FEHREAS jl Blockchain
@ HONG KONG BAPTIST UNIVERSITY D?é%%ase L & Fi nTech La b

Towards Searchable and Verifiable Blockchain

Cheng Xu Ce Zhang
April 8, 2019

Department of Computer Science
Hong Kong Baptist University

Background

- Blockchain # Bitcoin

117

Background

- Blockchain # Bitcoin

HOW THE
- Blockchainis a distributed ledger maintained 3&3;52“‘“" ’ o ’ &
by a community of (untrusted) users m‘m ! “.
- Decentralization - Immutability -
- Consensus - Provenance

Fig. 1: Blockchain Structure [credit: wikipedial

1/17

https://commons.wikimedia.org/wiki/File:Blockchain_workflow.png

Background

Fund Higher Education

Bl . . . Student Financial Aid
ockchain # Bitcoin Ot

Global Payments
@ Remittance
@ P2P Lending

- Blockchainis a distributed ledger maintained
by a community of (untrusted) users

Blockchain

Decentralization - Immutability © wetecutpopery
- Consensus - Provenance o % © et
Private Markets
- A wide range of applications) S
Ownership
- Record Keeping Crowdfunding @ O ¥
Derivatives e e‘mai gher Education Student Records

- Smart Contracts
Fig. 2: Blockchain Applications [credit: FAHM Technology Partners]

1/17

http://www.fahmpartners.com/solutions/blockchain/

Blockchain Database Solutions

- Increasing demand to search the data stored in blockchains
- Blockchain database solutions to support SQL-like queries

ORACLE

4 ’/J» uyrertepcer Cloud

BIGCHAIN 2EgFIul'eeDB W O LK

"0?': bluzelle SwarmDB

Fig. 3: Blockchain Database Solutions

SAP Leonardo

2/17

Blockchain Database Solutions

- Increasing demand to search the data stored in blockchains
- Blockchain database solutions to support SQL-like queries

IEE ORACLE

- ==SE SAP Leonardo
i:\f/> nveertepcer Cloud

BIGCHAIN @ 2EgFIul'eeDB W O LK

"0?': bluzelle SwarmDB

Fig. 3: Blockchain Database Solutions

i

- Issue: relying on a trusted party who can faithfully execute user queries

2/17

Blockchain Search Problem

- Integrity assurance: query results retrieved from the blockchain should be publicly
verifiable
- Becoming full node
- High cost
- Storage: to store a complete replicate (240 GB for Bitcoin as of Mar 2019)
- Computation: to verify the consensus proofs
- Network: to synchronize with the network

3/17

Blockchain Search Problem

- Integrity assurance: query results retrieved from the blockchain should be publicly
verifiable

- Becoming full node
- High cost
- Storage: to store a complete replicate (240 GB for Bitcoin as of Mar 2019)
- Computation: to verify the consensus proofs
- Network: to synchronize with the network
- Alternative approach: becoming lisht node and outsource computation

- Low cost: maintaining block headers only (< 50 MB for Bitcoin)
Light Node

——
Mlner\"@\. Full Node

Full Node Miner

3/17

Blockchain Search Problem

- Integrity assurance: query results retrieved from the blockchain should be publicly
verifiable

- Becoming full node
- High cost
- Storage: to store a complete replicate (240 GB for Bitcoin as of Mar 2019)
- Computation: to verify the consensus proofs
- Network: to synchronize with the network
- Alternative approach: becoming lisht node and outsource computation

- Low cost: maintaining block headers only (< 50 MB for Bitcoin)
Light Node

——
Mlner\"@\. Full Node

Full Node Miner

- Question: how to ensure integrity?
3/17

Solution #1: Smart Contract

- A trusted program to execute user-defined computation
upon the blockchain

Traditional Blockchain
- Smart Contract reads and writes blockchain data Computer VM
- Execution integrity is ensured by the consensus protocol Storage RAM Blockchain

. L Computation CPU Smart Contract
- Offer trusted storage and computation capabilities

 Function as a trusted virtual machine

417

Solution #1: Smart Contract

- Leverage Smart Contract for trusted computation
- Users submit query parameters to blockchain

e o
- Miners execute computation and write results into blockchain H > @ >%O

- Users read results from blockchain PARTIES SMART CONTRACT EXECUTION

SMART CONTRACT

[Credit: Oscar W]

S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets blockchain: A
decentralized, reliable and fair realization,” in IEEE INFOCOM, Honolulu, HI, USA, 2018, pp. 792-800.

