
𝐆𝐄𝐌𝟐-Tree: A Gas-Efficient Structure for
Authenticated Range Queries in Blockchain

Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, Byron Choi

Hong Kong Baptist University, Hong Kong

Syracuse University, NY, USA

Introduction

24/10/2019

Source: FAHM Technology Partners

http://www.fahmpartners.com/solutions/blockchain/

Blockchain Technology

• Distributed Ledger maintained by a community of
(untrusted) users
• Decentralization

• Consensus

• Immutability

• Provenance

34/10/2019

Smart Contract

• A trusted program to execute user-defined computation
upon the blockchain
• Read and write blockchain data

• Execution integrity is ensured by the consensus protocol

• Offer trusted storage and computation capabilities

• Function as a trusted virtual machine

4

Traditional
Computer

Blockchain
VM

Storage RAM Blockchain

Computation CPU
Smart

Contract

4/10/2019

Blockchain Scalability

• Scalability problem
• Storing any information on

chain is not scalable

• Large size data: document,
image, etc.

• Ethereum: block size 20KB,
15 sec per block

• Off-chain storage
• Raw data is stored outside

of the blockchain

• A hash of the data is kept
on chain to ensure integrity

54/10/2019

Blockchain Hybrid Storage

• Pros: high scalability, result integrity assured

• Cons: only support exact search

• Consider other type of queries?

6

Hybrid Storage

Service Provider

Blockchain

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒

𝑘𝑒𝑦, h(𝑣𝑎𝑙𝑢𝑒)

𝑘𝑒𝑦

𝑣𝑎𝑙𝑢𝑒

h(𝑣𝑎𝑙𝑢𝑒)

4/10/2019

Data Owner Client

Objective and General Idea

74/10/2019

• Support integrity-assured range queries

• Inspiration: authenticated query processing
• Use the authenticated data structure (ADS) to support queries

• Leverage both smart contract and the SP to maintain the ADS

Hybrid Storage

Service Provider

Blockchain

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒

𝑘𝑒𝑦, h(𝑣𝑎𝑙𝑢𝑒)

𝑄 = [𝑎, 𝑏]

𝑅, 𝑉𝑂𝑠𝑝

𝑉𝑂𝑐ℎ𝑎𝑖𝑛

Data Owner Client

ADS

ADS

System Overview

• Data Owner: send meta-data to blockchain and full data to SP

• Smart Contract: update on-chain ADS

• Service Provider: maintain the same ADS and process queries

• Client: verify results with respect to the ADS from the blockchain

4/10/2019 8

Hybrid Storage

Service Provider

Blockchain

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒

𝑘𝑒𝑦, h(𝑣𝑎𝑙𝑢𝑒)

𝑄 = [𝑎, 𝑏]

𝑅, 𝑉𝑂𝑠𝑝

𝑉𝑂𝑐ℎ𝑎𝑖𝑛

Data Owner Client

ADS

ADS

Challenge

• Each on-chain update requires a transaction

• Transaction fee for smart contract-enabled blockchain
• Modeled by gas for storage and computation (Ethereum)

• Objective: How to design efficient ADS to be maintained by
smart contract under the gas cost model

9

Ethereum Gas Cost Model

4/10/2019

Contributions

• A novel Gas−Efficient Merkle Merge Tree (GEM2-Tree)
• Reduce the storage and computation cost of the smart contract

• Optimized version GEM2∗-Tree
• Further reduce the maintenance cost without sacrificing much of the

query performance

104/10/2019

Preliminaries

• Authenticated Query Processing
• The DO outsources the authenticated data structure (ADS) to the SP

• The SP returns results and verification object (VO)

• The client verifies the result using VO

• ADS: Merkle Hash Tree (MHT)
• Binary tree

• Hash function combining the child nodes

• VO: sibling hashes along the search path

• Verification: reconstructing the root hash

• Merkle B-Tree (MB-Tree)
• Integrate B-tree with MHT

11

Result: {13,16}

VO: {4, 24, ℎ6}

4/10/2019

Baseline Solution (1)

