On Shapley Value in Data Assemblage Under Independent Utility Xuan Luo¹, Jian Pei^{1,2}, Zicun Cong¹, and Cheng Xu¹ ¹Simon Fraser University, Canada ²Duke University, United States {xuan_luo, zicun_cong, cheng_xu_3}@sfu.ca jpei@duke.edu

Background and Problem Formulation

- Transforming Data into Value:
- -Data are distributed.
- Data may be assembled.
- -Data have diverse second use.
- Data marketplaces enable end-to-end data science as a dynamic Eco-system.
- **Problem Formulation**:

- Existing Method:
 - -Shapley value: the expectation of marginal contribution made by the data owner in all possible coalitions with subsets of other data owners.

$$\psi(o_i) = \frac{1}{\|\mathcal{O}\|} \sum_{\mathcal{S} \subseteq \mathcal{O} \setminus \{o_i\}} \frac{Utility(\mathcal{S} \cup \{o_i\}) - Utility(\mathcal{S})}{\binom{n-1}{\|\mathcal{S}\|}}$$

Data process Data Data science process Data Data marketplace Application Data Data Data Application science process

Data

science \rightarrow

Application

- Challenges:
- -Given a set of data owners $\mathcal{O} = \{o_1, \ldots, o_n\}$, a coalition plan \mathcal{P} specifying how data from data owners can be assembled, and a reward from a data buyer. How to distribute the data buyer's reward to data owners?
- -Combinatoric nature
 - \Rightarrow Exponential with respect to the number of data owners
 - Utility evaluation
 - \Rightarrow Potentially high computational cost in evaluating utility

Fig. 1: Data Marketplaces: Enabling End-to-end Data Science as a Dynamic

Eco-system

Independent Utility

- Independent Utility Assumption: it holds on a data set $D = \{t_1, \ldots, t_l\}$ if the utility of the data set $Utility(D) = \sum_{i=1}^{l} Utility(t_i)$ and for any $1 \le i, j \le l$, $Utility(t_i)$ and $Utility(t_j)$ are non-negative and independent from each other.
- Independent Shapley Value: let $D = \{t_1, \ldots, t_l\}$ be a coalition set produced by a coalition by data owners $\mathcal{O} = \{o_1, \ldots, o_n\}$. Under the independent utility assumption, for every data owner o_i $(1 \le i \le n)$, the Shapley value of o_i is $\psi(o_i) = \sum_{i=1}^l \psi_{t_i}(o_i)$, where $\psi_{t_i}(o_i)$ is the Shapley value of o_i in producing tuple t_i by coalition.

Problem of calculating $\psi(o_i)$ with respect to the coalition set D

Under Independent Utility Assumption

Problem of calculating $\psi_t(o_i)$ with respect to a tuple $t \in D$

Synthesis

• Synthesis: for a tuple in the coalition set $t \in D$, if data owners o_{i_1}, \ldots, o_{i_m} in coalition produce instance of t according to the coalition plan \mathcal{P} , then $O = \{o_{i_1}, \ldots, o_{i_m}\}$ is called a synthesis of t.

Running Example

Value

Fig. 2: Example of Data Assemblage

 \Rightarrow E.g., for t_2 , { o_3, o_4 }, { o_1, o_3, o_4 }

- Minimal Synthesis: a synthesis O is a minimal synthesis of tuple $t \in D$ if no proper subset of O is still a synthesis of t.
- \Rightarrow E.g., for t_2 , { o_3, o_4 }

• Synthesis Type:

- -Single-owner synthesis: a synthesis $O = \{o_{i_i}\}$ with only one data owner. \Rightarrow E.g., for t_2 , $\{o_5\}$
- -Multi-owner synthesis: a synthesis $O = \{o_{i_1}, \ldots, o_{i_m}\}$ with more than one data owner. \Rightarrow E.g., for t_2 , $\{o_3, o_4\}$
- Observations from Synthesis:
- $-\|\mathcal{O}_t\| \leq \|\mathcal{O}\|$, where \mathcal{O}_t is the number of data owners contributing to t.
- -Given a tuple $t, \forall S \subseteq O_t, Utility_t(S) = Utility(t) \iff S$ is a synthesis of t.

Special Case

- Case 1: only single-owner synthesis exists:
- -Closed form solution in constant time $\psi_t(o_i) = \frac{Utility(t)}{\|\mathcal{O}_t\|}$
- -E.g., assume a tuple t with minimal syntheses: $\{\{o_6\}, \{o_7\}, \{o_8\}\}$
- Case 2: there is a unique multi-owner synthesis (UMOS):
- -Closed form solution in linear time $\psi_t(o_i) = \frac{Utility(t)}{\|\mathcal{O}_t\| - 1}$ for o_i in the UMOS, where m is the number of data owners in the UMOS.

Performance Evaluation

-E.g., for t_2 , {{ o_3, o_4 }, { o_5 }}

General Case

• SL Algorithm:

- -General idea: $\forall S \subseteq \mathcal{O}_t \setminus \{o_i\}$, enumerate S and evaluate $Utility_t(S)$ by checking whether S is a synthesis of t.
- Drawback: high computational cost when $\|\mathcal{O}_t\|$ is large.

• SC Algorithm:

- -General idea: use the combination of minimal syntheses to find all such $S \subseteq O_t \setminus \{o_i\}$ that $Utility_t(\mathcal{S} \cup \{o_i\}) - Utility_t(\mathcal{S}) = Utility(t)$.
- Drawback: high computational cost when there is a large number of minimal syntheses.
- A heuristic method to choose between SL and SC algorithms.

Fig. 4: Effect of Record Assignment Distribution