5/17

https://hackernoon.com/ai-smart-contracts-the-past-present-and-future-625d3416807b

Solution #1: Smart Contract

- Leverage Smart Contract for trusted computation
- Users submit query parameters to blockchain

e o
- Miners execute computation and write results into blockchain H > @ >%¢

- Users read results from blockchain PARTIES SMART CONTRACT EXECUTION
- Drawbacks (Credit: Oscar W]
- Long latency: long time for consensus protocol to confirm a block
- Poor scalability: transaction rate of the blockchain is limited
- Privacy concern: query history is permanently and publicly stored in blockchain
- High cost: executing smart contract in ETH requires paying gas to miners
(INFOCOM 2018 requires 4201232 gas = 0.18 Ether = 24 USD per query)

SMART CONTRACT

S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets blockchain: A
decentralized, reliable and fair realization,” in IEEE INFOCOM, Honolulu, HI, USA, 2018, pp. 792-800.

5/17

https://hackernoon.com/ai-smart-contracts-the-past-present-and-future-625d3416807b

Solution #2: Verifiable Computation

- Verification Computation (VC)

- Computation is outsourced to untrusted service provider
- Service provider returns results with cryptographic proof
- Users verify integrity of results using the proof

6/17

Solution #2: Verifiable Computation

- Verification Computation (VC)

- Computation is outsourced to untrusted service provider
- Service provider returns results with cryptographic proof
- Users verify integrity of results using the proof

- Outsource queries to full node and verify the results using VC

- General VC: Expressive but high overhead
- Authenticated Data Structure (ADS)-based VC: Efficient but requiring customized designs

6/17

Our Solutions

- vChain: Enabling Verifiable Boolean Range Queries over Blockchain
Databases (SIGMOD 2019)

- GEM?-Tree: Enabling Gas-Efficient Authenticated Range Queries for Hy-
brid Storage in Blockchain (ICDE 2019)

7117

vChain: Enabling Verifiable Boolean Range
Queries over Blockchain Databases

Cheng Xu, Ce Zhang, and Jianliang Xu

ACM SIGMOD 2019

vChain — Problem Definition

- Problem: integrity-assured search over blockchain data

8/17

vChain — Problem Definition

- Problem: integrity-assured search over blockchain data

- System Model:
- Users become light nodes

- Queries are outsourced to full nodes

Light Node
/i:"*i:\ﬂ
— q\//’//’ ‘\5—:11112;
Miner ™~ Full Node

Full Node Miner

8/17

vChain — Problem Definition

- Problem: integrity-assured search over blockchain data

- System Model:

- Users become light nodes ,
. a Light Node
- Queries are outsourced to full nodes o
L =os e R

- Full node not trusted / \::5*1:::;
— =
- Program glitches M'\nEN) Full Node

- Security yulqerab|l|t|es e el
- Commercial interest

8/17

vChain — Problem Definition

- Problem: integrity-assured search over blockchain data

- System Model:
- Users become light nodes

- Queries are outsourced to full nodes L‘gh;jNOde o

- Full node not trusted % ;\::5511::;@
- Program glitches @ ~ i Full Node
- Security vulnerabilities e Mner

- Commercial interest

- Security requirements
- Soundness: none of the objects returned as results have been tampered with and all of

them satisfy the query conditions
- Completeness: no valid result is missing regarding the query window or subscription period

8/17

- Miner: constructs each block with additional ADS
to achieve VC scheme

- Service Provider: is a full node and computes the
results with the verification object (VO)

- Query User: is a light node; uses the VO and block
header to verify the results

[OBlock Header & Data
CIBlock Header 5

@EUDH%) £ (ignt Node)

qi: ([t 6], [1, 2], b]

@ (= 0,2,cvd)

Service Provider (SP) Query User

Fig. 4: System Model of vChain

9/17

vChain — Data Model & Queries

- Data Model
- Each block contains several temporal objects {01,02,...,0n}
- 0 is represented by (t;, Vi, W;)
(timestamp, multi-dimensional vector, set valued attribute)
- Boolean Range Queries
- Time-window queries:
g = ([2018-05,2018-06], [10, +0o0], “send:1FFYC” A “receive:2DAAT")
- Subscription queries:
g = (—,[200,250], “Sedan” A (“Benz” v “BMW"))

10/17

Cryptographic Building Block

- Merkle Hash Tree [Mer89]
- Support efficient membership/range queries
- Limitations AT
- An MHT supports only the query keys on which the Merkle tree is built
- MHTs do not work with set-valued attributes
- MHTs of different blocks cannot be aggregated

