
vChain: A Blockchain System EnsuringQuery
Integrity

Haixin Wang, Cheng Xu, Ce Zhang, Jianliang Xu
Hong Kong Baptist University

{hxwang, chengxu, cezhang, xujl}@comp.hkbu.edu.hk

ABSTRACT
This demonstration presents vChain, a blockchain system
that ensures query integrity.With the proliferation of blockchain
applications and services, there has been an increasing de-
mand for querying the data stored in a blockchain database.
However, existing solutions either are at the risk of losing
query integrity, or require users to maintain a full copy of
the blockchain database. In comparison, by employing a
novel verifiable query processing framework, vChain en-
ables a lightweight user to authenticate the query results
returned from a potentially untrusted service provider. We
demonstrate its verifiable query operations, usability, and
performance with visualization for better insights. We also
showcase how users can detect falsified results in the case
that the service provider is compromised.
ACM Reference Format:
Haixin Wang, Cheng Xu, Ce Zhang, Jianliang Xu. 2020. vChain:
A Blockchain System Ensuring Query Integrity. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384682

1 INTRODUCTION
Blockchains enable mutually distrusting parties to maintain
a common transaction ledger without a central authority [1,
2, 3]. From the database perspective, a blockchain can be
seen as a database storing a large collection of timestamped
data records. With the wider adoption of blockchains for
data-intensive applications such as finance, healthcare, and
supply chains, there has been an increasing demand from
users to query the data stored in a blockchain database [4,
5]. For example, in the Bitcoin network, users may want to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384682

(Full Node)

.

(Light Node)

.

(Miner) Block Headers
Blo

ck H
ead

ers
& Dat

a

(inc
l. A

DS)

𝑄

⟨𝑅,𝑉𝑂⟩

Service Provider (SP) Query User

Block Header & Data
Block Header

Figure 1: System Model of vChain

find the transactions that satisfy a set of query predicates,
such as “Transaction Fee ≥ $50” and “$0.99M ≤ Total Output
≤ $1.01M”.
While SQL-like search engines have been developed for

blockchain databases, the existing solutions rely on a central
party who can faithfully execute user queries based on a
materialized view of the blockchain database [6, 7]. Unfortu-
nately, such solutions are at the risk of losing query integrity
in a distrustful environment where the central party can be
malicious or compromised. Alternatively, users can maintain
a full copy of the entire blockchain database and query the
data locally. However, that is impractical to ordinary users as
it requires considerable storage, computing, and bandwidth
resources.
To tackle the shortcomings of the existing solutions, we

develop vChain, a blockchain system that ensures query
integrity by employing a novel verifiable query framework
proposed in our prior work [1]. As shown in Fig. 1, in vChain,
a query user is only required to keep track of the block head-
ers as a light node; the queries are instead outsourced to
a full node in the blockchain network, which serves as a
service provider (SP). Although the SP might be untrusted,
the query user is able to authenticate the query results by
checking an additional verification object (VO). The VO is
computed by the SP with the help of a carefully designed
authenticated data structure (ADS) embedded in the block
headers. To further improve the performance, several index-
based batch verification techniques are also developed. To
the best of our knowledge, vChain is the first blockchain
system that supports query processing with integrity assur-
ance. It is our purpose in this demonstration to show the
usability and performance of the vChain system. In particu-
lar, we build a visualization module for attendees to interact
with vChain and gain first-hand insights of integrity-assured
query processing.
The rest of the demonstration proposal is organized as

https://doi.org/10.1145/3318464.3384682
https://doi.org/10.1145/3318464.3384682

follows. Section 2 elaborates the techniques that enable veri-
fiable queries over blockchain databases. Section 3 overviews
the vChain prototype system. The interface of vChain and
the demonstration details are presented in Section 4.

2 TECHNICAL BACKGROUND
We give a brief introduction to the building blocks of vChain.
A tuple ⟨𝑡𝑖 ,𝑉𝑖 ,𝑊𝑖⟩ denotes an object stored in the blockchain
database, where 𝑡𝑖 is the timestamp of the object,𝑉𝑖 is a multi-
dimensional vector that represents one or more numerical
attributes, and𝑊𝑖 is a set-valued attribute. The Boolean range
query we consider is in the form of 𝑞 = ⟨[𝑡𝑠 , 𝑡𝑒], [𝛼, 𝛽], Υ⟩,
where [𝑡𝑠 , 𝑡𝑒] is a temporal range selection predicate for the
time period, [𝛼, 𝛽] is a multi-dimensional range selection
predicate for the numerical attributes, and Υ is a monotone
Boolean function on the set-valued attribute. To answer 𝑞,
the SP returns all objects such that {𝑜𝑖 = ⟨𝑡𝑖 ,𝑉𝑖 ,𝑊𝑖⟩ | 𝑡𝑖 ∈
[𝑡𝑠 , 𝑡𝑒] ∧𝑉𝑖 ∈ [𝛼, 𝛽] ∧ Υ(𝑊𝑖) = 1}.

