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ABSTRACT
In many applications, an organization may want to acquire data

from many data owners. Data marketplaces allow data owners to

produce data assemblage needed by data buyers through coalition.

To encourage coalitions to produce data, it is critical to allocate

revenue to data owners in a fair manner according to their contri-

butions. Although in literature Shapley fairness and alternatives

have been well explored to facilitate revenue allocation in data

assemblage, computing exact Shapley value for many data owners

and large assembled data sets through coalition remains challeng-

ing due to the combinatoric nature of Shapley value. In this paper,

we explore the decomposability of utility in data assemblage by

formulating the independent utility assumption. We argue that

independent utility enjoys many applications. Moreover, we iden-

tify interesting properties of independent utility and develop fast

computation techniques for exact Shapley value under independent

utility. Our experimental results on a series of benchmark data sets

show that our new approach not only guarantees the exactness of

Shapley value, but also achieves faster computation by orders of

magnitudes.
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1 INTRODUCTION
The thriving success of data science and machine learning appli-

cations heavily relies on the availability of huge amounts of data.

In many applications, an organization may want to empower its

business using data but may not have all the necessary data [1, 19].

At the same time, while organizations can use their own data to

strengthen their businesses individually, their data, if being used

properly, can help many others, achieve much more social good
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and bring in dramatic extra value beyond their traditional busi-

ness. To facilitate demands and supplies of data meeting each other,

various facilities and mechanisms are constructed. For example,

in data marketplaces, organizations and people can buy and sell

data [12, 31, 34]. The size of data marketplaces over the world has

grown dramatically since the last decade, from 7.6 billion US dollars

in 2011 to 64 billion US dollars in 2021 and 103 billion US dollars

projected in 2027
1
.

The data demand from a buyer may be complicated and thus can-

not be met solely by one data owner. Such data may have to come

from many different data owners. To meet the complicated demand,

data from multiple owners has to be integrated and assembled. To

encourage data owners to produce valuable data for many appli-

cations through coalition, it is critical to allocate revenue to data

owners in a fair manner according to their contributions. However,

fair revenue allocation in data assemblage is far from trivial. The cel-

ebrated Shapley fairness [33] is the most fundamental and popular

fairness principle used in marketplaces. In a coalition, the Shapley

value of a participant is essentially the expectation of marginal

contribution made by the participant in all possible coalitions with

various subsets of other participants. Shapley value enjoys a series

of desirable properties, including efficiency in revenue allocation,

symmetry, additivity, and dummy player.

Due to the combinatoric nature of Shapley value, computing the

exact Shapley value is often very costly and in general is exponen-

tial with respect to the number of participants in coalition [13, 15].

Therefore, approximation approaches are developed. In those ap-

proximation approaches, the estimation error can be bounded by,

for example𝑂 (
√︃

𝑟
𝑚 ) [21], where 𝑟 is the range of marginal contribu-

tions and𝑚 is the sample size. While mathematically the estimation

error boundmay look satisfying, in practice the approximation qual-

ity of Shapley value may be much less impressive. Consider the

scenarios of data acquisition through crowdsourcing, where there

may easily be tens of thousands of data owners contributing their

data. Due to the diversity of data contributors, the contributions

from different data owners may also vary dramatically and often

demonstrate a long tail distribution. Therefore, the range of mar-

ginal contributions is significant, say easily much greater than 1%

of the total revenue of the coalition. Even if the estimation error can

be bounded to a small percentage, say 0.1%, of the whole revenue

to be allocated, the absolute error of the estimated Shapley values

1
https://www.statista.com/statistics/254266/global-big-data-market-forecast/,

accessed on July 1, 2022.
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of those participants not in the head may easily larger than their

true Shapley values, as demonstrated by our experiments, too. In

such situations, exact Shapley values are highly desirable.

Moreover, even estimating Shapely value may still be time con-

suming. When there are many data owners, a large number of

samples are needed to accomplish a reasonable estimation. In gen-

eral, in order to achieve an error bound 𝜖 (in percentage of the total

revenue to be allocated) with probability at least 1 − 𝛼 , that is, to

ensure 𝑃 (∥�𝜓 (𝑢) −𝜓 (𝑢)∥ ≤ 𝜖) ≥ (1−𝛼), we need at least𝑂 (
𝑍 2

𝛼/2
𝜎2

𝜖2
)

samples, where𝜓 (𝑢) and�𝜓 (𝑢) are the Shapley value and the estima-

tion, respectively, 𝑍𝛼/2
is the value such that 𝑃 (𝑍 ≥ 𝑍𝛼/2

) = 𝛼/2,

𝜎2
is the sample variance, and 𝑍 ∼ 𝑁 (0, 1) [3]. As shown in our

experiments, the Monte Carlo simulation costs dramatic time when

there are many data owners in assemblage of large data sets.

Most of the existing studies in Shapley value computation for

data marketplaces assume general utility functions, such as accu-

racy of machine learningmodels and database query results [13–15].

We observe that, due to the fine granularity and powerful compos-

ability of data, in many applications, utility in data assemblage has

some unique and useful properties. First, as pointed out by estab-

lished research in data economics [29, 32], the basic units in data

are often well defined and fixed. For example, when an organization

wants to acquire data for marketing, each customer record is a unit

and the utility of the record often can be evaluated independently

in business. This is very different from the conventional physical

products where the utility of a part by itself is almost useless. Sec-

ond, data records often have strong composability. For example, in

many situations, the utility of a collection of customer records for

marketing can be estimated well by the sum of the utility of the

individual records [35]. The decomposability not only is intuitive,

but also facilitates business operations foundamentally.

Can we explore the decomposability of utility in data assemblage

and achieve exact and fast Shapley value computation? This insight

motivates our study here. Based on the above analysis, we develop a

simple and intuitive independent utility assumption – the utility of a

unit in the result of coalition can be assessed independently and the

total utility of the coalition is the sum of the utility of all units pro-

duced in the coalition. This independent utility assumption holds

in many applications where data is assembled by coalition among

multiple data owners and provided to data buyers for consumption,

such as many demands and supplies of survey data, micro data, and

review data in data marketplaces. For example, data marketplaces

like Windows Azure Marketplace
2
support pricing an API call by

summing up the cost of each tuple returned by the call. In data

marketplace Datarade
3
, there are multiple data vendors like Traject

Data
4
and Mapping Resources

5
that charge per record.

To the best of our knowledge, we are the first to explore indepen-

dent utility and utility decomposability in general for data coalition.

Under independent utility how can we compute Shapley value fast?

There are a series of challenges. Straightforwardly applying the

2
https://azuremarketplace.microsoft.com/, accessed on May 3, 2022.

3
https://datarade.ai/, accessed on May 3, 2022.

4
https://datarade.ai/data-products/local-business-reviews-traject-data, accessed on

May 3, 2022.

5
https://datarade.ai/data-products/united-states-individual-and-household-

consumer-list-database-mapping-resources, accessed on May 3, 2022.

independent utility assumption to the existing methods may not

reduce the computation cost. Existing methods compute the exact

Shapley value of a participant by considering the marginal contri-

butions made by the participant in all possible coalitions with other

participants. For every possible coalition, it is needed to assemble

data from all participants in a coalition and then calculate the total

utility. The existing approximation methods may rely on Monte

Carlo simulation and demand a large number of samples to reduce

the error to a sufficient level. The independent utility assumption

cannot help the existing methods to reduce the number of coali-

tions, the workload of assembling in each coalition, or the required

sample size. Moreover, when we explore the decomposability of

Shapley value to reduce the cost in an exponential number of coali-

tions and in data assemblage, one data record may still be produced

by multiple data owners in different ways. The combinatoric nature

of Shapley value remains at the unit level.

To tackle the challenges, we systematically analyze the possible

situations where a record in the coalition results is produced and

develop corresponding methods, some with closed form and some

with fast algorithms. Importantly, we investigate the interesting

tradeoffs in computation cost between the number of contributing

data owners and the number of possible ways a record is produced.

Our overall approach smartly chooses the faster way to derive exact

Shapley value according to how a result record is produced.

To evaluate the effectiveness and efficiency of our approach, we

conduct extensive experiments on a series of benchmark data sets

and compare with the state-of-the-art exact Shapley value compu-

tation baseline and Monte Carlo based baselines. The results clearly

show that our new approach not only can always guarantee the

exactness of Shapley value but also can achieve faster computation

by orders of magnitudes.

The rest of the paper is organized as follows. We review the

related work in Section 2. Then, we formulate the independent

utility assumption in Section 3. We explore the decomposability of

Shapley value computation under independent utility and tackle

two basic cases in Section 4. We tackle the general situation and

complete our method in Section 5. We report the experimental

results in Section 6 and conclude the paper in Section 7.

2 RELATEDWORK
Due to the strong rise of data science, many data marketplaces [12,

31] are constructed, where data demands and supplies can meet.

Some examples of data marketplaces include Dawex
6
, Snowflake

data marketplace
7
, and BDEX

8
. Muschalle et al. [26] identify seven

categories of participants in data marketplaces. In addition to data

marketplaces, model marketplaces, where the acquisition of data

is mainly to train machine learning models, is also an emerging

research topic [5, 19]. While many common principles are appli-

cable to both data marketplaces and model marketplaces [29], a

critical difference is on the utility measure. In model marketplaces,

utility is often measured using model performance, such as accu-

racy and precision. General data marketplaces do not hold such an

assumption about the utility measure. For data pricing for machine

6
https://www.dawex.com/en/, accessed on May 9, 2021.