Ne = H(o.)|

Fig. 5: Merkle Hash Tree

Ay

Cryptographic Building Block

- Merkle Hash Tree [Mer89]
- Support efficient membership/range queries
- Limitations Lo
- An MHT supports only the query keys on which the Merkle tree is built
- MHTs do npt work with set-valued attributes Fig. 5: Merkle Hash Tree
- MHTs of different blocks cannot be aggregated

= ()] [Ms = H(e:) [Ne = Hioa)|

- Cryptographic Multiset Accumulator [PTT11]
- Map a multiset to an element in cyclic multiplicative group in a collision resistant fashion
- Utility: prove set disjoint
- Protcols:
- KeyGen(1*) — (sk, pk): generate keys
- Setup(X, pR) — acc(X): return the accumulative value w.rt. X
- ProveDisjoint(Xy, X2, pR) —
on input two multisets X; and X, where X; N X, = &, output a proof =
- VerifyDisjoint(acc(Xy), acc(Xz), w, pk) — {0,1}:
on input the accumulative values acc(Xy), acc(Xz), and a proof «r, output 1iff Xy N X, = @

Ay

Basic Solution

- Consider a single object and boolean time-window query
- Each block stores a single object o; = (t;, W,)

12/17

Basic Solution

- Consider a single object and boolean time-window query
- Each block stores a single object o; = (t;, W,)
- ADS generation (Miner)

block;
. Extend the block header with AttD/g@St - ~—{[PreBkHash [Ts] ConsProof | ObjectHash [AttDigest]|
- AttDigest = acc(W;) = Setup(W;, pR)
- Constant size regardless of number of elements in W; Fig. 6: Extended Block Structure

- Support ProveDisjoint(-) & VerifyDisjoint(-)

12/17

Basic Solution

- Consider a single object and boolean time-window query
- Each block stores a single object o; = (t;, W,)

- ADS generation (Miner) block
- Extend the block header with AttDigest + ~—7{PreBKHash [T ConsProof] Objectash [AEDgeSt]-— -
- AttDigest = acc(W;) = Setup(W;, pk) [©J
- Constant size regardless of number of elements in W; Fig. 6: Extended Block Structure

- Support ProveDisjoint(-) & VerifyDisjoint(-)
- Verifiable Query
- Match:
- Mismatch:

12/17

Basic Solution

- Consider a single object and boolean time-window query
- Each block stores a single object o; = (t;, W,)

- ADS generation (Miner) ok
- Extend the block header with AttDigest + +resiiash Ts [Consproof] ObjectHsh [ADgeSt]-—
- AttDigest = acc(W;) = Setup(W;, pk) [©J
- Constant size regardless of number of elements in W; Fig. 6: Extended Block Structure

- Support ProveDisjoint(-) & VerifyDisjoint(-)
- Verifiable Query
- Match: return o; as a result; integrity is ensured by the ObjectHash in the block header
-+ Mismatch:

12/17

Basic Solution

- Consider a single object and boolean time-window query
- Each block stores a single object o; = (t;, W,)

- ADS generation (Miner) ok
- Extend the block header with AttDigest + +resiiash Ts [Consproof] ObjectHsh [ADgeSt]-—
- AttDigest = acc(W;) = Setup(W;, pk) [©J
- Constant size regardless of number of elements in W; Fig. 6: Extended Block Structure

- Support ProveDisjoint(-) & VerifyDisjoint(-)
- Verifiable Query
- Match: return o; as a result; integrity is ensured by the ObjectHash in the block header
- Mismatch: use AttDigest to prove the mismatch of o;

12/17

Basic Solution

- Consider a single object and boolean time-window query
- Each block stores a single object o; = (t;, W,)

- ADS generation (Miner) block
- Extend the block header with AttDigest + ~—7{PreBKHash [T ConsProof] Objectash [AEDgeSt]-— -
- AttDigest = acc(W;) = Setup(W;, pk) [©J
- Constant size regardless of number of elements in W; Fig. 6: Extended Block Structure

- Support ProveDisjoint(-) & VerifyDisjoint(-)
- Verifiable Query
- Match: return o; as a result; integrity is ensured by the ObjectHash in the block header
- Mismatch: use AttDigest to prove the mismatch of o;

Example of Mismatch

- Transform query condition to a list of sets: g = “Sedan” A (“Benz” Vv “BMW") — {“Sedan"}, {“Benz", “BMW"}
- Consider o; : {“Van”, “Benz"}, we have {“Sedan”} n {“Van”, “Benz"} = &
- Apply ProveDisjoint({“Van", “Benz"}, {“Sedan"}, pk) to compute proof =