12

MB-tree

𝑉𝑂𝑐ℎ𝑎𝑖𝑛 = {ℎ7}
Client

SP

Smart Contract

• MB-tree
• Maintained by both the smart contract and the SP

• Data update requires writes on the entire tree path

• 𝐶MB−tree
insert = log𝐹 𝑁 2𝐶𝑠𝑠𝑡𝑜𝑟𝑒 + 2𝐶𝑠𝑢𝑝𝑑𝑎𝑡𝑒 + 2𝐹 + 1 𝐶𝑠𝑙𝑜𝑎𝑑 + 𝐶ℎ𝑎𝑠ℎ + 𝐶𝑠𝑠𝑡𝑜𝑟𝑒

4/10/2019

Baseline Solution (2)

• Suppressed Merkle B-tree (SMB-tree)

• Observation of MB-tree: only root hash 𝑉𝑂𝑐ℎ𝑎𝑖𝑛 is used
during query processing

• Idea:
• Suppress all internal nodes and only materialize the root node in the

blockchain

• The smart contract computes all nodes of the SMB-tree on the fly
and updates the root hash to the blockchain storage

• The SMB-tree in the SP keeps the complete structure (to retain the
query performance)

• 𝐶SMB−tree
insert = 𝑁 𝐶𝑠𝑙𝑜𝑎𝑑 + log𝑁 ∙ 𝐶𝑚𝑒𝑚 +

1

𝐹
𝐶ℎ𝑎𝑠ℎ + 𝐶𝑠𝑠𝑡𝑜𝑟𝑒 + 𝐶𝑠𝑢𝑝𝑑𝑎𝑡𝑒

134/10/2019

MB-tree vs SMB-tree

144/10/2019

Gas-Efficient Merkle Merge Tree (GEM2-Tree)

• Maintain multiple separate structures
• A series of small SMB-trees: index newly inserted objects

• A full materialized MB-tree: merge the objects of the largest
SMB-trees in batch

15

…

Bulk Insert

SMB-treesMB-tree

New object

4/10/2019

An Example

16

• Exponentially-sized partition space: each contains 1 or 2 SMB-trees
• Partition table stores location range and root hash values

• Key_map stores the key with the storage location (used in update operation)

4/10/2019

An Example

16

• Exponentially-sized partition space: each contains 1 or 2 SMB-trees
• Partition table stores location range and root hash values

• Key_map stores the key with the storage location (used in update operation)

4/10/2019

An Example

16

• Exponentially-sized partition space: each contains 1 or 2 SMB-trees
• Partition table stores location range and root hash values

• Key_map stores the key with the storage location (used in update operation)

Exponential size

4/10/2019

An Example

16

• Exponentially-sized partition space: each contains 1 or 2 SMB-trees
• Partition table stores location range and root hash values

• Key_map stores the key with the storage location (used in update operation)

Exponential size

4/10/2019

An Example

16

Unsorted Sorted

• Exponentially-sized partition space: each contains 1 or 2 SMB-trees
• Partition table stores location range and root hash values

• Key_map stores the key with the storage location (used in update operation)

Exponential size

4/10/2019

An Example

16

Unsorted Sorted

• Exponentially-sized partition space: each contains 1 or 2 SMB-trees
• Partition table stores location range and root hash values

• Key_map stores the key with the storage location (used in update operation)

Exponential size

4/10/2019

Insertion

• Example (𝑀 = 2)

17

• If 𝑃𝑚𝑎𝑥 is not full, insert object to 𝑃𝑚𝑎𝑥;
• Else merge the two SMB-trees to a bigger

SMB-tree

4/10/2019

Insertion

• Example (𝑀 = 2)

17

[1-2] [3-4]

𝑃1

𝑚𝑎𝑥 = 1

• If 𝑃𝑚𝑎𝑥 is not full, insert object to 𝑃𝑚𝑎𝑥;
• Else merge the two SMB-trees to a bigger

SMB-tree

4/10/2019

Insertion

• Example (𝑀 = 2)

17

[1-2] [3-4]

𝑃1

𝑚𝑎𝑥 = 1

• If 𝑃𝑚𝑎𝑥 is not full, insert object to 𝑃𝑚𝑎𝑥;
• Else merge the two SMB-trees to a bigger