7
https://www.snowflake.com/data-marketplace/, accessed on May 9, 2021.

8
https://www.bdex.com, accessed on May 9, 2021.

https://azuremarketplace.microsoft.com/
https://datarade.ai/
https://datarade.ai/data-products/local-business-reviews-traject-data
https://datarade.ai/data-products/united-states-individual-and-household-consumer-list-database-mapping-resources
https://datarade.ai/data-products/united-states-individual-and-household-consumer-list-database-mapping-resources
https://www.dawex.com/en/
https://www.snowflake.com/data-marketplace/
https://www.bdex.com


learning tasks, Cong et al. [6] provide a survey. In this paper, we

focus on data marketplaces.

In data and model marketplaces, a critical issue is fair revenue al-

location. Shapley [33] establishes the Shapley fairness, which is the

most fundamental and popular fairness principle used in market-

places (see Section 3.1 for a brief review). Computing Shapley value

is often costly due to its combinatoric nature. Some alternatives

are, for example, leave-one-out [7], which measures the value of a

data point by the difference between the utility of the whole data

set and the set leaving the data point out. It does not satisfy all the

four desirable properties of Shapley fairness and may not properly

evaluate the value of a data point. For example, in a data set where

there are two identical data points 𝑢 and 𝑣 , leave-one-out assigns

them value 0 since leaving one out does not affect the utility of the

rest of the data set [36].

To tackle the challenges in computing Shapley value, Maleki

et al. [21] propose the Monte Carlo approximation method. Assum-

ing more properties of utility functions in marketplaces facilitates

further approximations. For example, Kleinberg et al. [16] consider

the utility of a coalition as the number of unique items in the assem-

bled data sets of the coalition and thus the Shapley value of a data

owner is the total “novelty” of the owner’s data items. The novelty

of an item is inversely proportional to the number of data owners

having the item. Ghorbani and Zou [13] assume that, in supervised

learning, the performance change of a model may be ignorable if

only one or very few training data points are added. They develop

the truncated-based and gradient-based approximation methods for

Shapley values of individual data points. Jia et al. [15] approximate

Shapley value using group testing. Jia et al. [14] exploit locality of

utility in some models, such as 𝑘-nearest neighbor classifiers, and

develop polynomial time complexity methods.

Our study is different from the previous methods in two aspects.

First, in this paper, we consider the situations where the utility of

a record in the coalition result set is independent from the other

records. Independent utility is a fundamental and natural property

that rises in many applications. To the best of our knowledge, the

independent utility and decomposability of utility in coalition are

not considered by any previous studies. Second, we systematically

explore the opportunity of efficient computation of exact Shapley

value enabled by independent utility. Most of the previous methods

on fast computation of Shapley value have to adopt approximation.

Our study is also remotely related to pricing database queries [4,

8, 9, 17, 18, 25, 35]. A critical difference is that pricing database

queries tries to set a price for a query extracting information from a

database, while our study computes the Shapley value of every data

owner who contributes to a coalition. In pricing database queries,

there is only one data owner but there are many queries that can

be regarded as data buyers. In our study, we consider only one data

buyer but many data owners. Therefore, those methods for pricing

database queries cannot be used to tackle the problem studied in this

paper. Although Koutris et al. [18] consider revenue sharing among

possibly multiple data owners in pricing database queries, their

revenue allocation method does not satisfy the Shapley fairness

requirement.

Finally, our study is also related to quantifying the contribution

of database tuples to query answers [10, 20, 23, 24, 30]. The major

difference is that those methods mainly focus on numerical queries

that map databases to numbers, like Boolean queries, but our study

puts no constraint on query types and can be applied to any queries

in general.

3 PROBLEM FORMULATION
In this paper, we consider data assemblage from a set of data
owners U = {𝑢1, . . . , 𝑢𝑛}. Each data owner 𝑢𝑖 (1 ≤ 𝑖 ≤ 𝑛) owns a
data set. For the sake of clarity, we overload the symbol𝑢𝑖 to denote

the data set owned by owner 𝑢𝑖 . A buyer wants to get as much

data as possible from the data owners that meets the buyer’s need.

The data owners also want to contribute their data to produce as

many unique data records
9
as possible meeting the buyer’s need. A

coalition plan, denoted by P, that is, how the data sets from data

owners are used to assemble tuples in the outcome of coalition, is

specified and managed by a broker or coordinator. The data set 𝐷

produced by coalition is called the coalition (data) set. We assume

that there are no duplicate tuples in 𝐷 . That is, although multiple

combinations of data owners may produce the same tuple in the

coalition set, those duplicates are combined into one. The data
assemblage task is to assemble the data for the buyer by coalition

among the data owners.

Example 1 (Data assemblage). Suppose a data buyer wants to

collect data about potential customers and companies in schema

𝑅 = (customer-pseudo-identifier, company). A social media 𝑢1

as a data owner may provide data in schema 𝑅1 = (customer-

pseudo-identifier, product), which records the potential interest on

products by customers. Another social media 𝑢2 as a data owner

may provide data in schema 𝑅2 = (customer-pseudo-identifier,

brand), which records the customers’ interest on brands. A data

integration company 𝑢3 provides the mapping among products,

brands, and companies in schema 𝑅3 = (product, brand, company).
Suppose the tables of the data owners are, respectively, 𝑢1 =

{(#10093, 911 Targa)}, 𝑢2 = {(#10093, Audi)}, and 𝑢3 = {(A6,
Audi, Volkswagen), . . ., (911 Targa, Porsche, Volkswagen)}. Here,
we overload the symbols 𝑢1, 𝑢2, and 𝑢3 to denote the data sets of

the three owners, respectively.

To produce the data in the coalition set, a broker/coordinator

specifies the coalition plan

P =Proj
customer-pseudo-identifier, company

(𝑢1 ⊲⊳ 𝑢3)
∪ Proj

customer-pseudo-identifier, company
(𝑢2 ⊲⊳ 𝑢3)

where Proj and ⊲⊳ are the projection and natural join operations on

relational data, respectively
10
.

The coalition set𝐷 contains only one tuple (#10093, Volkswagen),
which is generated by the coalition between 𝑢1 and 𝑢3, as well as

that between 𝑢2 and 𝑢3. Indeed, 𝑢1 and 𝑢3 together produce an

instance and 𝑢2 and 𝑢3 together produce another instance, but the

coalition set merges the two duplicates into one. □

3.1 Shapley Fairness and Shapley Value
If a buyer pays a reward 𝑣 for the data produced by the coalition

among the data owners, how can we distribute the reward as the

revenue
11

to the owners in a fair way to properly recognize their

9
In this paper, we use the terms “record” and “tuple” interchangeably.

10
We reserve symbol Π for the set of all permutations.

11
In this paper, the terms “reward” and “revenue” are used interchangeably.



contributions? Shapley [33] establishes the Shapley fairness in
recognizing the individual contribution in a coalition. Let 𝑣𝑖 (1 ≤
𝑖 ≤ 𝑛) be the payment to data owner𝑢𝑖 . There are four fundamental

requirements to achieve a fair allocation.

• Balance. The payment of 𝑣 is fully distributed to all data

owners, that is

∑𝑛
𝑖=1

𝑣𝑖 = 𝑣 . This property is also known as

efficiency of revenue allocation.

• Symmetry. The same contributions lead to the same payment.

Given two data owners 𝑢𝑖 and 𝑢 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛), if for every
subset of data owners S ⊂ U such that 𝑢𝑖 ∉ S and 𝑢 𝑗 ∉ S,
the utility of S ∪ {𝑢𝑖 } and that of S ∪ {𝑢 𝑗 } are the same, then

𝑣𝑖 = 𝑣 𝑗 .

• Zero element. No contribution, no payment. For data owner

𝑢𝑖 , if for every subset of data owners S ⊂ U such that 𝑢𝑖 ∉ S,
the utility of S ∪ {𝑢𝑖 } and that of S are identical, then 𝑣𝑖 = 0.

This property is also known as null player.

• Additivity. If the coalition can be used for two tasks and

thus two payments 𝑣 and 𝑣 ′ are obtained, then the payment

to complete both tasks is 𝑣 + 𝑣 ′. This property is also called

the additivity.

In the above well celebrated Shapley fairness, the Shapley value
is the unique allocation of payment that satisfies all the require-

ments. For any data owner 𝑢 ∈ U, the Shapley value of 𝑢 is

𝜓 (𝑢) = 1

∥U∥
∑︁

S⊆U\{𝑢 }

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (S ∪ {𝑢}) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (S)(𝑛−1

∥S ∥
) (1)

where 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (·) is a utility function andU is the complete set of

data owners. For the sake of simplicity, we overload the function

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (·) so that it can take either a set of data owners or a set of

data records owned by multiple data owners as input, and returns

the utility of the coalition among all the data owners and the utility

of the coalition using all the data, respectively.

Equivalently, Equation 1 can also be rewritten as

𝜓 (𝑢) = 1

∥U∥!

∑︁
𝜋 ∈Π (U)

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑃𝜋𝑢 ∪ {𝑢}) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑃𝜋𝑢 )) (2)

where Π(U) is the set of all possible permutations of all data own-

ers, 𝜋 is a permutation, and 𝑃𝜋𝑢 is the set of data owners preceding

𝑢 in 𝜋 .