- User retrieves AttDigest = acc({“Van”, “Benz"}) from the block header and uses
VerifyDisjoint(AttDigest, acc({“Sedan"}), «, pR) to verify the mismatch 12/17

Basic Solution

- Support time-window queries

- Find the blocks whose timestamp is within the query window
- Invoke previous algorithm for each object in theses blocks

Example
- g = “Sedan” A (“Benz” v “BMW")
- Objects within the time window o, : {*Van”, “Benz"}, 0, : {“Sedan”, “Audi”}, o3 : {"Van”, “Benz"}
- Query processing

- 07 is returned as a result

- ProveDisjoint(-) is applied for 0, and o
- Mismatch condition “Benz” v “BMW" for o,
- Mismatch condition “Sedan” for o3

13/17

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes

14/17

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes

- Numerical value can be transformed into a set of
binary prefix elements

- Example: trans(4) = {1x,10%,100}
* denotes wildcard matching operator

14/17

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes
- Numerical value can be transformed into a set of
binary prefix elements
- Example: trans(4) = {1x,10%,100}
* denotes wildcard matching operator
- Range can be transformed into a equivalent
boolean expression using a binary tree

- Example: [0,6] — 0% Vv 10 V 110
Equivalence set: {0x, 10,110}

Fig. 7: Example of Transformation

14/17

Extension to Range Queries

- ldea: transform numerical attributes into set-valued attributes
- Numerical value can be transformed into a set of
binary prefix elements
- Example: trans(4) = {1x,10%,100}
* denotes wildcard matching operator
- Range can be transformed into a equivalent
boolean expression using a binary tree

- Example: [0,6] — 0% Vv 10 V 110
Equivalence set: {0x, 10,110}

Fig. 7: Example of Transformation

- Range queries can be processed in a similar manner as Boolean queries
- Transform v; € [, 8] — trans(v;) N EquiSet([a, B]) # @
- Example:
- 4 € [0,6] — {1,10%,100} N {0%,10%,110} = {10} # @
+ 7¢1[0,6] = {1%,11%,111} N {0%,10%,110} = &

14/17

Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition
- ldea: we can aggregate them to speed up query processing

15/17

Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition

- ldea: we can aggregate them to speed up query processing
- Intra-Block Index: aggregate objects inside same block using MHT

Node | Object | Set Attributes
N o B

Fig. 8: Intra-Block Index

15/17

Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition

- ldea: we can aggregate them to speed up query processing

- Intra-Block Index: aggregate objects inside same block using MHT
- Inter-Block Index: aggregate objects across blocks using skip list

block;_,, block;_, block;
Node T object | Set Atiroutes ‘~— —T{meﬁkﬁash\ | . w.— ~—]PreBkHash [MerkleRoot [SkipListRoot ||———
[dan, “Benz’

0.

T lveshippedrash,

05

o
N o
N
N
N

Fig. 8: Intra-Block Index Fig. 9: Inter-Block Index

15/17

Batch Verification & Subscription Queries

- Observation: objects may share common attributes that mismatch query condition

- ldea: we can aggregate them to speed up query processing
- Intra-Block Index: aggregate objects inside same block using MHT
- Inter-Block Index: aggregate objects across blocks using skip list
- Inverted Prefix Tree: aggregate similar subscription queries from users

block;_s, block;_, block;
Node T object | et Atiroutes ‘~— —T{meﬁkﬁash\ | . w.— ~—]PreBkHash [MerkleRoot [SkipListRoot ||———
[dan, “Benz’

0.

T lveshippednash,

05

o
N o
N
N
N

Fig. 8: Intra-Block Index Fig. 9: Inter-Block Index Fig. 10: Inverted Prefix Tree

15/17

Performance Evaluation

- Evaluation metrics

Query processing cost in
terms of SP CPU time
Query verification cost in
terms of user CPU time

- Size of the VO transmitted
from the SP to the user

- Numerical range selectivity

10% for 45Q & WX
- 50% for ETH
- Disjunctive Boolean function
size
3 for 45Q & WX
- 9for ETH

45Q

WX

ETH

SP CPU Time (s)
>

S a
s 8

SP CPU Time (s)
@
3

T T
intra-acc2

o
T

*nikacer = intra-ace2 T nikdcel = intfa-aced = nilacet
< nil-acc2 both-acc1 < nil-acc2 both-acc1 = nil-acc2 both-acc1
b - intra-acct < both-acc2 - & intra-acct - both-acc2 4| - intra-acct - both-acc2 |
A e Py ——
E tor 1210% - 9
12 't 180t ———— -
4901} —x 42 o
3 0T e ——x o 10f B
goot b %99 4> [,

