Problem Statement

- Outsourced Aggregate Queries Services Model
 - Three parties: data owner, service provider and client.
 - Aggregate queries on \(set-valued \) data.

- Challenges:
 - Privacy Clients cannot know the feature’s origin.
 - Integrity Clients can verify the result correctness.
 - Efficiency: Minimize communication and verification overhead.

Aggregate Queries Example on PGP Data

- Q1: Most common gene in Cupertino, CA (Zip: 95014).
 - Answer: ‘A-C130IR’

- Q2: Count the participants who carry the gene ‘R-G1886S’.
 - Answer: 4

- Q3: Find the most frequent genes with supports \(\geq 3 \) in ZIPS 20***.
 - Answer: ‘P-P12A’, ‘R-G1886S’

Authentication Algorithms on Aggregate Queries

- Sum/Count Query sums or counts the multiplicities of the queried feature in all selected objects.
 - Inflation checking: \(R \subseteq S \).
 - Deflation checking: \((S \setminus R) \cap R = \emptyset \).

- Max/Top-k/FFQ Query returns features with the highest/top-k/above-threshold multiplicity.
 - Inflation checking: \(R \subseteq S \).
 - Deflation checking: \((S \setminus R) \cap R = \emptyset \).
 - Completeness checking: \((S \setminus R) \subseteq U \setminus (U \setminus R) \).

Bilinear Pairing

Let \(G, G_f \) be two groups. A pairing is a map \(e: G \times G \rightarrow G_f \), which satisfies:

- **Bilinearity** \(e(P, Q) = e(P, Q)^{\alpha} \).
- **Non-degeneracy** \(e(g, g) \neq 1 \).
- **Computability** Given \(P \) and \(Q \), it is easy to compute \(e(P, Q) \).

Privacy-Preserving Authentication Framework

Authentication Protocols on Multiset Operations

- \(\text{subset}(X_1, X_2) \) returns \(acc \) value of \(X_1 \rightarrow X_2 \).
 - \(SP \) computes \(acc(X_1 \rightarrow X_2) = g^{\delta_{X_1/X_2}} \prod_{X_1 \rightarrow X_2} \).
 - \(Client \) verifies \(e(acc(X_1, X_2)) = e(acc(X_1), g) \).
 - \(sum \) returns \(acc \) value of \(S = \sum_{Q} P(X) \).
 - Similar to \(\text{subset} \) process recursively.

- \(\text{empty}(X_1, X_2) \) returns whether \(\cap_{X_1/X_2} X = \emptyset \).
 - \(\text{Extended Euclidean Algorithm} \) \(\cap(X_1) = \emptyset \Rightarrow \exists Q \cdot \sum_{X_1} P(X_1) = 1 \).
 - \(\text{union}(X_1, X_2) \) returns \(acc \) value of \(U = \cup_{X_1} X_1 \).
 - Deflation checking: \(\bar{X} \subseteq X \land \bar{X} \subseteq U \land \bar{X} \subseteq U \).
 - Inflation checking: \((U \setminus \bar{X}) \cap (U \setminus X_1) \subseteq (U \setminus \bar{X}) \).
 - \(times \) returns \(acc \) value of \(X \cdot Y \).
 - Similar to \(\text{sum} \), optimized using shift and add.

Example of Aggregate Queries

- \(S = \{(a, 6), (b, 1), (c, 4), (d, 3), (e, 2)\}, U = \{(a, 1), (b, 1), (c, 1), (d, 1), (e, 1)\} \).

- **Sum Query**
 - \(R = \{(a, 6)\} \).
 - Inflation checking: \(\{(a, 6)\} \subseteq \{(a, 6), (b, 1), (c, 4), (d, 3), (e, 2)\} \).
 - Deflation checking: \(\{(b, 1), (c, 4), (d, 3), (e, 2)\} \subseteq \{(a, 6)\} \).

- **Max Query**
 - \(R = \{(a, 6)\}, \bar{R} = \{(a, 1)\} \).
 - Inflation checking: \(\{(a, 6)\} \subseteq \{(a, 6), (b, 1), (c, 4), (d, 3), (e, 2)\} \).
 - Deflation checking: \(\{(b, 1), (c, 4), (d, 3), (e, 2)\} \subseteq \{(a, 6)\} \).
 - Completeness checking: \(\{(b, 1), (c, 4), (d, 3), (e, 2)\} \subseteq \{(a, 6), (b, 6), (c, 6), (d, 6), (e, 6)\} \).

Performance Evaluation