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Problem Statement

Given an location-based social networking services (LBSN), a Geo-social group query with minimum acquaintance constraint
(GSGQ) finds a maximal user result set which satisfies both social constraint and spatial constraint.

• Social Constraint
– A subgraph is c-core if its

minimum degree is larger or
equal to c.

– The user result set and the
query user of GSGQ should
form a c-core, which denotes
the social acquaintance con-
straint.

• Spatial Constraint
– GSGQ with range constraint (GSGQrange)

It finds the largest c-core located inside range.
e.g. find me the largest user group satisfying c-core in 5th Avenue, Manhattan, NYC.

– GSGQ with relaxed kNN constraint (GSGQrkNN)
It finds a maximal c-core of size no less than k + 1 with minimum distance.
e.g. find me the closest (maximal) group of at least nine users satisfying c-core to be eligible
for a bulk discount.

– GSGQ with strict kNN constraint (GSGQkNN)
It finds a c-core of size equal to k + 1 with minimum distance.
e.g. find me the closest group of three users satisfying c-core to play tennis doubles with me.

Social 

Layer

Spatial 

Layer

v1
v8

v7

v2

v3

v4

v5

v6

p7

p1
p8

p6 p3
p2

p4

p5

r

Fig. 1: An example of GSGQ < v1, 3NN, 2 >. Lines between the users

represent acquaintance relations and the points on the spatial layer denote

the positions of the users.

R-tree-based Query Processing
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Fig. 2: An example of R-tree

GSGQrange Find all users in the range using R-tree and compute the c-core subgraph W ′

formed by these users. If v ∈ W ′, W = W ′ − {v} is the answer, otherwise
there is no result.

GSGQrkNN Perform kNN search on R-tree. When the size of the candidate set W̃ exceeds
k, compute c-core subgraph W ′ formed by W̃ . If v ∈ W ′ and |W ′| ≥ k + 1,
W = W ′ − {v} is the answer, otherwise continue the search.

GSGQkNN Perform kNN search on R-tree. When the size of the candidate set W̃ exceeds
k, enumerate all possible subsets with the size of k + 1 and containing v. If
such a user set W ′ is a c-core, W = W ′ − {v} is the answer.

Core Bounding Rectangle (CBR)

CBR of a user
Consider a user v ∈ G. Given a mini-
mum degree constraint c, CBRv,c is a rect-
angle which contains v and inside which
any user group with v (excluding the users
on the bounding edges) cannot be a c-core.

Computing a CBR
• Build an initial CBR from nearest users
which cannot form a c-core.

• Expand the initial CBR outwards to gain
the maximal CBR.

CBR of an entry
Consider an entry e with MBR MBRe and
user set Ve. Given a minimum degree con-
straint c, CBRe,c is a rectangle which in-
tersects MBRe and inside which any user
group containing any user from Ve (not in-
cluding the users on the bounding edges)
cannot be a c-core.
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Fig. 3: An example of CBR. r1 and r3 are CBRv2,2. r2 is not,

because {v2, v1, v6} forms 2-core.
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Fig. 4: An example of computing CBRv2,2.

Social-aware R-tree (SaR-tree)
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Fig. 5: An example of SaR-tree

• Different from a conventional R-tree, each entry of an SaR-tree refers to two pieces of
information, i.e., a set of CBRs and an MBR, to describe the group of users it covers.

• SaR∗-tree: Inspired by R∗-tree, use both CBRs and MBR as closeness metric.

I(V ) = ||MBRV || ·
∑
c

(|| ∪v∈V CBRv,c − CBRV,c||)

GSGQ Processing
GSGQrange If the range is covered by a CBRe,c, entry e

can be pruned.
GSGQrkNN The sorting key of the kNN search is de =

max{d(v,MBRe), din(v,CBRe,c)}, where

din(v,CBRe,c) =

{
minl∈LCBRe,c

d(v, l), v ∈ CBRe,c

0, otherwise.

GSGQkNN Similar to GSGQrkNN, with additional prun-
ing strategies to find result from candidates.

• Core decomposition-based pruning.
• k-plex-based pruning.
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Fig. 6: An example of processing a

GSGQrkNN < v1, r3NN, 2 >. Entry c

will be visited before entry b.

Performance Evaluation
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(a) GSGQrange (r = 0.05, c = 2)
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(b) GSGQrkNN (k = 20, c = 2)
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(c) GSGQkNN (k = 20, c = 2)

Fig. 7: Overall performance comparison on Twitter-2010 (41M users, 684M edges).
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