkle proofs of targets, matching &

boundary objects

12

Baseline Solution

• Merkle𝑖𝑛𝑣 index maintenance
• When 𝑜𝑖 is added to the Merkle𝑖𝑛𝑣 index, 𝑜𝑖 . 𝑖𝑑, h 𝑜𝑖 is inserted

to the MB-tree of each its keyword

• Suffer from high maintenance cost

• Data update requires hash updates on the entire tree path

• Cost of adding an object to a single keywords’ MB-tree is
logarithmic w.r.t. expensive storage operations

𝐶MI
insert = log𝐹 𝑁 2𝐶𝑠𝑠𝑡𝑜𝑟𝑒 + 2𝐶𝑠𝑢𝑝𝑑𝑎𝑡𝑒 + 2𝐹 + 1 𝐶𝑠𝑙𝑜𝑎𝑑 + 𝐶ℎ𝑎𝑠ℎ + 𝐶𝑠𝑠𝑡𝑜𝑟𝑒

13

Suppressed Merkle𝑖𝑛𝑣 index

• Observation: only on-chain root hashes (𝑉𝑂𝑐ℎ𝑎𝑖𝑛) are
needed during the authenticated keyword search

• General idea:
• Fully suppress the on-chain MB-trees

• The SP maintains the complete structures to support efficient
queries

• Key issue: how can the smart contract maintain the root hashes
without knowing the complete structure?
• Ask the off-chain SP to construct an update proof, during a new

object’s insertion

• With update proof, MB-trees’ root hashes can be updated

14

Suppressed Merkle𝑖𝑛𝑣 index

• Generation of update proof
for a MB-tree by the SP
• Assuming object ids are

monotonically increasing

• Include the tree path of the
right-most leaf node

• Example for 𝒯𝑆
• A new object 𝑠13 with 𝑖𝑑 = 23

is added to 𝒯𝑆
• Update proof: (i) ℎ𝐺 ; (ii)

ℎ𝐷, ℎ𝐸 ; (iii) ℎ𝑠11 , ℎ𝑠12 ; (iv)
ℎ𝑠13

15

Suppressed Merkle𝑖𝑛𝑣 index

• Verification of update proof by
smart contract
• Reconstruct the root hash and

compare with the one stored on-
chain

• Example for 𝒯𝑆

• h ℎ𝐺|h ℎ𝐷|ℎ𝐸|h ℎ𝑠11|ℎ𝑠12
and compare it with the one
stored on-chain

• Check ℎ𝑠13 w.r.t. the one sent by
DO

16

Suppressed Merkle𝑖𝑛𝑣 index

• Update the root hash using
update proof by smart contract
• in a bottom-top manner

• Example for 𝒯𝑆
• Object 𝑠13 with 𝑖𝑑 = 23 is added

to 𝒯𝑆
• Leaf 𝐹’s node hash: ℎ𝐹

′ =
h ℎ𝑠11|ℎ𝑠12|ℎ𝑠13

• Node 𝐻’s: ℎ𝐻
′ = h ℎ𝐷|ℎ𝐸|ℎ𝐹

′

• Root hash: h ℎ𝐺|ℎ𝐻
′

17

Suppressed Merkle𝑖𝑛𝑣 index

• Cost Analysis
• Consider updating the MB-tree for a single keyword

• 𝐶SMI
insert = log𝐹 𝑁 𝐹 ∙ ℎ ∙ 𝐶𝑡𝑥𝑑𝑎𝑡𝑎 + 3𝐶ℎ𝑎𝑠ℎ + 2𝐹 + 1 𝐶𝑚𝑒𝑚 +

2𝐶𝑠𝑙𝑜𝑎𝑑 + 𝐶𝑠𝑢𝑝𝑑𝑎𝑡𝑒

• The coefficient of logarithmic term only contains cheap operations:
𝐶𝑡𝑥𝑑𝑎𝑡𝑎, 𝐶ℎ𝑎𝑠ℎ, 𝐶𝑚𝑒𝑚

• The costly operations 𝐶𝑠𝑙𝑜𝑎𝑑, 𝐶𝑠𝑢𝑝𝑑𝑎𝑡𝑒 are with a constant
coefficient

• 𝐶SMI
insert < 𝐶MI

insert

We have reduced the maintenance cost. Can we do even better?

