GEO-SOCIAL GROUP QUERIES WITH MINIMUM ACQUAINTANCE CONSTRAINTS

Qijun Zhu¹, Haibo Hu², Cheng Xu¹, Jianliang Xu¹, and Wang-Chien Lee³ ¹Hong Kong Baptist University ²Hong Kong Polytechnic University ³Pennsylvania State University {qjzhu, chengxu, xujl}@comp.hkbu.edu.hk haibo.hu@polyu.edu.hk wlee@cse.psu.edu

Problem Statement

Given an location-based social networking services (LBSN), a Geo-social group query with minimum acquaintance constraint (GSGQ) finds a maximal user result set which satisfies both social constraint and spatial constraint.

• Social Constraint

• Spatial Constraint

-A subgraph is *c*-core if its -GSGQ with range constraint (GSGQ_{range})

- minimum degree is larger or equal to c.
- -The user result set and the query user of GSGQ should form a *c*-*core*, which denotes the social acquaintance constraint.

It finds the largest *c*-core located inside range.

e.g. find me the largest user group satisfying c-core in 5th Avenue, Manhattan, NYC.

-GSGQ with relaxed kNN constraint (GSGQ_{rkNN})

It finds a maximal *c*-core of size no less than k + 1 with minimum distance.

e.g. find me the closest (maximal) group of at least nine users satisfying c-core to be eligible for a bulk discount.

-GSGQ with strict kNN constraint (GSGQ $_{kNN}$)

It finds a *c*-core of size equal to k + 1 with minimum distance.

e.g. find me the closest group of three users satisfying c-core to play tennis doubles with me.

Fig. 1: An example of $GSGQ < v_1, 3NN, 2 >$. Lines between the users represent acquaintance relations and the points on the spatial layer denote the positions of the users.

R-tree-based Query Processing

Social-aware R-tree (SaR-tree)

Fig. 5: An example of SaR-tree

Fig. 2: An example of R-tree

- **GSGQ**_{range} Find all users in the range using R-tree and compute the c-core subgraph W'formed by these users. If $v \in W'$, $W = W' - \{v\}$ is the answer, otherwise there is no result.
- Perform kNN search on R-tree. When the size of the candidate set W exceeds **GSGQ**_{rkNN} k, compute c-core subgraph W' formed by W. If $v \in W'$ and $|W'| \ge k+1$, $W = W' - \{v\}$ is the answer, otherwise continue the search.
- Perform kNN search on R-tree. When the size of the candidate set \hat{W} exceeds **GSGQ**_{kNN} k, enumerate all possible subsets with the size of k + 1 and containing v. If such a user set W' is a c-core, $W = W' - \{v\}$ is the answer.

Core Bounding Rectangle (CBR)

CBR of a user

Consider a user $v \in G$. Given a minimum degree constraint c, $CBR_{v,c}$ is a rectangle which contains v and inside which any user group with v (excluding the users on the bounding edges) cannot be a *c*-core.

Computing a CBR

• Build an initial CBR from nearest users

Fig. 3: An example of CBR. r_1 and r_3 are CBR_{$v_2,2$}. r_2 is not,

- Different from a conventional R-tree, each entry of an SaR-tree refers to two pieces of information, i.e., a set of CBRs and an MBR, to describe the group of users it covers.
- SaR*-tree: Inspired by R*-tree, use both CBRs and MBR as closeness metric.

$$I(V) = ||\mathsf{mbr}_V|| \cdot \sum_c (|| \cup_{v \in V} \mathsf{cbr}_{v,c} - \mathsf{cbr}_{V,c}||)$$

GSGQ Processing

- If the range is covered by a $CBR_{e,c}$, entry e**GSGQ**_{range} can be pruned.
- **GSGQ**_{*rk*NN} The sorting key of the *k*NN search is $d_e =$ $\max\{d(v, MBR_e), d_{in}(v, CBR_{e,c})\},$ where

$$d_{in}(v, \mathbf{CBR}_{e,c}) = \begin{cases} \min_{l \in L_{\mathbf{CBR}_{e,c}}} d(v, l), \ v \in \mathbf{CBR}_{e,c} \\ 0, & \text{otherwise.} \end{cases}$$

- Similar to $GSGQ_{rkNN}$, with additional pruning strategies to find result from candidates.
 - Core decomposition-based pruning.
 - k-plex-based pruning.

Fig. 6: An example of processing a $GSGQ_{rkNN} < v_1, r3NN, 2 >$. Entry c will be visited before entry *b*.

which cannot form a *c*-core.

• Expand the initial CBR outwards to gain the maximal CBR.

CBR of an entry

Consider an entry e with MBR MBR_e and user set V_e . Given a minimum degree constraint c, $CBR_{e,c}$ is a rectangle which intersects MBR_e and inside which any user group containing any user from V_e (not including the users on the bounding edges) cannot be a *c*-core.

because $\{v_2, v_1, v_6\}$ forms 2-core.

Fig. 4: An example of computing $CBR_{v_2,2}$.

Performance Evaluation

• Q. Zhu, H. Hu, C. Xu, J. Xu, and W.-C. Lee, "Geo-social group queries with minimum acquaintance constraints," The VLDB Journal (VLDBJ'17), Jul. 2017.