SMB-tree

[1-4]

𝑃1

null [5-6] [7-8]

𝑃2

𝑚𝑎𝑥 = 2

4/10/2019

Insertion

• Example (𝑀 = 2)

17

[1-2] [3-4]

𝑃1

𝑚𝑎𝑥 = 1

• If 𝑃𝑚𝑎𝑥 is not full, insert object to 𝑃𝑚𝑎𝑥;
• Else merge the two SMB-trees to a bigger

SMB-tree

[1-4]

𝑃1

null [5-6] [7-8]

𝑃2

𝑚𝑎𝑥 = 2

[1-4]

𝑃1

[5-8] [9-10] [11-12]

𝑃2

𝑚𝑎𝑥 = 2

4/10/2019

Insertion

• Example (𝑀 = 2)

17

[1-2] [3-4]

𝑃1

𝑚𝑎𝑥 = 1

• If 𝑃𝑚𝑎𝑥 is not full, insert object to 𝑃𝑚𝑎𝑥;
• Else merge the two SMB-trees to a bigger

SMB-tree

[1-4]

𝑃1

null [5-6] [7-8]

𝑃2

𝑚𝑎𝑥 = 2

[1-4]

𝑃1

[5-8] [9-10] [11-12]

𝑃2

𝑚𝑎𝑥 = 2

[1-8]

𝑃1

null [9-12] null

𝑃2

[13-14] [15-16]

𝑃3

𝑚𝑎𝑥 = 3

4/10/2019

Update and Query Processing

• Update
• Observation: storage location of each search key is fixed (key_map)

• The GEM2-tree structure remains unchanged

• Update the value of an existing key with a new value

• Recompute the root hash of the MB-tree or SMB-tree

• Query processing
• The SP traverses the MB-tree and multiple SMB-trees

• Process the range query on them individually

• Combines the results and VO for each of these trees

• The client checks the VO and results against each of these trees

184/10/2019

Optimized GEM2*-Tree

• Objective: to further reduce the gas consumption without
sacrificing much of the query overhead

• Design structure
• Two-level index

• Upper level: split the search key domain into several regions

• Lower level: a GEM2-tree is built for each region 𝐼𝑖
• Only one single MB-tree for the entire GEM2∗-tree

194/10/2019

Performance Evaluation

• Dataset
• Synthetic data generated by Yahoo Cloud System Benchmark (YCSB)

• Cardinality: 100M

• Key size: 4 bytes

• Key distribution: uniform/Zipfian

• Parameters of the index
• Maximum size of the smallest SMB-tree, 𝑀 = 8 (word size is 32 bytes

and search key 4 bytes)

• Fan-out of the MB-tree set to 4 according to the word size 32 bytes
• 𝑓 − 1 𝑙𝑑 + 𝑓𝑙𝑝 < 32byte

• 𝑆𝑚𝑎𝑥 = 2048 based on the cost analysis of MB-tree and SMB-tree

• Search key domain is split into 100 regions for upper-level GEM2∗-tree

204/10/2019

Gas Consumption vs Database Size

• LSM-tree is able to support the database up to 10,000
• Merge cost grows exponentially with increasing the level

• Gas reduction of the two proposed indexes
• Optimized version is the best

• More SMB-trees, efficient bulk insertion (thanks to the upper level)

214/10/2019

Gas Consumption vs Update Ratio

• Update ratio: #update/#total operation

• Update cost is lower than the insertion cost
• The less the update operations, the more gas consumed

224/10/2019

Authenticated Query Performance

• The GEM2-tree retains the query performance

• The GEM2∗-tree is slightly worse when the query range is large
• Reduce the gas cost with little penalty on the query performance

234/10/2019

Summary and Future Work

• Hybrid Storage Blockchain

• Range queries with integrity assurance

• Two proposed index: GEM2-Tree, GEM2∗-Tree
• Reduce the gas cost with little penalty on the query performance

• Future Work
• Extended to more query types: join query, keyword search, etc.

• Search on encrypted blockchain data

• Data sharing with fine-grained access control

4/10/2019 24

25

Thanks!
Q&A

4/10/2019

