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Background
• Background: Increasing demand to query blockchain data
• Blockchain Database Solution: Relay on a trusted Service
Provider for query services

Fig. 1: Workflow of Blockchain Database

• Issue: The trusted assumption may not always hold
– Return partial result to save transmission bandwidth
– Return tampered data maliciously

• State-of-the-art: vChain
– Let users be light nodes and outsource queries to full nodes

(Service Provider)
– Employ verifiable computation to return result and crypto-

graphic proof
– System Model
◦Miners construct new block with authenticated data struc-

ture (ADS) embedded in block header
◦ Full nodes compute query results with proof called Verifi-

cation Object (VO)
◦Users verify the results using VO and ADS from block

headers

• – Solution: Extend the block header with an AttDigest which
serves as the ADS
◦Use AttDigest to prove mismatching objects
◦Attributes of object oi → Si; Query q → Sq

◦Si ∩ Sq ̸= ∅: return oi as a result
◦Si∩Sq = ∅: generate a set disjoint proof using AttDigest

Fig. 2: System Model of vChain

Limitations of vChain
• Query processing may require linear scan

– Highly depend on data distribution
• Large public key size

– The pk size of the accumulator used is O(|U |)
– Encoding attributes by 256-bit hash → pk size = 2256

• Limited query type
– Only support AND (∧) and OR (∨) operators
– NOT (¬) operator not supported
– Only support integer and fixed-point numbers

Fig. 3: Statistics of Index Utilization in

vChain

Our Solution: vChain+
• A novel design of ADS to be more practical, efficient, and functional
• – A Sliding Window Accumulator (SWA) index for

efficient and richer query processing
◦Built over data objects in current block and its

previous k − 1 blocks (totally k blocks)
◦ k: sliding window size

– An object registration (ObjReg) index for practical
public key management

SWA-index 
k=3 

Fig. 4: SWA index Overview
• The SWA index and ObjReg index are designed using Merkle Hash Tree and Crypto-
graphic Set Accumulator

Cryptographic Building Blocks
• Merkle Hash Tree: Enable efficient data verification.

– A bottom-up constructed multi-way tree.
– Hash function combining child nodes.
– Root hash is used to authenticate a set of data objects.
– Example
◦Q = [6, 25] → R = {8, 20}, π = {5, 31, h6}

5 8 20 31 35 43 52 59

Fig. 5: Merkle Hash Tree• Cryptographic Set Accumulator:
– Map a set to an element in cyclic multiplicative group in a collision resistant way
– Utility: prove set operations (∩,∪, \)
◦KeyGen(1λ) → pk: generate public key
◦Setup(X, pk) → acc(X): compute accumulative value of X
◦Prove(X1, X2, opt, pk) → {R, πopt}: on input two sets X1 and X2, and an operation
opt ∈ {∩,∪, \}, output R = opt(X1, X2) and a proof πopt

◦Verify(acc(X1), acc(X2), opt, πopt, acc(R), pk) → {0, 1}: on input acc(X1), acc(X2),
opt, πopt, and acc(R), output 1 iff R = opt(X1, X2)

vChain+: Object Registration
• Issue: the set accumulator requires a pk with size of O(|U |2)
• Observation: the SWA index is built over data objects
• Idea: register each object with an ID and store IDs in set accumulator

– ID = counter + + mod MaxId; MaxId: max # objects within 2k − 1 blocks
– ID ∈ [0,MaxId− 1] → |U | = MaxId

• Build an ObjReg index to track the mapping between data objects and their IDs
– A Merkle Hash Tree to retrieve authenticated data objects (as query results) with IDs

Boolean Query
• Use an SWA-Trie for efficient Boolean query processing

–Q = ⟨[ts, te],Υ⟩
– Divided Q into sub-queries with time window size of k
◦Q = [t1, t10], k = 4

◦ q1 = [t1, t4], q2 = [t5, t8], q3 = [t7, t10]

– Process each sub-query using trie-search and verifiable set operations
• Example

– Query processing
◦ q = ⟨[t1, t4], 5e7a ∧ 5e9b⟩
◦ locate T4 in b4 and perform trie-search

on 5e7a and 5e9b

◦R5e7a = {o3, o4}, R5e9b = {o2, o3}
◦Merkle proof π4 = {⟨∗, acc(S1)⟩, ⟨5e⟩,
⟨9a, hchild3⟩, ⟨7a, acc(S4)⟩, ⟨9b, acc(S5)⟩}

◦Prove(R5e7a, R5e9b,∩, pk) → {R, π∩}
◦R = {o3}, V O = {π4, π∩}

– Result verification
◦Re-construct SWA-Trie root using π4
◦Compare withAdsRoot in block header
◦Verify(acc(S4), acc(S5), R,∩, π∩)

Block header of

Fig. 6: Boolean query using SWA-Trie

Extension to Other Queries
• Range query

– SWA-B+-Tree for indexing numerical values for each dimension
– B+-Tree search on each dimension to obtain intermediate result sets
– Verifiable set intersections on intermediate results to get the final results

• Boolean range query
– BooleanQuery(QW ) → ⟨RW , πW⟩
– RangeQuery(QV ) → ⟨RV , πV ⟩
– Prove(RW , RV ,∩, pk) → ⟨R, π∩⟩

Optimization
• Multiple sliding windows

– Build multiple SWA indexes with different k values and choose the best-fit k value
when processing queries

• Optimize query plan
– Find all equivalent plans and pick the one with the smallest cost

• Prune empty set
– Apply early stop to prune unnecessary set operations

Performance Evaluation
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Fig. 7: Boolean Query Performance
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Fig. 8: Range Query Performance