Computing Shapley value using Equations 1 and 2 is often very

costly and cannot scale up to a large set of data owners, due to the

combinatorial nature of the problem.

3.2 Independent Utility
In the context of acquiring records in a database, the basic units

are often records. As illustrated in Section 1, in many applications,

it is natural and reasonable to assume that the utility of a set of

tuples is the sum of the utility of individual tuples in the set, and

the utility of tuples is independent from each other. We formalize

the notion of independent utility.

Assumption 1 (Independent Utility). The independent util-
ity assumption holds on a data set 𝐷 = {𝑡1, . . . , 𝑡𝑙 } if the utility of
the data set 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝐷) = ∑𝑙

𝑖=1
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡𝑖 ) and for any 1 ≤ 𝑖, 𝑗 ≤ 𝑙 ,

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡𝑖 ) and𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡 𝑗 ) are non-negative and independent from
each other.

In this paper, for the ease of presentation, most of the time we

assume each tuple has the same utility 1. However, our discussion

can be straightforwardly extended to entertain the scenarios where

different tuples may carry different utility values.

Under the independent utility assumption, the Shapley value of

a data owner with respect to a coalition set can be decomposed

into the Shapley value of the data owner with respect to every

individual tuple in the coalition set.

Theorem 1 (Independent Shapley Value). Let 𝐷 = {𝑡1, . . . , 𝑡𝑙 }
be a coalition set produced by a coalition by data owners U =

{𝑢1, . . . , 𝑢𝑛}. Under the independent utility assumption, for every data
owner𝑢𝑖 (1 ≤ 𝑖 ≤ 𝑛), the Shapley value of𝑢𝑖 is𝜓 (𝑢𝑖 ) =

∑𝑙
𝑗=1

𝜓𝑡 𝑗 (𝑢𝑖 ),
where𝜓𝑡 𝑗 (𝑢𝑖 ) is the Shapley value of𝑢𝑖 in producing tuple 𝑡 𝑗 by coali-
tion.

Proof. Due to the independent utility assumption, for any sub-

set of tuples 𝐷 ′ ⊆ 𝐷 , 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝐷 ′) = ∑
𝑡 ∈𝐷′ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡). According

to Equation 2,

𝜓 (𝑢𝑖 ) =
1

𝑛!

∑︁
𝜋 ∈Π (U)

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑃𝜋𝑢𝑖 ∪ {𝑢𝑖 }) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑃𝜋𝑢𝑖 ))

=
1

𝑛!

∑︁
𝜋 ∈Π (U)

𝑙∑︁
𝑗=1

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡 𝑗 ) · 𝐼 (𝑡 𝑗 ∈ 𝑃𝜋𝑢𝑖 ∪ {𝑢𝑖 })

−𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡 𝑗 ) · 𝐼 (𝑡 𝑗 ∈ 𝑃𝜋𝑢𝑖 ))

=

𝑙∑︁
𝑗=1

( 1

𝑛!

∑︁
𝜋 ∈Π (U)

[𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡 𝑗 ) · 𝐼 (𝑡 𝑗 ∈ 𝑃𝜋𝑢𝑖 ∪ {𝑢𝑖 })

−𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡 𝑗 ) · 𝐼 (𝑡 𝑗 ∈ 𝑃𝜋𝑢𝑖 )])

=

𝑙∑︁
𝑗=1

𝜓𝑡 𝑗 (𝑢𝑖 )

where 𝐼 (·) is the indicator function, and 𝑡 𝑗 ∈ S is overloaded to

denote that tuple 𝑡 𝑗 can be produced by a coalition among the data

owners in subset S ⊆ U. □

Theorem 1 indicates that, for each data owner, the Shapley value

with respect to individual data tuples are also independent from

those of other data tuples that may be produced by coalition. This

nice property of decomposability enables new opportunities to

calculate Shapley value efficiently in data assemblage.

For a set of data ownersS who try to produce a tuple 𝑡 ∈ 𝐷 in the

coalition set through coalition, we write𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S) to represent
the utility with respect to 𝑡 . When S can produce 𝑡 ,𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡); otherwise,𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S) = 0.

3.3 Complexity and Opportunities
Unfortunately and not surprisingly, even under independent util-

ity, Shapley value computation is still NP-hard. This can be eas-

ily shown by a reduction from the Shapley value computation in

(weighted) 𝑘-majority games [2, 11, 28].

The intractability of Shapley value under independent utility

does not prevent us from exploring fast methods in practice. Par-

ticularly, under independent utility, sparsity provides significant

opportunities. In the context of data assemblage, although there

may bemany data owners andmany tuples in a coalition set, for one

specific tuple in the coalition set, there are typically very few ways



to produce the tuple and very few data owners involved. Exactly

due to this sparsity and scarcity, data pricing becomes meaningful.

To this extent, our proposal on independent utility is a step towards

exploring efficient data pricing addressing the scarcity of supplies

of specific data.

4 SYNTHESES AND SHAPLEY VALUE
COMPUTATION DECOMPOSITION

In order to compute Shapley value, we need to model how tuples

in a coalition set are synthesized by data owners according to the

coalition plan. Under independent utility, can the computation of

Shapley value of one tuple in the coalition set also be decomposed

according to syntheses? In this section, we first propose the notion

of synthesis. Then, we answer the above question in two simple

cases. In the first case, a tuple in the coalition set is contributed by

data owners independently without any interaction, that is, there

is only one owner in a synthesis. In the second case, a tuple in the

coalition set is produced by multiple data owners together, but there

is only one way to produce an instance of the tuple by multiple

data owners. For both cases, we give closed form solutions.

4.1 Syntheses
For a tuple in the coalition set 𝑡 ∈ 𝐷 , if data owners 𝑢𝑖1 , . . . , 𝑢𝑖𝑚 in

coalition produce an instance of 𝑡 according to the coalition plan P,

then𝑈 = {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 } is called a synthesis of 𝑡 . As a special case,
a data owner can produce a tuple in the coalition set by itself if the

owner has the complete tuple. Trivially, the corresponding synthesis

has only one data owner.We call a synthesis𝑈 = {𝑢𝑖 𝑗 } that contains
only one data owner a single-owner synthesis. As demonstrated

in Example 1, for a tuple 𝑡 ∈ 𝐷 in the coalition set, there may exist

more than one synthesis, and even a data owner may participate in

more than one synthesis of a tuple 𝑡 in the coalition set. A synthesis

𝑈 = {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 } is called amulti-owner synthesis if ∥𝑈 ∥ ≥ 2.

A synthesis𝑈 is a minimal synthesis of tuple 𝑡 ∈ 𝐷 if no proper

subset of𝑈 is still a synthesis of 𝑡 .

Example 2 (Syntheses). Data owners 𝑢1 and 𝑢2 have schemas

𝑅1 = 𝑅2 = (𝑝𝑒𝑟𝑠𝑜𝑛1, 𝑝𝑒𝑟𝑠𝑜𝑛2) representing which people are mu-

tual friends. Suppose the data sets 𝑢1 = {(𝑎, 𝑏), (𝑎, 𝑐)} and 𝑢2 =

{(𝑏, 𝑐)}, the target schema 𝑅 = (𝑝𝑒𝑟𝑠𝑜𝑛, 𝑝𝑒𝑟𝑠𝑜𝑛) and the coalition

planP = 𝑢1∪𝑢2∪Proj𝑅1 .𝑝𝑒𝑟𝑠𝑜𝑛1,𝑅2 .𝑝𝑒𝑟𝑠𝑜𝑛2
(𝑢1 ⊲⊳𝑢1 .𝑝𝑒𝑟𝑠𝑜𝑛2=𝑢2 .𝑝𝑒𝑟𝑠𝑜𝑛1

𝑢2).
For tuple 𝑡 = (𝑎, 𝑐) in the coalition set 𝐷 , {𝑢1} is a single-owner

synthesis and {𝑢1, 𝑢2} is a multi-owner synthesis. {𝑢1} is a minimal

synthesis but {𝑢1, 𝑢2} is not. □

Intuitively, non-minimal syntheses contain redundant data own-

ers. In a non-minimal synthesis, a data owner not in any minimal

synthesis does not contribute to the production of the tuple. Accord-

ing to the zero element requirement in Shapley fairness, such a data

owner should not get any reward in this non-minimal synthesis.

Formally, let U𝑡 = {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 } be the set of data owners each of

which participates in at least one minimal synthesis of 𝑡 ∈ 𝐷 in the

coalition set. We callU𝑡 the set of minimal synthesis owners
with respect to 𝑡 . Clearly, U𝑡 ⊆ U. We have the following result.

Theorem 2 (Minimal syntheses). Let U = {𝑢1, . . . , 𝑢𝑛} be a
set of data owners in coalition. For a tuple 𝑡 ∈ 𝐷 in the coalition set,

letU𝑡 = {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 } be the set of minimal synthesis owners with
respect to 𝑡 . Under independent utility, for each owner𝑢𝑖 𝑗 (1 ≤ 𝑗 ≤ 𝑚),
the Shapley value

𝜓𝑡 (𝑢𝑖 𝑗 ) =
1

∥U𝑡 ∥!

