
vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases
Cheng Xu , Ce Zhang , and Jianliang Xu

Department of Computer Science, Hong Kong Baptist University, Hong Kong
{chengxu, cezhang, xujl}@comp.hkbu.edu.hk

vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases
Cheng Xu , Ce Zhang , and Jianliang Xu

Department of Computer Science, Hong Kong Baptist University, Hong Kong
{chengxu, cezhang, xujl}@comp.hkbu.edu.hk

Problem Statement
• Background: Increasing demand to query blockchain database
• Blockchain Database Solution: SAP Leonardo, BigchainDB, SwarmDB, etc.
• Issue: Existing solutions rely on a trusted party who can faithfully answer user queries.

Blockchain NetworkTrusted Service ProviderUser

Q

R

fetch data

Fig. 1: Workflow of Existing Solutions

• Question: How to support integrity-assured queries in untrusted blockchains where a trusted
party doesn’t exist?

• Security Requirements
– Soundness: none of the objects returned as results have been tampered with and all of them

satisfy the query conditions
– Completeness: no valid result is missing regarding the query conditions

• Naive Solutions
– User becoming full node ⇒ high cost in storage/computation/network
– Leverage smart contract ⇒ long latency, poor scalability, privacy concern, high cost

• Our Solution
– Miners compute and commit authenticated data structure (ADS) in block headers
– Users become light nodes
– Queries are outsourced to full nodes
– Users verify the query results using
◦Verification Object (VO) from full nodes
◦ADS from block headers

Blockchain NetworkFull NodeUser

Q

〈R, proof〉

synchronize

Fig. 2: vChain

Data Model & Queries
• Data Model

– Each block contains several temporal objects {o1, o2, . . . , on}
– oi is represented by 〈ti, Vi,Wi〉

(timestamp, multi-dimensional vector, set valued attribute)
• Boolean Range Queries

– Find all Bitcoin transactions happening in certain period
Tx: 〈time, transfer amount, {“send address”, “receive address”}〉
q = 〈[2018-05, 2018-06], [10,+∞], “send:1FFYc” ∧ “receive:2DAAf”〉

– Subscribe to car rental messages with certain price and keywords
Tx: 〈time, rental price, {“type”, “model”}〉
q = 〈−, [200, 250], “Sedan” ∧ (“Benz” ∨ “BMW”)〉

Cryptographic Building Block
• Merkle Hash Tree

– Support efficient membership/range queries
– Limitations
◦An MHT supports only the query keys on

which the Merkle tree is built
◦MHTs do not work with set-valued attributes
◦MHTs of different blocks cannot be aggre-

gated

N0 = H(N1|N2)

N1 = H(N3|N4) N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)N2 = H(N5|N6)

N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1)N3 = H(o1) N4 = H(o2)

o1 o2

N5 = H(o3) N6 = H(o4)

o3 o4

sig(N0)

Q

Fig. 3: Merkle Hash Tree

• Cryptographic Multiset Accumulator
– Map a multiset to an element in cyclic multiplicative group in a collision resistant way
– Utility: prove set disjoint
– Protcols:
◦KeyGen(1λ) → (sk, pk): generate keys
◦Setup(X, pk) → acc(X): return the accumulative value w.r.t. X
◦ProveDisjoint(X1, X2, pk) → π:

on input two multisets X1 and X2, where X1 ∩X2 = ∅, output a proof π
◦VerifyDisjoint(acc(X1), acc(X2), π, pk) → {0, 1}:

on input acc(X1), acc(X2), and a proof π, output 1 iff X1 ∩X2 = ∅

Basic Solution
• Consider a single object and boolean query
• Each block stores a single object oi = 〈ti,Wi〉
• ADS generation (Miner)

– Extend the block header with AttDigest
– AttDigest = acc(Wi) = Setup(Wi, pk)

◦Constant size regardless of number of elements inWi

◦ Support ProveDisjoint(·) & VerifyDisjoint(·)

. . . PreBkHash TS ConsProof ObjectHash AttDigest

blocki

oi

. . .

Fig. 4: Extended Block Structure

• Verifiable Query
– Match: return oi as a result; integrity is ensured by the ObjectHash in the block header
– Mismatch: use AttDigest to prove the mismatch of oi

Example of Mismatch

• Transform query condition to a list of sets:
q = “Sedan” ∧ (“Benz” ∨ “BMW”) → {“Sedan”}, {“Benz”, “BMW”}

• Consider oi : {“Van”, “Benz”}, we have {“Sedan”} ∩ {“Van”, “Benz”} = ∅
• Apply ProveDisjoint({“Van”, “Benz”}, {“Sedan”}, pk) to compute proof π
• User retrieves AttDigest = acc({“Van”, “Benz”}) from the block header and uses
VerifyDisjoint(AttDigest, acc({“Sedan”}), π, pk) to verify the mismatch

Extension to Range Queries
• Idea: transform numerical attributes into set-valued attributes
• Numerical value can be transformed into a set of binary prefix
elements
– Example: trans(4) = {1∗, 10∗, 100}

* denotes wildcard matching operator

∗

0∗

00∗

000 001

01∗

010 011

1∗

10∗

100 101

11∗

110 111

q = [0, 6]

Fig. 5: Example of Transformation

• Range can be transformed into an equivalent boolean expression using a binary tree
– Example: [0, 6] → 0∗ ∨ 10∗ ∨ 110 → Equivalence set: {0∗, 10∗, 110}

• Range queries can be processed in a similar manner as Boolean queries
– Transform vi ∈ [α, β] → trans(vi) ∩ EquiSet([α, β]) 6= ∅
– Example:
◦ 4 ∈ [0, 6] → {1∗, 10∗, 100} ∩ {0∗, 10∗, 110} = {10∗} 6= ∅
◦ 7 /∈ [0, 6] → {1∗, 11∗, 111} ∩ {0∗, 10∗, 110} = ∅

Batch Verification & Subscription Queries

• Observation: objects may share common attributes that mismatch query condition
• Idea: we can aggregate them to speed up query processing

– Intra-Block Index: aggregate objects inside same block using MHT
– Inter-Block Index: aggregate objects across blocks using skip list
– Inverted Prefix Tree: aggregate similar subscription queries from users

Performance Evaluation

0

50

100

150

2
 (480)

4
 (960)

6
 (1440)

8
 (1920)

10
 (2400)

S
P

 C
P

U
 T

im
e
 (

s
)

 Time Window (Hour)/(Blocks)

nil-acc1
nil-acc2
intra-acc1

intra-acc2
both-acc1
both-acc2

0.01

0.1

1

10

100

2
 (480)

4
 (960)

6
 (1440)

8
 (1920)

10
 (2400)

U
s
e
r

C
P

U
 T

im
e
 (

s
)

 Time Window (Hour)/(Blocks)

nil-acc1
nil-acc2
intra-acc1

intra-acc2
both-acc1
both-acc2

1

10

10
2

10
3

10
4

2
 (480)

4
 (960)

6
 (1440)

8
 (1920)

10
 (2400)

V
O

 S
iz

e
 (

K
B

)

 Time Window (Hour)/(Blocks)

nil-acc1
nil-acc2
intra-acc1

intra-acc2
both-acc1
both-acc2

Fig. 6: Time-Window Query Performance over ETH dataset