2.1 ADS Generation and Query Processing
As mentioned earlier, vChain augments each block with an
additional ADS. The design of the ADS is a key issue. A naive
approach is to use the Merkle Hash Tree (MHT) [8] as the
ADS and apply the conventional MHT-based authentication
methods. However, this approach has three major drawbacks.
First, an MHT supports only the query keys on which the
Merkle tree is built. To support queries involving an arbitrary
set of attributes, an exponential number of MHTs need to be
constructed for each block. Second, MHTs do not work with
set-valued attributes. Third, MHTs of different blocks cannot
be aggregated efficiently, making it incapable of leveraging
inter-block optimization techniques.

To overcome the aforementioned drawbacks, we proposed
a novel ADS in our prior work [1], based on the crypto-
graphic multiset accumulator [9]. The multiset accumulator
supports the following operations:

• Given a multiset 𝑋 , it can compute an accumulative
value 𝑎𝑐𝑐 (𝑋), which is a collision-resistant digest of
the multiset.

• Given two multisets 𝑋1, 𝑋2 where 𝑋1 ∩ 𝑋2 = ∅, a
disjoint proof 𝜋 can be computed.

• Given two accumulative values 𝑎𝑐𝑐 (𝑋1), 𝑎𝑐𝑐 (𝑋2), and
the disjoint proof 𝜋 , one can verify that 𝑋1 ∩ 𝑋2 = ∅.

• Given two accumulative values 𝑎𝑐𝑐 (𝑋1) and 𝑎𝑐𝑐 (𝑋2),
the accumulative value of the multiset 𝑋1 + 𝑋2 can be
computed as 𝑎𝑐𝑐 (𝑋1 + 𝑋2) = 𝑎𝑐𝑐 (𝑋1) + 𝑎𝑐𝑐 (𝑋2).

To compute the digest of an object 𝑜𝑖 = ⟨𝑡𝑖 ,𝑉𝑖 ,𝑊𝑖⟩, we first
transform the numerical vector 𝑉𝑖 into a set of binary prefix
attributes. For example, a value 4 is transformed as trans(4) =
{1∗, 10∗, 100}, where ∗ denotes the wildcard matching oper-
ator. Then, the digest is computed as the accumulative value

PrevHash IntraIndex InterIndex

blocki

𝑛1
𝑛2

𝑜1 𝑜2

𝑛3
𝑜3 𝑜4

⟨𝑜2, 𝑎𝑐𝑐 (𝑊2 + trans(𝑉2))⟩

𝑗1
𝑗2
· · ·

· · ·
· · ·

· · · · · ·

Figure 2: Intra-block and Inter-block Indexes

of both the set-valued attribute𝑊𝑖 and the transformed nu-
merical vector trans(𝑉𝑖), i.e., Digest𝑖 = 𝑎𝑐𝑐 (𝑊𝑖 + trans(𝑉𝑖)).
This digest is used to serve as the ADS.

Given a data object and a query condition, there are only
two possible outcomes: match or mismatch. The soundness
of the first case can be easily verified by returning the ob-
ject directly, since its integrity can be authenticated by its
hash stored in the block header. For the more challeng-
ing second case, the object’s digest is used. Observe that
a Boolean function expressed in conjunctive normal form
can be viewed as a list of sets. For example, a query condi-
tion “Sedan” ∧ (“Benz” ∨ “BMW”) is equivalent to two sets:
{“Sedan”} and {“Benz”, “BMW”}. Consider a mismatching
object {“Van”, “Benz”}. It is easy to observe that there exists
an equivalence set (i.e., {“Sedan”}) such that its intersection
with the object’s attribute is empty. As such, we can generate
a disjoint proof 𝜋 of {“Sedan”} and {“Van”, “Benz”} to attest
the mismatch without returning the original object. As for
range query condition, it is first transformed into an equiva-
lent Boolean function over its binary prefixes. For example,
a query range [0, 6] is equivalent to the Boolean function
0 ∗ ∨ 10 ∗ ∨ 110. After transformation, a range query can be
processed in the same manner as a Boolean query. Interested
readers are referred to [1] for more details.