∑︁
𝜋 ′∈Π (U𝑡 )

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋
′

𝑢𝑖 𝑗
∪ {𝑢𝑖 𝑗 }) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋

′
𝑢𝑖 𝑗

))

=
1

∥U𝑡 ∥
∑︁

S⊆U𝑡 \{𝑢𝑖 𝑗 }

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S ∪ {𝑢𝑖 𝑗 }) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S)( ∥U𝑡 ∥
∥S ∥

)
(3)

and for any other data owner 𝑢 ∈ U \U𝑡 ,𝜓𝑡 (𝑢) = 0.

Proof. Using Equation 2, we have:

𝜓𝑡 (𝑢𝑖 𝑗 ) =
1

∥U∥!

∑︁
𝜋 ∈Π (U)

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ∪ {𝑢𝑖 𝑗 }) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ))

For a permutation 𝜋 ∈ Π(U) and a permutation 𝜋 ′ ∈ Π(U𝑡 ), 𝜋
is said to subsume 𝜋 ′

, denoted by 𝜋 ′ ⪯ 𝜋 , if for every pair of data

owners 𝑢𝑥 , 𝑢𝑦 in 𝜋 ′
such that 𝑢𝑥 precedes 𝑢𝑦 , 𝑢𝑥 also precedes 𝑢𝑦

in 𝜋 . In other words, asU𝑡 is a subset ofU, 𝜋 ′
and 𝜋 are consistent

in the order on all data owners inU𝑡 .

For any permutations 𝜋 ∈ Π(U) and 𝜋 ′ ∈ Π(U𝑡 ) such that

𝜋 ′ ⪯ 𝜋 , we show 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋
′

𝑢𝑖 𝑗
). This is because

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) if 𝑃𝜋𝑢𝑖 𝑗 contains at least a minimal syn-

thesis of 𝑡 ; or otherwise 0. Those data owners in the minimal syn-

theses are all retained in 𝜋 ′
.

Similarly, we can show𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ∪ {𝑢𝑖 𝑗 }) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋
′

𝑢𝑖 𝑗
∪

{𝑢𝑖 𝑗 }).
For each permutation 𝜋 ′ ∈ Π(U𝑡 ), the number of permutations

𝜋 ∈ Π(U) such that 𝜋 ′ ⪯ 𝜋 is(
∥U∥
∥U𝑡 ∥

)
(∥U∥ − ∥U𝑡 ∥)! =

∥U∥!

∥U𝑡 ∥!

which is a constant. Thus,

𝜓𝑡 (𝑢𝑖 𝑗 ) =
1

∥U∥!

∑︁
𝜋 ∈Π (U)

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ∪ {𝑢𝑖 𝑗 }) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ))

=
1

∥U∥!

( ∑︁
𝜋 ′∈Π (U𝑡 )

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋
′

𝑢𝑖 𝑗
∪ {𝑢𝑖 𝑗 })

− 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋
′

𝑢𝑖 𝑗
)
) ∥U∥!

∥U𝑡 ∥!

=
1

∥U𝑡 ∥!

∑︁
𝜋 ′∈Π (U𝑡 )

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋
′

𝑢𝑖 𝑗
∪ {𝑢𝑖 𝑗 }) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋

′
𝑢𝑖 𝑗

))

Following the equivalence between Equations 1 and 2, we have

the second form in Equation 3.

For any other data owners 𝑢 who are not in the set of minimal

synthesis owners, due to the zero element in the Shapley fairness,

the Shapley value is 0. □

In the practice of data assemblage, although there may be many

data owners, typically there are only very few minimal syntheses of

one tuple in the coalition set. That is, ∥U𝑡 ∥ is dramatically smaller

than ∥U∥. Theorem 2 dramatically reduces the amount of com-

putation for Shapley value even if we want to use a brute-force

approach to compute the exact Shapley value.

In this paper, we assume that syntheses can be obtained in the



data assemblage process following the coalition plan. To find min-

imal syntheses, for each tuple in the coalition set, we only need

to check and remove those syntheses that are proper supersets of

some other syntheses. Since for one tuple in the coalition set, there

are only a small number of syntheses, the computation cost is often

small.

4.2 Shapley Value When Only Single-owner
Syntheses Exist

Let us consider a simple case where a data buyer can simply obtain a

tuple 𝑡 from data owners separately without any interaction among

different data owners. In other words, in this case, all minimal

syntheses of 𝑡 are single-owner syntheses. Please note that a tuple

may be extracted from more than one data owner, and thus the

corresponding reward needs to be distributed to all data owners

who can contribute the tuple.

How can we calculate the Shapley value for each data owner

where there are only single-owner syntheses? We have the follow-

ing closed form rule.

Theorem 3 (Single-owner syntheses only). Let U be a set of
data owners. For tuple 𝑡 ∈ 𝐷 in the coalition set, if all minimal synthe-
ses of 𝑡 are single-owner syntheses {𝑢𝑖1 }, . . . , {𝑢𝑖𝑚 } ({𝑢𝑖1 , . . . , 𝑢𝑖𝑚 } ⊆
U), then, for each data owner 𝑢𝑖 𝑗 (1 ≤ 𝑗 ≤ 𝑚), the Shapley value

𝜓𝑡 (𝑢𝑖 𝑗 ) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)

𝑚
(4)

and for any other data owner 𝑢 ∈ U \ {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 },𝜓𝑡 (𝑢) = 0.

Proof. According to Equation 2, for each tuple 𝑡 ∈ 𝐷 , the Shap-

ley value of 𝑢 is

𝜓𝑡 (𝑢) =
1

∥U∥!

∑︁
𝜋 ∈Π (U)

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪ {𝑢}) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ))

For any subset of data owners X, 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (X) can only take two

possible values. If there exists at least one data owner 𝑢𝑖 𝑗 ∈ X
(1 ≤ 𝑗 ≤ 𝑚), then𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (X) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡); otherwise 0. Therefore,

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪ {𝑢}) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ) takes one of the following two
cases.

In the first case, 𝑢 ∈ {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 }, that is, 𝑢 = 𝑢𝑖 𝑗 for some

1 ≤ 𝑗 ≤ 𝑚.𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ∪{𝑢}) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) if and
only if all data owners in 𝑃𝜋𝑢𝑖 𝑗

do not form a single-owner synthesis.

Since in total there are𝑚 syntheses, the probability that𝑢𝑖 𝑗 is before

every data owners in {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 } \ {𝑢𝑖 𝑗 } in a permutation is
1

𝑚 ,

that is,

𝜓𝑡 (𝑢𝑖 𝑗 ) =
1

∥U∥!

∑︁
𝜋 ∈Π (U)

(𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ∪ {𝑢𝑖 𝑗 }) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢𝑖 𝑗 ))

=
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)

𝑚
In the second case, 𝑢 ∉ {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 }. According to Theorem 2,

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪ {𝑢}) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ) = 0. □

Note that Equation 4 can also be proved easily using the balance

and symmetry properties of Shapley fairness. We omit the details

here. The general Shapley value computation is NP-hard. However,

Theorem 3 shows that, under independent utility, when only single-

owner syntheses exist, Shapley value has a closed form solution in

constant time.

4.3 Can the Single-owner Solution Be
Straightforwardly Generalized?

Equation 4 gives a simple yet elegant closed form to calculate the

Shapley value for an individual data owner when all syntheses are

single-owner. Naturally, one immediate question is whether it can

be extended to handle multi-owner syntheses.

For a tuple 𝑡 ∈ 𝐷 in a coalition data set and a data owner 𝑢, each

of the set of minimal synthesis owners contributes to producing

some instances of 𝑡 . Can we extend Equation 4 to

𝜓𝑡 (𝑢) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)

∥U𝑡 ∥
(5)

when there are multi-owner syntheses? Unfortunately, this does

not hold, as shown in the following example.

Example 3 (Counter examples). Suppose data owner 𝑢1 =

{(𝑎, 𝑏)} in schema 𝑅1 = (𝐴, 𝐵), data owners𝑢2 and𝑢3 have identical

data 𝑢2 = 𝑢3 = {(𝑏, 𝑐)} in schema 𝑅2 = 𝑅3 = (𝐵,𝐶). The coalition
plan P = (𝑢1 ⊲⊳ 𝑢2) ∪ (𝑢1 ⊲⊳ 𝑢3), and thus the coalition set 𝐷 =

{(𝑎, 𝑏, 𝑐)}. Let𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑎, 𝑏, 𝑐) = 1.

Using Equations 1 or 2, we can easily calculate the Shapley value

of the data owners,𝜓 (𝑢1) = 2

3
and𝜓 (𝑢2) = 𝜓 (𝑢3) = 1

6
.

Using Equation 5, we have ∥U𝑡 ∥ = 3, since {𝑢1, 𝑢2} and {𝑢1, 𝑢3}
are two minimal syntheses of (𝑎, 𝑏, 𝑐). Therefore, Equation 5 cal-

culates the same value,
1

3
for each of 𝑢1, 𝑢2 and 𝑢3, which are not

equal to their Shapley values. □

Example 3 indicates that, when multiple owners need to work

together to form a tuple in the coalition set, an owner who has more

ways to collaborate with other owners can claim a higher Shapley

value. In other words, when there are multi-owner syntheses, not

every data owner contributing to a tuple in the coalition set gains

the same for the Shapley value.

