VCHAIN: ENABLING VERIFIABLE BOOLEAN RANGE (QUERIES OVER BLOCKCHAIN DATABASES

Cheng Xu, Ce Zhang , and Jianliang Xu

Department of Computer Science, Hong Kong Baptist University, Hong Kong
{chengxu, cezhang, xujl}@comp.hkbu.edu.hk

Problem Statement

e Background: Increasing demand to query blockchain database Naive Solutions
e Blockchain Database Solution: SAP Leonardo, BigchainDB, SwarmDB, etc. — User becoming full node = high cost in storage/computation/network
e Issue: Existing solutions rely on a trusted party who can faithfully answer user queries. —Leverage smart contract = long latency, poor scalability, privacy concern, high cost

= e Our Solution

Q 19 fotch data /. = — Miners compute and commit authenticated data structure (ADS) in block headers
1O oo - | o l .
TR A " @ SE — Users become light nodes
| | RS — Queries are outsourced to full nodes
User Trusted Service Provider Blockchain Network

— Users verity the query results using

o Verification Object (VO) from full nodes
* Question: How to support integrity-assured queries in untrusted blockchains where a trusted 5 ADS from block headers

party doesn’t exist?

e Security Requirements 0 » ynchronize @ y
— Soundness: none of the objects returned as results have been tampered with and all of them - (7. proof Tttt TTTT g @ SN

satisty the query conditions

Fig. 1: Workflow of Existing Solutions

~ 7~
~ - —

— Completeness: no valid result is missing regarding the query conditions User Full Node Blockchain Network
Fig. 2: vChain

Data Model & Queries Example of Mismatch

* Data Model e Transform query condition to a list of sets:
— Each block contains several temporal objects {01, 05, ...,0,} q = “Sedan” A (“Benz” V “BMW”) — {“Sedan”}, {“Benz”, “BMW”}
—07; iS I’eprésented by <tz, ‘/;, W’L> ° ConSider O@' : {“Van”7 “Benz”}, we haVe {ccSedan”} m {“Van”7 “Benz”} — @

(timestamp, multi-dimensional vector, set valued attribute) » Apply ProveDisjoint({“Van”, “Benz”}, {“Sedan”}, pk) to compute proof 7

* Bool R .
oolean Range Queries e User retrieves AttDigest = acc({“Van”, “Benz”}) from the block header and uses

—Find all Bitcoin transactions happening in certain period VerifyDisjoint(ArtDigest, acc({“Sedan”}), 7, pk) to verify the mismatch

2% ¢¢

Tx: (time, transfer amount, {“send address”, “receive address™})
q = (|2018-05,2018-06], [10, 400}, “send:1FFY¢” A “receive:2DAAL’)

— Subscribe to car rental messages with certain price and keywords

Tx: (time, rental price, {“type”, “model”}) Extension to Range Queries
g = (—,[200,250], “Sedan” A (“Benz” VV “BMW”))

e [dea: transform numerical attributes into set-valued attributes

e Numerical value can be transformed into a set of binary prefix

. e o elements
Cryptographic Building Block _ Example: trans(4) = {Lx, 10%, 100}
 Merkle Hash Tree * denotes wildcard matching operator
— Support eflicient membership/range queries No = H(N1|Na) |« - - { sig(No) Fig. 5: Example of Transformation
— Limitations N1 = H(Ns|Na) [No = H (No|Ne) e Range can be transformed into an equivalent boolean expression using a binary tree
oAn MHT supports only the query keys on =3y — 5| (3 = (e | 3o = o) —Example: [0,6] — 0% V 10% v 110 — Equivalence set: {0%, 10%, 110}
which the Merkle tree is built [——0o / \ R . . o ,
o MHTS do nof work with seft-valued attributes o) a] 0s Z e Range queries can be processed in a similar manner as Boolean queries
o MHTs of different blocks cannot be aggre- Fig. 3: Merkle Hash Tree —Transform v; € |, 3] — trans(v;) N EquiSet(|a, B]) # &
gated — Example:

o4 € [0,6] — {1x,10%,100} N {0x%, 10,110} = {10} # &

e Cryptographic Multiset Accumulator :
YPIOStap 07 & [0,6] — {1x, 11%, 111} N {0%, 10%, 110} = &

— Map a multiset to an element in cyclic multiplicative group in a collision resistant way
— Utility: prove set disjoint

— Protcols:
o KeyGen(1') — (sk, pk): generate keys Batch Verification & Subscription Queries
o Setup(X, pk) — acc(X): return the accumulative value w.r.t. X
o ProveDisjoint(X, X, pk) — e Observation: objects may share common attributes that mismatch query condition
on input two multisets X, and X, where X; N Xy = &, output a proof 7 e Idea: we can aggregate them to speed up query processing

o VerifyDisjoint(acc(X;),acc(X,), m, pk) — {0, 1}:

— Intra-Block Index: aggregate objects inside same block using MHT
on input acc(X;), acc(X,), and a proof 7, output 1 iff X1 N Xy, = @

— Inter-Block Index: aggregate objects across blocks using skip list
— Inverted Prefix Tree: aggregate similar subscription queries from users

Basic Solution

e Consider a single object and boolean query Performance Evaluation
 Each block stores a single object o, = (¢;, ;)
i i “ nil-acc intra-acc2 “ nilacel intra-acc? -+ nil-acc intra-acc2 |
* ADS generation (Miner) TS et TS et R R
Extend the block header with A7 tDigeS / bock. __ 130 | -« intra-acc1 - both-acc2_ | = 100 |~ intra-acci - both-acc2 | 10" -« intra-acc1 = both-acc2,]
_ i v -~ M . M
i cee = PreBkHash | TS | ConsProof | ObjectHash | AttDigest |f«— - - - GEJ 100 F h qé 10 | - %J/-]OS B M N
— AttDigest = acc(W,;) = Setup(W,, pk) . // S 1t — 2102 | e
. . ‘ o 50 |- | i | n
o Constant size reg.ar.dl.ess of numbér of .eller.nents in W, Fig. 4: Extended Block Structure S E 0 [P R L) e
o Support ProveDisjoint(-) & VerifyDisjoint(-) ? 0 St 4yl
> 4 6 8 10 > 4 6 8 10 > 4 6 8 10
e Verifiable Query (480) (960) (1440) (1920) (2400) (480) (960) (1440)(1920) (2400) (480) (960) (1440) (1920) (2400)
Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks) Time Window (Hour)/(Blocks)

— Match: return o; as a result; integrity is ensured by the ObjectHash in the block header

. . . Fig. 6: Time-Wind Perf ETH dataset
— Mismatch: use AttDigest to prove the mismatch of o; 'g. 6: Time-Window Query Performance over ETH datase