2.2 Batch Verification
For each query, there can bemany objects lying in the query’s
time period [𝑡𝑠 , 𝑡𝑒]. Although one can process those objects
one by one, a better approach is to process them in batch
based on the query conditions. To this end, three batch veri-
fication techniques are developed in vChain.
Intra-block Index. The idea is based on the following

observation. If two objects share some common attribute
value, they may mismatch a query due to the same query
condition. As such, to reduce the proving and verification
overheads, vChain builds an intra-block index that aggre-
gates the objects within a block. The index is an MHT-like
binary tree built in a bottom-up fashion. Specifically, for each
object, a leaf node is created. Then, it recursively merges two
most similar tree nodes until the root is obtained. For each
non-leaf node 𝑛, an attribute set is computed as the union
of those of the child nodes, i.e., 𝑊𝑛 = 𝑊𝑛𝑙 ∪𝑊𝑛𝑟 , where

Storage Network Consensus TX Engine

Exonum Blockchain Framework

Block Generation Query Processing Result Verification

ADS Module VO Module

Crypto Engine Visualization

vChain

Miner UserService Provider
𝑄

⟨𝑅,𝑉𝑂⟩

Figure 3: System Architecture of vChain

𝑛𝑙 and 𝑛𝑟 be the left and right children of node 𝑛, respec-
tively. We also compute its digest as acc(𝑊𝑛) and its hash
value as hash(hash(ℎ𝑎𝑠ℎ𝑛𝑙 |ℎ𝑎𝑠ℎ𝑛𝑟) |Digest𝑛), where hash(·)
is a cryptographic hash function and ‘|’ is the string con-
catenation operator. With the intra-block index, a tree node
and its corresponding digest can be used to prove that all
the underlying objects mismatch the same query condition,
thereby improving the query performance.

Inter-block Index. The inter-block index works in a fash-
ion similar to the intra-block index. The difference is that it
is used to aggregate the objects across multiple blocks. It is
based on the skip list, where each jump consists of a hash
of the skipped blocks, an attribute set that aggregates all
objects in the jump, and a corresponding accumulative value.
The inter-block index can help to boost the query perfor-
mance when all objects in a jump mismatch the same query
condition. The intra- and inter-block indexes are illustrated
in Fig. 2.

Online Batch Verification. The indexes attempt to clus-
ter the objects of the same block or across blocks in a way
to maximize the proving efficiency of mismatching objects.
Nevertheless, some objects indexed in different blocks or
even different subtrees of the same block may also share the
same reason of mismatching. Thanks to the addictive homo-
morphic property of the multiset accumulator [9], vChain
further aggregates such objects online for greater efficiency.

3 SYSTEM OVERVIEW
We implement the vChain prototype system based on the
open-source Exonum framework (version 0.13-rc2)1 using
Rust programming language. Figure 3 shows the system
architecture, which consists of three layers.
The bottom layer is the Exonum Blockchain framework.

It offers the essential functionalities of data storage, P2P
networking, blockchain consensus protocols, and blockchain
transaction executions.
The middle layer of the vChain system consists of sev-

eral low-level modules. The cryptographic engine provides
the functions of computing cryptographic hash function, set

1https://exonum.com/

accumulative values, and set disjoint proofs. The vChain
system uses 256-bit BLAKE2b as the hash function. For
set accumulative values and their corresponding set dis-
joint proofs, vChain uses pairing over the BLS12-381 curve,
which is implemented in the ZEXE library [10]. Further-
more, vChain uses Rayon2 for data parallelism to accelerate
the computation. The ADS module and the VO module are
responsible for computing the ADS and VO, respectively, as
introduced in Section 2. Finally, the visualization module is
implemented to visualize the data structures of our proposed
ADS and VO and provide a better demonstration experience.

The top layer of the vChain system offers the core func-
tions of the verifiable Boolean range queries, including: (i) ADS
generation for the miners, (ii) query processing for the SP,
and (iii) result verification for the users.

4 DEMONSTRATION DETAILS
In our demonstration, we showcase how the vChain system
can support verifiable query processing in the following
scenarios.