Example 3 also suggests that the ways data owners assemble

a tuple in the coalition set matter. Can we equivalently split the

utility of a tuple in the coalition set among all the multi-owner

syntheses and then, within each synthesis, equivalently split the

utility among all data owners participating?

Example 4 (Example 3 continued). In the case in Example 3,

there are 2 minimal multi-owner syntheses of (𝑎, 𝑏, 𝑐) in the coali-

tion set, 𝑈1 = {𝑢1, 𝑢2} and 𝑈2 = {𝑢1, 𝑢3}. One may think, we may

evenly split the utility 1 of the tuple (𝑎, 𝑏, 𝑐) in the coalition set be-

tween the 2 syntheses, thus each synthesis receives utility
1

2
. Then,

each data owner obtains an even share in each synthesis between

all the owners participating. For example, 𝑢1 obtains half of the

utility
1

2
in the synthesis 𝑈1 where 𝑢1 and 𝑢2 join their tuples to

form (𝑎, 𝑏, 𝑐). The utility allocated to 𝑢1 is
1

2
× 1

2
+ 1

2
× 1

2
= 1

2
, it still

does not match𝜓 (𝑢1) = 2

3
. □

The failures of the above attempts clearly show that computing

Shapley value where there are multi-owner syntheses is far from

trivial. Some straightforward extensions to Equation 4, the closed

form solution to the single-owner only situation, cannot capture

Shapley value in a general scenario correctly.



4.4 Unique Multi-owner Synthesis and Shapley
Value Closed Form

Now, let us consider a still specific situation involving multi-owner

syntheses. It is more general than the case discussed in Section 4.2

where there are only single-owner syntheses.

For a tuple 𝑡 ∈ 𝐷 in a coalition set, if there exists only one

minimal multi-owner synthesis 𝑈 , then 𝑈 is called the unique
multi-owner synthesis of 𝑡 . Unique multi-owner synthesis en-

ables a closed form calculation of Shapley value.

Theorem 4. For a tuple 𝑡 in a coalition set, if there is a unique
multi-owner synthesis 𝑈 = {𝑢𝑖1 , . . . , 𝑢𝑖𝑚 } (𝑚 ≥ 2) and 𝑘 single-
owner syntheses of 𝑡 , then the Shapley value of each data owner
𝑢𝑖 𝑗 ∈ 𝑈 (1 ≤ 𝑗 ≤ 𝑚) is

𝜓𝑡 (𝑢𝑖 𝑗 ) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)

(𝑚 + 𝑘)
(𝑚+𝑘−1

𝑚−1

)
and the Shapley value of each data owner 𝑢 contributing to a single-
owner synthesis is

𝜓𝑡 (𝑢) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)

𝑘

(
1 − 𝑚

(𝑚 + 𝑘)
(𝑚+𝑘−1

𝑚−1

) ) .
Proof. Let U be the set of all data owners. Let {𝑢𝑙1 }, . . . , {𝑢𝑙𝑘 }

be the 𝑘 single-owner syntheses. Apparently,𝑢𝑙𝑥 ∉ 𝑈 for 1 ≤ 𝑥 ≤ 𝑘 ,

otherwise,𝑈 is not minimal. Therefore, U𝑡 = {𝑢𝑖1 , . . ., 𝑢𝑖𝑚 , 𝑢𝑙1 , . . .,

𝑢𝑙𝑘 }.
According to Theorem 2, we have

𝜓𝑡 (𝑢𝑖 𝑗 ) =
1

∥U𝑡 ∥
∑︁

S⊆U𝑡 \{𝑢𝑖 𝑗 }

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S ∪ (𝑢𝑖 𝑗 )) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S)( ∥U𝑡 ∥−1

∥S ∥
)

Obviously, since there is only one unique multi-owner synthesis

𝑈 and𝑘 single-owner syntheses,𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S∪(𝑢𝑖 𝑗 ))−𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) if and only if 𝑆 = 𝑈 \𝑢𝑖 𝑗 . In all other situations,𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S
∪(𝑢𝑖 𝑗 )) − 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S) = 0. In other words, in the only non-zero

case, ∥U𝑡 ∥ =𝑚 + 𝑘 and ∥S∥ =𝑚 − 1. Thus, we have

𝜓𝑡 (𝑢𝑖 𝑗 ) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)

(𝑚 + 𝑘)
(𝑚+𝑘−1

𝑚−1

)
Now, let us consider the data owners in the single-owner syn-

theses. According to the balance requirement in Shapley fairness,

𝑘∑︁
𝑥=1

𝜓𝑡 (𝑢𝑙𝑥 ) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) −
𝑚∑︁
𝑗=1

𝜓𝑡 (𝑢𝑖 𝑗 )

According to symmetry requirement in Shapley fairness, for each

data owner 𝑢 ∈ {𝑢𝑙1 , ..., 𝑢𝑙𝑘 },

𝜓 (𝑢) = 1

𝑘

𝑘∑︁
𝑥=1

𝜓𝑡 (𝑢𝑙𝑥 ) =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) −∑𝑚

𝑗=1
𝜓𝑡 (𝑢𝑖 𝑗 )

𝑘

=
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)

𝑘

(
1 − 𝑚

(𝑚 + 𝑘)
(𝑚+𝑘−1

𝑚−1

) ) .
□

In Theorem 4, if there is no unique multi-owner synthesis at all,

and there are only single-owner syntheses, then the Shapley value

of a data owner who contributes to a single-owner synthesis is

the same as computed in Theorem 3. Thus, Theorem 4 is a general

result covering Theorem 3.

Under independent utility, when there exist only one unique

multi-owner synthesis of size 𝑚 and optionally 𝑘 single-owner

syntheses, using Theorem 4, we have a closed form solution for

Shapley value in linear time 𝑂 (min(𝑚,𝑘)).

5 COMPUTING SHAPLEY VALUE UNDER
INDEPENDENT UTILITY

In this section, we develop two algorithms for the general situation

beyond the two special cases discussed in Sections 4.2 and 4.4 and

present the overall Shapley value computation method integrating

all possible cases.

5.1 The Synthesis-combination (SC) Algorithm
A straightforward approach to compute, for each tuple 𝑡 in a coali-

tion set, the Shapley value of data owners𝜓𝑡 (𝑢) is to apply Equa-

tion 2. The equation requires us to compute the utility values

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ) and 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪ {𝑢}) for every possible permuta-

tion 𝜋 of users. A naïve method is to check whether the data owners

in 𝑃𝜋𝑢 and 𝑃𝜋𝑢 ∪ {𝑢} can synthesize 𝑡 according to the coalition plan.

To speed up the computation and reduce the number of permu-

tations needed to consider, we propose a synthesis-combination
(SC) algorithm. The general idea is that we materialize all synthe-

ses of every tuple in the coalition set as a byproduct of computing

the coalition set. Then, when we apply Equation 2, we use the com-

binations of the syntheses to cover all permutations and obtain the

utility values instead of computing the utility from scratch again

and again.

As the first step, we compute the coalition set 𝐷 according to the

coalition plan P. In this process, for each tuple 𝑡 ∈ 𝐷 , we record

the set of minimal syntheses 𝑡 .𝑆 .

Example 5 (Computing Syntheses). Consider the data owners

and their data as well as the coalition plan in Example 3. Following

the coalition plan, we have the coalition set 𝐷 = {(𝑎, 𝑏, 𝑐)}. There
are two multi-owner syntheses of tuple 𝑡 = (𝑎, 𝑏, 𝑐). Thus, 𝑡 .𝑆 =

{{𝑢1, 𝑢2}, {𝑢1, 𝑢3}}. □

To evaluate Equation 2 efficiently, we only need to find the

permutations 𝜋 such that 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪ {𝑢}) − 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ) =

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡). Assume there are in total𝑚𝑢 minimal syntheses𝑈𝑖1 , . . .,

𝑈𝑖𝑚𝑢
of 𝑡 that contain 𝑢, and𝑚𝑢 minimal syntheses 𝑈 𝑗1 , . . . ,𝑈 𝑗𝑚�̄�

that do not contain𝑢. There are two situations where𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪
{𝑢})−𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ) = 0. First, if 𝑃𝜋𝑢 ∪{𝑢} does not contain any mini-

mal synthesis in {𝑈𝑖1 , . . . ,𝑈𝑖𝑚 },𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪{𝑢})−𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ) =
0. Second, when 𝑃𝜋𝑢 ∪{𝑢} contains at least one minimal synthesis in

{𝑈𝑖1 , . . . ,𝑈𝑖𝑚 }, if 𝑃𝜋𝑢 ∪{𝑢} contains at least oneminimal synthesis in

{𝑈 𝑗1 , . . . ,𝑈 𝑗𝑚�̄�
},𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪{𝑢})−𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ) = 0. Thus, in or-

der to have𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ∪{𝑢})−𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (𝑃𝜋𝑢 ) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡), 𝑃𝜋𝑢 ∪{𝑢}
must contain at least one minimal synthesis in {𝑈𝑖1 , . . . ,𝑈𝑖𝑚 } and
does not contain any minimal synthesis in {𝑈 𝑗1 , . . . ,𝑈 𝑗𝑚�̄�

} .
To formalize the above insight, let

𝑉1 = {𝜋 ∈ Π(U)|∃1 ≤ 𝑘 ≤ 𝑚𝑢 : 𝑈𝑖𝑘 ⊆ 𝑃𝜋𝑢 ∪ {𝑢}}
and

𝑉2 = {𝜋 ∈ 𝑉1 |∃1 ≤ 𝑘 ≤ 𝑚𝑢 : 𝑈 𝑗𝑘 ⊆ 𝑃𝜋𝑢 }
Then, Equation 2 can be rewritten to𝜓𝑡 (𝑢) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) · ∥𝑉1 ∥−∥𝑉2 ∥

∥U ∥!
.

