
On Shapley Value in Data Assemblage Under Independent Utility
Xuan Luo1, Jian Pei1,2, Zicun Cong1, and Cheng Xu1

1Simon Fraser University, Canada 2Duke University, United States
{xuan_luo, zicun_cong, cheng_xu_3}@sfu.ca jpei@duke.edu

On Shapley Value in Data Assemblage Under Independent Utility
Xuan Luo1, Jian Pei1,2, Zicun Cong1, and Cheng Xu1

1Simon Fraser University, Canada 2Duke University, United States
{xuan_luo, zicun_cong, cheng_xu_3}@sfu.ca jpei@duke.edu

Background and Problem Formulation
• Transforming Data into Value:

– Data are distributed.
– Data may be assembled.
– Data have diverse second use.
– Data marketplaces enable end-to-end data science as

a dynamic Eco-system.
• Problem Formulation:

– Given a set of data ownersO = {o1, . . . , on}, a coali-
tion planP specifying how data from data owners can
be assembled, and a reward from a data buyer. How
to distribute the data buyer’s reward to data owners?

• Existing Method:
– Shapley value: the expectation of marginal contribution made by the

data owner in all possible coalitions with subsets of other data owners.

ψ(oi) =
1

∥O∥
∑

S⊆O\{oi}

Utility(S ∪ {oi})− Utility(S)(
n−1
∥S∥

)
• Challenges:

– Combinatoric nature
⇒ Exponential with respect to the number of data owners

– Utility evaluation
⇒ Potentially high computational cost in evaluating utility

Data
marketplace

Data

Data
science
process

Application Value

DataData

Data
science
process

Application Value

Data

Data

Data
science
process

Application

Value

Fig. 1: Data Marketplaces: Enabling End-to-end Data Science as a Dynamic

Eco-system

Independent Utility
• Independent Utility Assumption: it holds on a data set D = {t1, . . . , tl} if the utility
of the data set Utility(D) =

∑l
j=1Utility(tj) and for any 1 ≤ i, j ≤ l, Utility(ti) and

Utility(tj) are non-negative and independent from each other.
• Independent Shapley Value: let D = {t1, . . . , tl} be a coalition set produced by a
coalition by data owners O = {o1, . . . , on}. Under the independent utility assumption,
for every data owner oi (1 ≤ i ≤ n), the Shapley value of oi is ψ(oi) =

∑l
j=1ψtj(oi),

where ψtj(oi) is the Shapley value of oi in producing tuple tj by coalition.

Problem of calculating 𝜓 𝑜! with
respect to the coalition set 𝐷

Problem of calculating 𝜓" 𝑜!
with respect to a tuple 𝑡 ∈ 𝐷

Under Independent
Utility Assumption

Synthesis
• Synthesis: for a tuple in the coalition set t ∈ D, if data owners oi1, . . . , oim in coalition
produce instance of t according to the coalition plan P , then O = {oi1, . . . , oim} is called
a synthesis of t.
⇒ E.g., for t2, {o3, o4}, {o1, o3, o4}

• Minimal Synthesis: a synthesis O is a minimal synthesis of tuple t ∈ D if no proper
subset of O is still a synthesis of t.
⇒ E.g., for t2, {o3, o4}

• Synthesis Type:
– Single-owner synthesis: a synthesis O = {oij} with only one data owner.
⇒ E.g., for t2, {o5}

– Multi-owner synthesis: a synthesis O = {oi1, . . . , oim} with more than one data owner.
⇒ E.g., for t2, {o3, o4}

• Observations from Synthesis:
– ∥Ot∥ ≤ ∥O∥, where Ot is the number of data owners contributing to t.
– Given a tuple t, ∀S ⊆ Ot, Utilityt(S) = Utility(t) ⇐⇒ S is a synthesis of t.

Special Case
• Case 1: only single-owner synthesis
exists:
– Closed form solution in constant time
ψt(oi) =

Utility(t)
∥Ot∥

– E.g., assume a tuple t with minimal
syntheses: {{o6}, {o7}, {o8}}

• Case 2: there is a unique multi-owner
synthesis (UMOS):
– Closed form solution in linear time
ψt(oi) =

Utility(t)

∥Ot∥×(∥Ot∥−1
m−1)

for oi in the UMOS,
where m is the number of data owners in
the UMOS.

– E.g., for t2, {{o3, o4}, {o5}}

General Case
• SL Algorithm:

– General idea: ∀S ⊆ Ot \ {oi}, enumerate S and evaluate Utilityt(S) by checking
whether S is a synthesis of t.

– Drawback: high computational cost when ∥Ot∥ is large.
• SC Algorithm:

– General idea: use the combination of minimal syntheses to find all such S ⊆ Ot \ {oi}
that Utilityt(S ∪ {oi})− Utilityt(S) = Utility(t).

– Drawback: high computational cost when there is a large number of minimal syntheses.
• A heuristic method to choose between SL and SC algorithms.

Running Example

id name
1 Aliceo1

id name
1 Aliceo2

id name
2 Kateo3
id department
1 CS
2 Math

o4

Coalition Set
tuple_id name department

Alice CS
Kate Math

name department
Kate Matho5

Coalition plan : 𝒫
Projname,department(o1 ⋈ o4) ∪
Projname,department(o2 ⋈ o4) ∪
Projname,department(o3 ⋈ o4) ∪
o5

Data Assemblage
t1
t2

Minimal syntheses of :
Minimal syntheses of :

t1 {{o1, o4}, {o2, o4}}
t2 {{o3, o4}, {o5}}

Fig. 2: Example of Data Assemblage

Performance Evaluation

0 25 50 75 100
k

101

102

103

104

R
u

n
ti

m
e

(s
e
c)

TPC-H, UO-UA

0 5 10 15 20
k

101

102

103

104
TPC-H, EO-UA

0 25 50 75 100
k

101

102

103

104
TPC-H, UO-EA

0 5 10 15 20
k

101

102

103

104
TPC-H, EO-EA

0 25 50 75 100
k

0%

50%

100%

R
a
te

0 5 10 15 20
k

0%

50%

100%

0 25 50 75 100
k

0%

50%

100%

0 5 10 15 20
k

0%

50%

100%

Perm-32 Perm-16 Trad IUSV

SC SL UMOS

Fig. 3: Scalability on Number of Data Owners

2.5 3.0 3.5 4.0 4.5
α

101

102

103

104

R
u

n
ti

m
e

(s
e
c)

TPC-H, UO-UA

2.5 3.0 3.5 4.0 4.5
α

101

102

103

104
TPC-H, EO-UA

2.5 3.0 3.5 4.0 4.5
α

101

102

103

104
TPC-H, UO-EA

2.5 3.0 3.5 4.0 4.5
α

101

102

103

104
TPC-H, EO-EA

2.5 3.0 3.5 4.0 4.5
α

0%

50%

100%

R
a
te

2.5 3.0 3.5 4.0 4.5
α

0%

50%

100%

2.5 3.0 3.5 4.0 4.5
α

0%

50%

100%

2.5 3.0 3.5 4.0 4.5
α

0%

50%

100%

Perm-32 Perm-16 Trad IUSV

SC SL UMOS

Fig. 4: Effect of Record Assignment Distribution