Scenario 1: Walk-Through of Query Life Cycle. A
lightweight user can issue a Boolean range query on Panel
1 of Fig. 4 by entering the time window (block IDs), the
numerical range, and the Boolean function. After that, the
query results and VO will be shown on Panel 2 and Panel
3, respectively. A○ mark on the result panel indicates that
the result verification succeeds while a○ mark reveals the
unsoundness or incompleteness of the results. The verifica-
tion time and VO size are displayed on Panel 2 to show the
performance. The user can further click the VO on Panel 3
to view the detailed information of the corresponding VO on
Panel 4, which visualizes the VO structure with the returned
objects.

Scenario 2: Simulation of Attack Detection. For bet-
ter insights, we demonstrate how a user can detect attacks.
Given a query, attacks can be divided into two categories:
(i) Unsound: Some object in the results mismatches the query
condition or has been tampered with. (ii) Incomplete: Some
object that matches the query condition is missing from the
results. We can simulate such attacks by clicking the “Attack”
button in the SP dashboard (Fig. 5). For example, assume the
correct results for a query are {𝑜50, 𝑜51}. A compromised SP
may conduct attacks by (i) tampering with the content of the
object 𝑜50, and (ii) not returning the object 𝑜51 but generating
a set disjoint proof for 𝑜51. Once receiving the results, the
user will get the following error messages as Fig. 6 shows:
1 the returned object 𝑜50 does not match the hash digest,
which invalidates the soundness; 2 the set disjoint proof
for 𝑁51 is incorrect, indicating some object is missing from
the results.

2https://github.com/rayon-rs/rayon

https://exonum.com/
https://github.com/rayon-rs/rayon

Panel 1 Panel 2

Panel 3 Panel 4

Figure 4: User Dashboard Figure 5: SP Dashboard

Figure 6: Attack Detection Figure 7: SP ADS Inspection

Scenario 3: UnderstandingBatchVerificationPerfor-
mance. We also demonstrate the effectiveness of the index-
based batch verification techniques. To do so, we can instruct
the SP to choose different system configurations (intra-block
index, inter-block index, or both) and compare the query
performance in terms of query processing time, VO size, and
result verification time. Statistics such as total query count
and average query processing time will be shown in the SP
dashboard (Fig. 5). To inspect the detailed information of
a completed query, we can click the status of the query to
show its results together with the visualized ADS and VO
structures (see Fig. 7).

ACKNOWLEDGMENTS
This work is supported by Research Grants Council of Hong
Kong under GRF Projects 12201018 & 12200819 and CRF
Project C1008-16G.

REFERENCES
[1] C. Xu, C. Zhang, and J. Xu. 2019. vChain: Enabling veri-

fiable boolean range queries over blockchain databases.
In Proc. SIGMOD, 141–158.

[2] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dit-
trich. 2019. Blurring the lines between blockchains
and database systems: the case of hyperledger fabric.
In Proc. SIGMOD, 105–122.

[3] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q.
Lin, and B. C. Ooi. 2019. Towards scaling blockchain
systems via sharding. In Proc. SIGMOD, 123–140.

[4] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi. 2019.
GEM2-Tree: A gas-efficient structure for authenticated
range queries in blockchain. In Proc. ICDE, 842–853.

[5] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi,
and M. Zhang. 2019. Fine-grained, secure and efficient
data provenance on blockchain systems. Proc. VLDB
Endow., 12, 9, 975–988.

[6] Blockchair. 2018. A blockchain search and analytics
engine for Bitcoin, Bitcoin Cash and Ethereum. (2018).
https://blockchair.com/.

[7] BigchainDBGmbH. 2018. BigChainDB 2.0: The blockchain
database. (2018). https : / / www . bigchaindb . com /
whitepaper/bigchaindb-whitepaper.pdf.

[8] R. C. Merkle. 1989. A certified digital signature. In
Advances in Cryptology — CRYPTO, 218–238.

[9] C. Xu, Q. Chen, H. Hu, J. Xu, and X. Hei. 2018. Au-
thenticating aggregate queries over set-valued data
with confidentiality. IEEE Trans. Knowl. Data Eng., 30,
4, 630–644.

[10] S. Bowe, A. Chiesa,M. Green, I. Miers, P.Mishra, andH.
Wu. 2018. Zexe: Enabling decentralized private com-
putation. Cryptology ePrint Archive, Report 2018/962.
(2018).

https://blockchair.com/
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf

	Abstract
	1 Introduction
	2 Technical Background
	2.1 ADS Generation and Query Processing
	2.2 Batch Verification

	3 System Overview
	4 Demonstration Details