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
(240) (480) (720) (960) (1200) (240) (480) (720) (960) (1200) (240) (480) (720) (960) (1200)
Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks)
*nikace! = intraace2 T nikdcel = intfa-aced *nikdce! = intra-acc2

~ nil-acc2 both-acc1 > nil-acc2 both-acc1 = nil-acc2 both-acc1
intra-acc1 - both-acc2 @ o | * intaacet = bothaccz | oo intra-acc1 - both-acc2
P =
g " @
L 4E 1F+ 12402 4
2 2
L 1& 01 1%
5 o 10 4
8001 [gt |~
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
(20) (40) (60) (80) (100) (20) (40) (60) (80) (100) (20) (40) (60) (80) (100)
Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks)
* ml-a‘cc! ! intré-accz‘ T ml-a‘cc1 ! int}a-accz‘ Fi nil-a‘cc1 ! mlr‘a-accz‘ 7
~ nil-acc2 both-acc1 = nil-acc2 both-acc1 4| < nilacc2 both-acc1
[inra-acct = both-acc2, g 1g9 | * intra-acct < both-acc2 | 10° | - intra-acct o both-ace2,]
g © — @100 |
L 1E 10 S
E 2
2 1 48107 B
L 4 12 N
O oi1f e o0}
__—% | B N H——% > o
—e—¢—1 . | %001t F—F—5 4 [. . . .

2 4 6 8 10
(480) (960) (1440) (1920) (2400)
Time Window (Hour)/(Blocks)

2 4 6 8 10
(480) (960) (1440) (1920) (2400)
Time Window (Hour)/(Blocks)

Fig. 11: Time-Window Query Performance

2 4 & 8 10
(480) (960) (1440) (1920) (2400)
Time Window (Hour)/(Blocks)

16/17

GEM?2-Tree: Enabling Gas-Efficient Authenticated
Range Queries for Hybrid Storage in Blockchain

Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, and Byron Choi

IEEE ICDE 2019

- More details

- Section: Research (14) — Query Processing, Indexing and
Optimization

- Time: 14:35-16:05, April 10, Wednesday

- Location: 7004

17/17

http://conferences.cis.umac.mo/icde2019/?page_id=516#research14

GEM?-Tree

- Storing data on chain is not scalable

Fig. 12: Authenticated Query Framework in
Hybrid-Storage Blockchain

- More details
- Section: Research (14) — Query Processing, Indexing and
Optimization
- Time: 14:35-16:05, April 10, Wednesday
- Location: 7004

17/17

http://conferences.cis.umac.mo/icde2019/?page_id=516#research14

GEM?-Tree

- Storing data on chain is not scalable
- Hybrid storage:
- Raw data is stored off-chain

- A hash of the data is keep on chain to ensure integrity
- Smart contract maintains on-chain index to facilitate

ALETErItEEzd QUER) ProEEsElrg Fig. 12: Authenticated Query Framework in
Hybrid-Storage Blockchain

- More details
- Section: Research (14) — Query Processing, Indexing and
Optimization
- Time: 14:35-16:05, April 10, Wednesday
- Location: 7004

17/17

http://conferences.cis.umac.mo/icde2019/?page_id=516#research14

GEM?-Tree

- Storing data on chain is not scalable
- Hybrid storage:
- Raw data is stored off-chain
- A hash of the data is keep on chain to ensure integrity
- Smart contract maintains on-chain index to facilitate
authenticated query processing

Fig. 12: Authenticated Query Framework in
- Question: How to reduce transaction fee a.k.a gas? Hybrid-Storage Blockchain

- More details
- Section: Research (14) — Query Processing, Indexing and
Optimization
- Time: 14:35-16:05, April 10, Wednesday
- Location: 7004

17/17

http://conferences.cis.umac.mo/icde2019/?page_id=516#research14

Thanks
Questions?

References

[HCW+18] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets blockchain: A
decentralized, reliable and fair realization,” in [EEE INFOCOM, Honolulu, HI, USA, 2018, pp. 792-800.

[Mer89] R. C. Merkle, “A certified digital signature,” in CRYPTO, 1989, pp. 218-238.

[PTT11] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Optimal verification of operations on dynamic sets,” in

CRYPTO, Santa Barbara, CA, USA, 2011, pp. 91-110.

[XZX19] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling verifiable boolean range queries over blockchain databases,” in ACM
SIGMOD, Amsterdam, Netherlands, 2019.

[ZXX+19] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “GEM?-Tree: A gas-efficient structure for authenticated range queries
in blockchain,” in IEEE ICDE, Macau SAR, China, 2019.

	Appendix
	References

