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Motivation and System Model
• Issues of Current Blockchain System:

– Every node keeps a full replication of transaction
history and ledger states.

– Every node needs to validate each transaction in
block.

– High storage (ETH full node: 870GB) and execution
overhead.

• Stateless design:
– Move ledger states and transaction executions off-

chain to a subset of nodes.
– Reduce the on-chain load.

• Challenges:
– Transaction contains arbitrary logic
⇒ Novel proof techniques to ensure integrity of transaction execution

– Transaction introduces arbitrary sized read/write set
⇒ Extra design to support on-chain commitment updates

– Transaction should be processed in parallel
⇒ New method for validating and committing concurrent transactions

• Transaction Processing Workflow:
1 Send TX 2 Verifiable TX execution 3 Broadcast
4 Validate & append to ledger 5 Synchronize
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Fig. 1: System Model

Off-chain Transaction Execution
• Inside TEE:

– Generate the read/write set {r}tx, {w}tx w.r.t. the current state Hold.
– Get the read set Merkle proof πread and verify it w.r.t. {r}tx.
– Compute the TEE proof πTEE w.r.t. {r}tx, {w}tx, Hold.

• Outside TEE:
– Get the write set Merkle proof πwrite.

• Broadcast txsubmit = ⟨txinput, {r}tx, {w}tx, Hold, πTEE, πwrite⟩:
– πTEE ensures the execution integrity and the read integrity.
– {r}tx, {w}tx, Hold, πwrite provide enough information for

on-chain validation and commitment.

On-chain Transaction Commitment
• Challenges:

– How to update the state commitment without access to the full tree?
– How to check conflict among transactions and ensure serializability?

• Our Solution: Keep track of temp state of recent k blocks.
– Tw: a partial Merkle tree w.r.t. the write set in the past k blocks.
–Mi 7→r,Mi 7→w: map between block height to read, write addresses.
–Mr 7→i,Mw 7→i: map between read, write addresses to an ordered list of block heights.

• Procedure:
– Discard TX is older than recent k blocks.
– Validate πTEE, πwrite.
– Check conflict of {r}tx, {w}tx.
◦OCC: Check whether other committed transactions have modified the data that the

current transaction accessed.
◦ SSI: Check write-write conflict and whether there are rw-dependencies both pointing

to and originating from the current transaction.
– Update ledger state commitment over Tw and generate new block.
◦Update Tw: take the Merkle proof πwrite and write set {w}tx to apply the writes from

the transaction.
◦Tidy Tw: remove the write addresses whose age is more than k blocks.

Example of Transaction Commitment

Block Height 100 101 102

TX List {𝑡𝑥1 } {𝑡𝑥2 } {𝑡𝑥3, 𝑡𝑥4 }
𝑴𝒊→𝒓 100: {10} 100: {10}, 101: {10} 101: {10}, 102: {00, 10}

𝑴𝒊→𝒘 100: {01} 100: {01}, 101: {00} 101: {00}, 102: {10, 11}

𝑴𝒓→𝒊 10: {100} 10: {100, 101} 10: {101, 102}, 00: {102}

𝑴𝒘→𝒊 01: {100} 00: {101}, 01: {100} 00: {101}, 10: {102}, 11: {102}
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Fig. 2: Example of Transaction Commitment

Node Synchronization
• Block Observer

– Validate and log blocks created by the block proposers.
– Compress πwrite to reduce network transmission.

• Storage Node
– Execute the similar procedure as on-chain transaction commitment.
– Keep transaction data and state data.
– Maintain full Merkle tree instead of partial tree Tw.

Implementation
• Implement in Rust program language
(LOC: 26,000).

• Two consensus protocols are implemented:
PoW, Raft.

• Source code is available at
https://git.io/slimchain. Storage Merkle Trie Network SGX Enclave
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Fig. 3: System Architecture of SlimChain

Performance Evaluation
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Fig. 4: Consensus Node Storage Size (B/tx) vs. Smart Contract
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Fig. 5: Throughput/Latency vs. Smart Contract (Permissioned)
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Fig. 6: Throughput/Latency vs. Smart Contract (Permissionless)

https://git.io/slimchain