Now, let us work on how to calculate 𝑉1 and 𝑉2. For a synthesis

𝑈 of 𝑡 and a data owner 𝑢 such that 𝑢 ∈ 𝑈 , denote by 𝑉𝑈 ≻𝑢 the set



of permutations where𝑈 \ {𝑢} precedes 𝑢. We have the following

nice properties.

Lemma 1. Given a set of data owners U, for a synthesis 𝑈 of 𝑡
and a data owner 𝑢 ∈ 𝑈 , ∥𝑉𝑈 ≻𝑢 ∥

∥U ∥!
= 1

∥𝑈 ∥ . Moreover, if there are𝑚
syntheses𝑈1, . . . ,𝑈𝑚 such that 𝑢 ∈ 𝑈𝑖 (1 ≤ 𝑖 ≤ 𝑚), then

𝑚⋂
𝑖=1

𝑉𝑈𝑖 ≻𝑢 = 𝑉(∪𝑚
𝑖=1

𝑈𝑖 ) ≻𝑢

Last,

∥
𝑚⋃
𝑖=1

𝑉𝑈𝑖 ≻𝑢 ∥ =
𝑚∑︁
𝑖=1

(−1)𝑖+1

( ∑︁
1≤ 𝑗1<· · ·< 𝑗𝑖 ≤𝑚

∥𝑉(∪𝑖
𝑘=1

𝑈 𝑗𝑘
) ≻𝑢 ∥

)
(6)

Proof. Since 𝑢 ∈ 𝑈 , ∥𝑉𝑈 ≻𝑢 ∥ =
( ∥U ∥
∥𝑈 ∥

)
(∥𝑈 ∥ − 1)!(∥U∥ − ∥𝑈 ∥)!.

Therefore,

∥𝑉𝑈 ≻𝑢 ∥
∥U∥!

=

( ∥U ∥
∥𝑈 ∥

)
(∥𝑈 ∥ − 1)!(∥U∥ − ∥𝑈 ∥)!

∥U∥!

=

∥U ∥!

( ∥U ∥−∥𝑈 ∥)!∥𝑈 ∥!
(∥𝑈 ∥ − 1)!(∥U∥ − ∥𝑈 ∥)!
∥U∥!

=
1

∥𝑈 ∥
The second property holds because, according to the definition,

the set

⋂𝑚
𝑖=1

𝑉𝑈𝑖 ≻𝑢 contains all permutations 𝜋 where all data own-

ers in𝑈1 \ {𝑢}, . . . ,𝑈𝑚 \ {𝑢} all precede 𝑢, that is, 𝑉(∪𝑚
𝑖=1

𝑈𝑖 ) ≻𝑢 .
Last, ∥⋃𝑚

𝑖=1
𝑉𝑈𝑖 ≻𝑢 ∥ can be calculated using the set union cardi-

nality formula and the second property in this theorem. □

Now, for a tuple 𝑡 ∈ 𝐷 in a coalition set, we are ready to compute

𝑉1 and 𝑉2 with respect to 𝑡 and give a formula to calculate 𝜓𝑡 (𝑢)
for each data owner 𝑢.

Theorem 5. For a data owner 𝑢 and a tuple 𝑡 in a coalition set 𝐷 ,
let𝑊𝑢 = {𝑈𝑖1 , . . . ,𝑈𝑖𝑚𝑢

} be the set of minimal syntheses that contain
𝑢,𝑊𝑢 = {𝑈 𝑗1 , . . . ,𝑈 𝑗𝑚�̄�

} be the set of minimal syntheses that do not
contain 𝑢. Let

𝜈 (𝑊𝑢 ) =
∑︁

𝑋 ⊆𝑊𝑢

∥𝑋 ∥≥1

(−1) ∥𝑋 ∥+1

∥ ∪𝑈𝑥 ∈𝑋 𝑈𝑥 ∥

and

𝜏 (𝑊𝑢 ,𝑊𝑢 ) =
∑︁

𝑋 ⊆𝑊𝑢×𝑊�̄�

∥𝑋 ∥≥1

(−1) ∥𝑋 ∥+1

∥ ∪(𝑈𝑥 ,𝑈𝑦 ) ∈𝑋 (𝑈𝑥 ∪𝑈𝑦)∥
.

Then,
𝜓𝑡 (𝑢) = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) (𝜈 (𝑊𝑢 ) − 𝜏 (𝑊𝑢 ,𝑊𝑢 )) . (7)

Proof. Following the definitions, we have 𝑉1 = ∪𝑚𝑢

𝑥=1
𝑉𝑈𝑖𝑥 ≻𝑢

and 𝑉2 =
⋃

𝑈𝑥 ∈𝑊𝑢

𝑈𝑦 ∈𝑊�̄�

𝑉(𝑈𝑥∪𝑈𝑦 ) ≻𝑢 . We calculate𝜓𝑡 (𝑢) as follows.

𝜓𝑡 (𝑢) =𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) ∥𝑉1∥ − ∥𝑉2∥
∥U∥!

=𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)
∥⋃𝑚𝑢

𝑥=1
𝑉𝑈𝑖𝑥 ≻𝑢 ∥ − ∥⋃𝑈𝑥 ∈𝑊𝑢

𝑈𝑦 ∈𝑊�̄�

𝑉(𝑈𝑥∪𝑈𝑦 ) ≻𝑢 ∥

∥U∥!

(8)

Applying Equation 6, we have

∥⋃𝑚𝑢

𝑥=1
𝑉𝑈𝑖𝑥 ≻𝑢 ∥

∥U∥!

=

𝑚𝑢∑︁
𝑥=1

(−1)𝑥+1

( ∑︁
1≤𝑦1<· · ·<𝑦𝑥 ≤𝑚𝑢

∥𝑉(∪𝑥
𝑧=1

𝑈𝑖𝑦𝑧
) ≻𝑢 ∥

∥U∥!

)
(9)

According to Lemma 1,
∥𝑉𝑈 ≻𝑢 ∥
∥U ∥!

= 1

∥𝑈 ∥ , thus, in Equation 9,

∥𝑉(∪𝑥
𝑧=1

𝑈𝑖𝑦𝑧
)≻𝑢 ∥

∥U ∥!
= 1

∥∪𝑥
𝑧=1

𝑈𝑖𝑦𝑧
∥ . Thus, Equation 9 can be further writ-

ten as

∥⋃𝑚𝑢

𝑥=1
𝑉𝑈𝑖𝑥 ≻𝑢 ∥

∥U∥!

=

𝑚𝑢∑︁
𝑥=1

(−1)𝑥+1

( ∑︁
1≤𝑦1<· · ·<𝑦𝑥 ≤𝑚𝑢

1

∥ ∪𝑥
𝑧=1

𝑈𝑖𝑦𝑧
∥

)
=

𝑚𝑢∑︁
𝑥=1

∑︁
1≤𝑦1<· · ·<𝑦𝑥 ≤𝑚𝑢

(−1)𝑥+1

∥ ∪𝑥
𝑧=1

𝑈𝑖𝑦𝑧
∥

=
∑︁

𝑋 ⊆𝑊𝑢

∥𝑋 ∥≥1

(−1) ∥𝑋 ∥+1

∥ ∪𝑈𝑥 ∈𝑋 𝑈𝑥 ∥
= 𝜈 (𝑊𝑢 )

(10)

Similarly, we can show

∥⋃𝑈𝑥 ∈𝑊𝑢

𝑈𝑦 ∈𝑊�̄�

𝑉(𝑈𝑥∪𝑈𝑦 ) ≻𝑢 ∥

∥U∥!

= 𝜏 (𝑊𝑢 ,𝑊𝑢 ) (11)

Plugging Equations 10 and 11 into Equation 8, we establish Equa-

tion 7 immediately. □

The synthesis-combination method reduces the number of per-

mutations that need to be computed. The complexity of the algo-

rithm is independent from the number of data owners and, instead,

is exponential to max(𝑚𝑢 ,𝑚𝑢𝑚𝑢 ). Assuming the cost for each set

union and arithmetic operations being bounded by a constant, the

time complexity of the algorithm is 𝑂 (2max(𝑚𝑢 ,𝑚𝑢𝑚�̄� ) ). It is very
fast when there are only very few minimal syntheses with respect

to a tuple in the coalition set, although there may be many data

owners. However, if there are many minimal syntheses on a tuple

in the coalition set, the algorithm is costly since max(𝑚𝑢 ,𝑚𝑢𝑚𝑢 ) is
large in such a case. In the worst case, max(𝑚𝑢 ,𝑚𝑢𝑚𝑢 ) may even

exceed the number of data owners.