18

Preliminaries

• Vector Commitment (VC)
• VC maps a vector of messages to a fixed-sized commitment, which

can be used to prove that 𝑚𝑖 is the 𝑖𝑡ℎ committed message

𝒎𝟏 𝒎𝟐 𝒎𝟑 … 𝒎𝒊 … 𝒎𝒒−𝟏 𝒎𝒒𝑚 =

• Gen(1𝜆, 𝑞) → pp

• Compp 𝑚1, … ,𝑚𝑞 , 𝑟 → {𝑐, aux}

• Openpp 𝑖, 𝑚, aux → 𝜋

• Verpp 𝑐, 𝑖, 𝑚, 𝜋 → 0/1

19

Preliminaries

• Chameleon Vector Commitment (CVC)
• A CVC is a trapdoor vector commitment scheme. A user who owns a

private trapdoor can update a message 𝑚𝑖 in a vector without
changing the vector’s commitment.

𝒎𝟏 𝒎𝟐 𝒎𝟑 … 𝒎𝒊’ … 𝒎𝒒−𝟏 𝒎𝒒𝑚 =

• Gen(1𝜆, 𝑞) → {pp, td}

• Compp 𝑚1, … ,𝑚𝑞 , 𝑟 → {𝑐, aux}

• Openpp 𝑖, 𝑚, aux → 𝜋

• Verpp 𝑐, 𝑖, 𝑚, 𝜋 → 0/1

• CColpp(𝑐, 𝑖, 𝑚,𝑚′, td, aux) → aux′
• Openpp 𝑖, 𝑚′, aux′ → 𝜋′

• Verpp 𝑐, 𝑖, 𝑚′, 𝜋′ → 0/1

20

Chameleon𝑖𝑛𝑣 index

• Objective
• Design an ADS that has constant maintenance cost while supports

efficient authenticated keyword search

• Inspiration
• CVC: one can update a vector without changing its digest using a

secret trapdoor

• Build a Chameleon tree with fixed root commitment

21

Chameleon𝑖𝑛𝑣 index

• Chameleon Tree
• Each node (except the root) corresponds to a data object

• Each node’s commitment is determined by its position 𝑝𝑜𝑠 and
keyword 𝑤

• We use the root commitment 𝑐0 and current object number 𝑐𝑛𝑡 to
authenticate the tree

22

Chameleon𝑖𝑛𝑣 index

• Chameleon Tree
• Each non-root node is a 4-tuple ℎ o , 𝑐𝑝𝑜𝑠, 𝜋𝑝𝑜𝑠, 𝜌𝑝𝑎𝑟,𝑗
• ℎ 𝑜 : the hash of object 𝑜
• 𝑐𝑝𝑜𝑠 is the node commitment derived from 𝑝𝑜𝑠 and keyword 𝑤:

𝑐𝑝𝑜𝑠 = Compp 0,… , 0 , 𝑃𝑅𝐹(𝑠𝑘, 𝑝𝑜𝑠||𝑤)

• 𝜋𝑝𝑜𝑠 proves that ℎ 𝑜 is the 1st element stored in 𝑐𝑝𝑜𝑠 (find collision of
𝑐𝑝𝑜𝑠)

• 𝜌𝑝𝑎𝑟,𝑗 proves that the node is linked to the 𝑗𝑡ℎ child of the parent node
at position 𝑝𝑎𝑟 (find collision of 𝑐𝑝𝑎𝑟)

23

Chameleon𝑖𝑛𝑣 index

• Chameleon Tree Maintenance
• Create a new node for 𝑜 -> compute 𝑐𝑝𝑜𝑠, 𝜋𝑝𝑜𝑠
• Link the new node to its parent node -> compute 𝜌𝑝𝑎𝑟,𝑗

• Store 𝑐𝑝𝑜𝑠, 𝜋𝑝𝑜𝑠, 𝜌𝑝𝑎𝑟,𝑗 as the insertion proof of 𝑜

• Chameleon𝑖𝑛𝑣 index
• Each keyword corresponds to a Chameleon tree.

• Constant maintenance cost: 𝐶Chameleon
insert = 𝐶𝑠𝑢𝑝𝑑𝑎𝑡𝑒

Smart Contract

SP

𝑐𝑝𝑜𝑠, 𝜋𝑝𝑜𝑠, 𝜌𝑝𝑎𝑟,𝑗

𝑐0, 𝑐𝑛𝑡

24

Chameleon𝑖𝑛𝑣 index

• Keyword search query processing

• A keyword search is transformed to join the query keywords’
Chameleon trees for each conjunctive component

• Build a hash map for 𝑖𝑑, 𝑝𝑜𝑠 since the Chameleon tree is indexed
by the position

• Add the membership proofs of (i) target; (ii) matching & boundary
objects of each round to 𝑉𝑂𝑠𝑝

25

Chameleon𝑖𝑛𝑣 index

• Authenticated membership test with Chameleon Tree
• Given object’s position 𝑝𝑜𝑠, the SP generates a membership proof

• Include the insertion proofs of the object at 𝑝𝑜𝑠 and all its ancestor
nodes except the root

• Example: 𝑠3’s membership proof 𝑐𝑠3 , 𝜋𝑠3 , 𝜌1,1
𝑠 , 𝑐𝑠1 , 𝜌0,1

𝑠

• Verification: use 𝜋𝑠3 to prove 𝑠3 is stored in 𝑛𝑠3; use 𝜌1,1
𝑠 to prove 𝑛𝑠3

is the first child of 𝑛𝑠1; use 𝜌0,1
𝑠 and root commitment 𝑐𝑠0 to prove

𝑛𝑠1 is the first child of the root.

26

Chameleon𝑖𝑛𝑣∗ index

• Mitigate the client’s verification cost
• Create a Bloom filter for every 𝑏 objects in each Chameleon tree
• A Bloom filter can efficiently prove an object’s non-existence
• Smart contract maintains the Bloom filters for integrity assurance

• Authenticated Keyword Search
• Similar to Chameleon𝑖𝑛𝑣 index
• Use Bloom filters in the second index to test whether a matching

object exists
• If existing, proceed as Chameleon𝑖𝑛𝑣 index

• Otherwise, the consecutive object is set as the target to continue the join
process

27

Performance Evaluation

• Datasets
• DBLP: 5M paper entries including titles, authors, and affiliations

• Twitter: 1.5M tweets

• 32-bit incremental identifier

• Parameters of the index
• Fan-out of the MB-tree set to 4 according to the word size 32 bytes

• 𝑓 − 1 𝑙𝑑 + 𝑓𝑙𝑝 < 32byte

• Fan-out of Chameleon tree is set to 4

• Fixed Bloom filter size: 256 bytes

• # objects inserted to a Bloom filter 𝑏 = 30

• Denote the four indexes as MI, SMI, CI, and CI∗

28

Gas Consumption vs Dataset Size

• SMI reduces the average gas consumption from US$11.21 to
US$2.69 (saving 76%)

• CI takes US$0.24 and CI∗ takes US$0.50 for each insertion

The gas consumption is reported in US$ with an average gas price of 15 Gwei and Ether price of US$229 as of June 15, 2020.

29

Authenticated Query Performance

• CI∗ is more efficient owing to its use of Bloom filters

• Verification of CI and CI∗ is relatively slow owing to the costly CVC
operations

Twitter Dataset

30

Authenticated Query Performance

• Default setting 𝑏 = 30 yields the best results

• If 𝑏 is too small, the effectiveness of using Bloom filter to filter
the unmatched objects is not obvious

• If 𝑏 is too large, a high false positive rate makes it less effective

Twitter Dataset

31

Thanks!
Q&A

32