5.2 The Synthesis-look-up (SL) Algorithm
When there are many minimal syntheses with respect to a tuple

in a coalition set, how can we compute the Shapley value fast? We

propose a synthesis-look-up (SL) algorithm. The general idea is

that we still materialize all syntheses of every tuple in the coalition

set as a byproduct of computing the coalition set and use the second

form in Equation 3 to calculate the Shapley value, that is,

𝜓𝑡 (𝑢) =
1

∥U𝑡 ∥
∑︁

S⊆U𝑡 \{𝑢 }

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S ∪ (𝑢)) −𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S)( ∥U𝑡 ∥−1

∥S ∥
)

For each subsetS ⊆ U𝑡 \{𝑢} in Equation 1, instead of computing

the utility from scratch, we obtain the utility by checking whether

S and S ∪ {𝑢} contain a synthesis.

Specifically, to calculate the Shapley value𝜓𝑡 (𝑢) of data owner 𝑢
with respect to tuple 𝑡 ∈ 𝐷 in the coalition set, we divide all minimal

syntheses of 𝑡 into two sets. Let𝑊𝑢 = {𝑈𝑖1 , . . . ,𝑈𝑖𝑚𝑢
} be the set of

minimal syntheses that contain 𝑢, and𝑊𝑢 = {𝑈 𝑗1 , . . . ,𝑈 𝑗𝑚�̄�
} be the

set of minimal syntheses that do not contain 𝑢. Clearly, for each

subsetS ⊆ U𝑡 \{𝑢} in Equation 1,𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S∪{𝑢})−𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑡 (S) =



Algorithm 1: IUSV: computing Shapely value under inde-

pendent utility.

Input: tables 𝐷1, . . . , 𝐷𝑛 from data owners 𝑢1, . . . , 𝑢𝑛 ,

coalition plan P, hyper-parameter 𝛾

Output: coalition set 𝐷 and for each data owner 𝑢𝑖
(1 ≤ 𝑖 ≤ 𝑛), the Shapley value𝜓 (𝑢𝑖 )

1 compute the coalition set 𝐷 according to the coalition plan

P, for each tuple 𝑡 ∈ 𝐷 , record the set of minimal

syntheses 𝑡 .𝑆 ;

2 foreach tuple 𝑡 ∈ 𝐷 do
3 if 𝑡 has only single-user syntheses then
4 apply Theorem 3;

5 else if 𝑡 has unique multi-owner synthesis then
6 apply Theorem 4;

7 else
8 foreach data owner 𝑢 ∈ U𝑡 do
9 if ∥U𝑡 ∥ > 𝛾 · max(𝑚𝑢 ,𝑚𝑢𝑚𝑢 ) then

10 apply the SC algorithm (Theorem 5);

11 else
12 apply the SL algorithm;

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡) if and only if there exists a 𝑘𝑢 (1 ≤ 𝑘𝑢 ≤ 𝑚𝑢 ) such that

𝑈𝑖𝑘𝑢
⊆ S and there does not exist any 𝑘𝑢 (1 ≤ 𝑘𝑢 ≤ 𝑚𝑢 ) such that

𝑈𝑖𝑘�̄�
⊆ S. This condition can be checked using the materialized

minimal syntheses.

The complexity of the synthesis-look-up algorithm does not rely

on the number of minimal syntheses. Instead, it is exponential to the

number of data owners participating in the minimal syntheses, that

is, the size of the set of minimal synthesis owners ∥U𝑡 ∥. Assuming

the cost for each super set checking and arithmetic operations

being bounded by a constant, the time complexity of the algorithm

is 𝑂 (2∥U𝑡 ∥). When there are not many data owners participating

in the minimal syntheses, the algorithm is fast, though there may

still be many minimal syntheses.

5.3 Summary: the Independent Utility Shapley
Value (IUSV) Approach

The synthesis-combination method and the synthesis-look-up

method have their individual advantages and complement to each

other. Moreover, we have the special cases when a unique multi-

owner synthesis exists or there are only single-owner syntheses.

Algorithm 1 presents our independent utility Shapley value (IUSV)

approach. In order to coordinate the synthesis-combination algo-

rithm and the synthesis-look-up algorithm to handle different situ-

ations, the IUSV algorithm uses a hyper-parameter 𝛾 . When there

are relatively fewer minimal syntheses, the synthesis-combination

method is used, otherwise, the synthesis-look-up method is em-

ployed. We will experimentally examine the effect of the hyper-

parameter in Section 6. The overall time complexity of the algorithm

is 𝑂 (∑𝑡 ∈𝐷 min{2∥U𝑡 ∥ , 2max(𝑚𝑢 ,𝑚𝑢𝑚�̄� ) }) .

6 PERFORMANCE EVALUATION
In this section, we empirically evaluate the performance of our

proposed IUSV approach and compare with two representative

baselines using two benchmark real data sets. We first describe the

experiment setup and then present the experimental results.

6.1 Experiment Setup
We compare our method with two baselines as follows.

• The traditional method (Trad) computes the exact Shapley

value based on Equation 1.

• Thepermutation-based samplingmethod (Perm) approxi-
mates Shapley value using the Monte-Carlo method according

to Equation 2 [21]. We write Perm-𝑥 (e.g., Perm-16 and Perm-

32) when the permutation-based sampling method takes 𝑥

permutations as the sample.

We implement all of these methods using the Rust programming

language [22]. The source codes of our implementation are avail-

able at https://github.com/IDEAL-Lab/shapley-value-independent-

utility.

We use two real data sets in our experiments, namely World
12

and TPC-H
13
. The World data set consists of 3 tables with 239, 984,

and 4,079 records, respectively. The TPC-H data set has 8 tables

with 5, 25, 10,000, 150,000, 200,000, 800,000, 1,500,000, and 6,001,215

records, respectively. The World data set is used to evaluate the

performance of the baselines in some settings where they cannot

complete on the large TPC-H data set within reasonable time.

We randomly assign records in a data set to data owners in three

steps. In the first step, we assign data owners to each table in the

data set. Two different scenarios are implemented.

• EO (for equal number of owners) assigns 𝑘 data owners to

each table and keeps the number of data owners for each table

equal. The only exception is the two smallest tables in the

TPC-H data set, where we only assign a single data owner to

those two tables since those two tables only have very few

records each, 5 and 25, respectively.

• UO (for unequal number of owners) assigns 𝑘 data owners

to the largest table in a data set and only 2 data owners to

each of the other tables. In this setting, we test how the split-

ting of tuples in a large table may affect the Shapley value

computation.

In the second step, after assigning the data owners to each table,

we duplicate each record in the original data set several times. The

numbers of copies of tuples follow the Zipfian distribution [27] with

parameter 𝛼 . We also enforce a hard constraint on the maximum

number of copies that a tuple can be duplicated, that is, a record

cannot have more than𝑚 copies.

As the last step, we assign records to data owners. Two scenarios

are considered.

• EA (for equal chance assignment) assigns records to data

owners with uniform distribution. That is, if a record has

𝑙 copies and there are 𝑘 data owners assigned to the table,

then each data owner has a probability
𝑙
𝑘
to get a copy of the

record. We constrain that each data owner can only have up

to one copy of a record. Within a table, the expected number

of records held by each data owner is identical.

• UA (for unequal chance assignment) assigns records to data

owners following the Zipfian distribution, that is, the prob-

12
https://dev.mysql.com/doc/world-setup/en/, accessed on July 1, 2022.

13
http://www.tpc.org/tpch/, accessed on July 1, 2022.

https://github.com/IDEAL-Lab/shapley-value-independent-utility
https://github.com/IDEAL-Lab/shapley-value-independent-utility
https://dev.mysql.com/doc/world-setup/en/
http://www.tpc.org/tpch/


Table 1: Default System Parameters

Parameters Default value

Number of data owners 𝑘 per table 5 (World), 10 (TPC-H)

Zipfan parameter 𝛼 4.0

Max copy of tuples𝑚 3

Zipfan parameter 𝛽 (used in UA) 3.0

Hyper-parameter 𝛾 in Algorithm 1 1.0

ability of a data owner obtaining a record obeys the Zipfian

distribution with parameter 𝛽 . Again, we constrain that each

data owner can only have up to one copy of a record. In this

case, a small number of data owners hold most of the records

in a table.

In total, we have four different settings in setting number of

data owners in tables and assigning records to data owners, namely

UO-UA, EO-UA,UO-EA, and EO-EA. Through those settings we can
observe how data owner distribution may affect the performance

of Shapley value computation. By setting UO versus EO, we can
observe the effect of the number of data owners in each table. By

setting UA versus EA, we can observe the effect of the numbers of

records held by data owners. The default parameters used in the

experiments are shown in Table 1.

To evaluate the performance, a coalition plan executes equi-join

queries among all tables in a data set. We assume that the utility of

each tuple in a coalition set is 1.

We use a commodity server with Intel Xeon 2.00GHz E7-4730

CPU and 125GB RAM, running Ubuntu 20.04 LTS to run the exper-

iments. We focus on two metrics as follows.

• Runtime measures the total clock time of computing the

Shapley values for all data owners.

• Error rate evaluates the quality of the approximated Shapley

value by the permutation-based sampling method and com-

putes the percentage of miscalculated Shapely value, that is,

𝑒𝑟𝑟𝑜𝑟 =

∑
𝑢∈U |𝜓 (𝑢)−�𝜓 (𝑢) |∑

𝑢∈U 𝜓 (𝑢) , where 𝜓 (𝑢) and �𝜓 (𝑢) are the ex-
act Shapley value and the approximate Shapley value by the

permutation-based sampling method, respectively. The error

rate reflects the ratio of the total accumulated absolute errors

against the total Shapley value of all data owners.

For our proposed IUSV method, we measure two additional

metrics as follows.

• UMOS rate (for unique multi-owner synthesis rate) is the ra-

tio of the number of tuples with only one unique multi-owner

synthesis against the number of tuples in the coalition set.

Recall that the tuples with only one unique multi-owner syn-

thesis can use Theorems 3 and 4 to compute Shapley value di-

rectly. Thus, UMOS rate shows the percentage of cases where

Theorems 3 and 4 can be applied.

• SC rate and SL rate are, among the total number of times

the SC and SL algorithms are called when the multi-owner

syntheses of the tuples in the coalition set are not unique, the

percentages of the calls to the SC and SL algorithms, respec-

tively. These metrics show the relative frequencies the two

algorithms are used.

In our experiments, we enforce a timeout of 7,200 seconds, that is,

Table 2: Permutation Method Error Rate Under Default Pa-
rameters

Setting
World TPC-H

Perm-16 Perm-32 Perm-16 Perm-32

UO-UA 29% 22% 63% 37%

EO-UA 33% 24% 58% 42%

UO-EA 23% 18% 54% 36%

EO-EA 23% 17% 49% 37%

we terminate a program if the runtime exceeds the allowed timeout.

6.2 Scalability on Number of Data Owners
Figure 1 shows the performance in the aforementioned four settings

when the number of data owners 𝑘 per table varies. Compared

with the traditional method on the World data set, our proposed

IUSV method reduces the total runtime by 3 orders of magnitude

before the traditional method fails to finish the computation before

the timeout. Our IUSV method can efficiently compute the exact

Shapely value in all cases.

For the permutation-based sampling method, we choose a small

sample size, 16 or 32 for the data sets World and TPC-H, since

a larger sample size causes the permutation method timeout. To

obtain a permutation sample, the method has to compute the equi-

join of all tables once and thus is very costly. With such small

samples, the accuracy of the approximation is low. Table 2 shows

the error rates under the default parameters. As shown, the error

rate ranges from 17% to 63%. The errors are significant. At the same

time, even we choose only 16 samples and tolerate a large error (up

to 63%), Perm-16 is still slower than IUSV, as shown in Figure 1.

Figure 1 shows that the UMOS rate decreases as the number of

data owners increases from 1 or 2 to a small number (less than 5

in our experiments) in all settings, and then becomes stable. When

the number of data owners increases from 1 or 2 to a small number,

substantially more records in the coalition set have more than one

multi-owner synthesis. However, when the number of data owners

keeps increasing, due to the data sparsity, the UMOS rate becomes

stable. The results show that a substantial portion of cases can be

handled by Theorems 3 and 4 efficiently, which contributes to the

efficiency of IUSV significantly.

The SC and SL rates show that in most of the cases where multi-

owner syntheses are not unique, the SC algorithm is used. At the

same time, the SL algorithm handles a small portion of cases that are

very costly if the SC algorithm is used. The complement between

the two methods provides an overall fast solution.

6.3 Effect of Data Owner and Record
Assignment Distributions

Figure 2 shows the performance in the aforementioned four settings

with respect to the Zipfian parameter 𝛼 , which controls the number

of copies of records in tables. In all settings, the runtime of all

methods on the World data set is insensitive to 𝛼 mainly due to the

small size of the data set. The runtime of IUSV on TPC-H decreases

as 𝛼 increases mainly for two reasons. First, a larger 𝛼 assigns more

records to one data owner. Therefore, the UMOS rate increases
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Figure 1: Effect of Number of Data Owners 𝑘 per Table.
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Figure 2: Effect of Zipfian Parameter 𝛼 .
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Figure 3: Effect of Zipfian Parameter 𝛽 .

and thus IUSV can apply Theorem 4 to calculate Shapley values in

more cases. Second, more records held by one data owner leads to

decrease in both the number of minimal syntheses and the number

of minimal synthesis owners. Consequently, the execution of the SC

algorithm becomes faster when the number of minimal synthesis is

smaller, and the SL algorithm is faster when the number of minimal

synthesis owners is smaller.

The maximum number of copies of a data record as a hard con-

straint also has a mild effect similar to the situation where 𝛼 is

small. The smaller the maximum number, the more data records are

held by a data owner. Limited by space, we omit the details here.

In the unequal chance assignment of records to data owners

(UA), the Zipfian distribution with parameter 𝛽 is used. Figure 3

shows the performance in the UO-UA and EO-UA settings when

𝛽 varies. The performance of all methods on both data sets is not

sensitive to 𝛽 . Each data owner can have up to one copy of a record.

Once the number of copies for one record is determined (controlled

by the Zipfian parameter 𝛼 and constrained by the maximum copy

of tuples 𝑚), the number of syntheses for a related tuple in the

coalition set is largely determined, which is determinant to the

performance of the proposed method. When the number of copies

is low, due to the property of Zipfian distribution, there are only

a small number of records with multiple copies. This leads to a

small amount of tuples that yield a large number of syntheses. As

a result, we observe that the SL algorithm invoking rate remains

low. Whether a data owner holds most records of a table affects

the individual data owners’ Shapley values, but does not affect the

computation cost much.

6.4 Effect of Hyper-parameter 𝛾
We investigate the performance of IUSV when the hyper-parameter

𝛾 in Algorithm 1 varies under the default data owner distribution.

For the ease of reading, we only plot the SL rate, as the SC rate is

100% minus the SL rate. Figures 4 to 6 show the results with respect

to the number of data owners per table, Zipfian parameter 𝛼 , and

Zipfian parameter 𝛽 , respectively.

When 𝛾 increases, the runtime drops first when 𝛾 is small, and

then increases. This holds in all four settings. According to Algo-

rithm 1, when 𝛾 < 1, IUSV chooses the SC algorithm over the SL
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Figure 4: Effect of hyper-parameter 𝛾 (Different Number of Data Owners 𝑘 Per Table)

0.6 1.2 1.8 2.4 3.0
γ

10−2

10−1

100

R
u

n
ti

m
e

(s
e
c)

World, UO-UA

0.6 1.2 1.8 2.4 3.0
γ

10−2

10−1

100
World, EO-UA

0.6 1.2 1.8 2.4 3.0
γ

10−2

10−1

100
World, UO-EA

0.6 1.2 1.8 2.4 3.0
γ

10−2

10−1

100
World, EO-EA

0.6 1.2 1.8 2.4 3.0
γ

101

102

103

104
TPC-H, UO-UA

0.6 1.2 1.8 2.4 3.0
γ

101

102

103

104
TPC-H, EO-UA

0.6 1.2 1.8 2.4 3.0
γ

101

102

103

104
TPC-H, UO-EA

0.6 1.2 1.8 2.4 3.0
γ

101

102

103

104
TPC-H, EO-EA

0.6 1.2 1.8 2.4 3.0
γ

0%

50%

100%

R
a
te

0.6 1.2 1.8 2.4 3.0
γ

0%

50%

100%

0.6 1.2 1.8 2.4 3.0
γ

0%

50%

100%

0.6 1.2 1.8 2.4 3.0
γ

0%

50%

100%

0.6 1.2 1.8 2.4 3.0
γ

0%

50%

100%

0.6 1.2 1.8 2.4 3.0
γ

0%

50%

100%

0.6 1.2 1.8 2.4 3.0
γ

0%

50%

100%

0.6 1.2 1.8 2.4 3.0
γ

0%

50%

100%

α = 4.5 α = 4.0 α = 3.5

SL-α = 4.5 SL-α = 4.0 SL-α = 3.5 UMOS-α = 4.5 UMOS-α = 4.0 UMOS-α = 3.5

Figure 5: Effect of hyper-parameter 𝛾 (Different Zipfian Parameter 𝛼 values)
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Figure 6: Effect of hyper-parameter 𝛾 (Different Zipfian Pa-
rameter 𝛽 values)

algorithm even when max(𝑚𝑢 ,𝑚𝑢𝑚𝑢 ) is large, where in this case

the SC algorithm is slow. This explains the initial drop. When 𝛾

keeps increasing, IUSV chooses the SL algorithm more and more,

as shown by the SL rate. Since the SL algorithm may be more costly

than the SC algorithm for tuples where the number of minimal

synthesis owners is large, a good choice of 𝛾 is close to 1.

One important observation is that, when 𝛾 is fixed, the perfor-

mance of IUSV of various numbers of data owners and different

values of 𝛼 and 𝛽 is quite similar. This observation suggests that

setting 𝛾 to a value around 1 can achieve good performance for

various settings.

7 CONCLUSIONS
As data sharing and integration becomes more and more important

and popular, fair evaluation of data owners’ contributions to a large

data assemblage task remains challenging in computation. While

most of the existing work on Shapley value computation does not

look into the specific characteristics in data assemblage, in this

paper, we explore the decomposability of utility in data assemblage

and formulate the independent utility assumption. We discover

that independent utility enjoys many applications and has a few

interesting properties. We develop fast and scalable algorithms for

computing Shapley value under independent utility. Our experi-

mental results on real data sets show that our new approach is

orders of magnitude faster than the conventional approaches.

Shapley value computation under independent utility opens

a new direction for future work. For example, it is interesting to

explore whether the independent utility assumption can enable new

opportunities for approximation of Shapley values and incremental

Shapley value computation on dynamic and streaming data.
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