SlimChain: Scaling Blockchain Transactions through Off-Chain
Storage and Parallel Processing

Cheng Xu?7, Ce Zhang?", Jianliang Xu?, and Jian Pei!

1Simon Fraser University

{chengxu, cezhang, xujl}@comp.hkbu.edu.hk

ABSTRACT

Blockchain technology has emerged as the cornerstone of many
decentralized applications operating among otherwise untrusted
peers. However, it is well known that existing blockchain systems
do not scale well. Transactions are often executed and committed
sequentially in order to maintain the same view of the total or-
der. Furthermore, it is necessary to duplicate both transaction data
and their executions in every node in the blockchain network for
integrity assurance. Such storage and computation requirements
put significant burdens on the blockchain system, not only limit-
ing system scalability but also undermining system security and
robustness by making the network more centralized. To tackle
these problems, in this paper, we propose SlimChain, a novel block-
chain system that scales transactions through off-chain storage
and parallel processing. Advocating a stateless design, SlimChain
maintains only the short commitments of ledger states on-chain
while dedicating transaction executions and data storage to off-
chain nodes. To realize SlimChain, we propose new schemes for
off-chain smart contract execution, on-chain transaction validation,
and state commitment. We also propose optimizations to reduce
network transmissions and a new sharding technique to improve
system scalability further. Extensive experiments are conducted to
validate the performance of the proposed SlimChain system. Com-
pared with the existing systems, SlimChain reduces the on-chain
storage requirements by 97% ~ 99%, while also improving the peak
throughput by 1.4X ~ 15.6X.

PVLDB Reference Format:

Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. SlimChain: Scaling
Blockchain Transactions through Off-Chain Storage and Parallel
Processing. PVLDB, 14(11): 2314 - 2326, 2021.
doi:10.14778/3476249.3476283

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hkbudb/slimchain.

1 INTRODUCTION

Blockchain is an emerging technology that is considered to have
the potential to revolutionize database systems [1, 2, 3]. It has
been the cornerstone of many decentralized applications in a wide
range of domains, such as finance [4], healthcare [5], and supply

These authors have contributed equally to this work.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476283

?Hong Kong Baptist University

jpei@cs.sfu.ca

chain [6]. Under the hood, blockchain is a secure append-only data
structure built upon the incoming transactions that are agreed by a
set of untrusted nodes in a P2P network. It utilizes cryptographic
signatures, hash chains, and consensus protocols to create a trusted
distributed system upon a foundation of otherwise untrusted peers.
While first-generation blockchain systems such as Bitcoin [4] are
built specifically to support cryptocurrencies, second-generation
blockchains such as Ethereum [7] extend their functionality to
support general-purpose transactions in what is known as smart
contracts. Smart contracts are user-defined, trusted programs that
allow users to process data in the blockchain. They can be deployed
in the blockchain and triggered for execution by future transactions.

In order to maintain the same total order of transactions, ensure
execution integrity, and support data provenance, existing block-
chain systems often require every node in the network to keep
a full replication of the transaction history and the ledger states.
These ever-growing data structures, however, have become too
large after a while. For example, as of July 2021, the entire block-
chain ledger is around 350GB for Bitcoin! and has exceeded 7TB for
Ethereum.? To mitigate this problem, most blockchain nodes usu-
ally maintain only a compact index called validation states, which,
being substantially smaller than the entire ledger, is sufficient for
determining transactions’ validity. However, the validation states
are still in the order of GBs (e.g., Ethereum’s validation states are
around 870GB?). Additionally, blockchain nodes are required to
replay all transactions locally based on the replicated states. Such
cumbersome stateful data poses significant storage and compu-
tation costs, limiting system scalability. Moreover, it undermines
system security and robustness by making the network more cen-
tralized as fewer and fewer nodes are capable of handling such a
large amount of data.

In attempting to solve these problems, it became clear that it
is a huge waste of storage and computation resources to require
every blockchain node to keep the same replica of the data and
repeat the same transaction executions. One solution is sharding [8,
9]. Sharding horizontally partitions the blockchain into multiple
parallel chains, each of which is managed by only a subset of the
nodes. This is an effective means of reducing storage and computa-
tion duplications among different shards. However, it is also clear
that this only alleviates the problem by a constant factor (i.e., the
number of shards). Within each shard, it is still necessary for block-
chain nodes to duplicate storage and computation. Furthermore,
existing sharding solutions often introduce new problems, such as
cross-shard transaction processing and attacks by slowly-adaptive
Byzantine adversaries [8]. Another solution is the use of light nodes.
Unlike full nodes, which store full states, light nodes keep only the

!https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chainarchive
Shttps://etherscan.io/chartsync/chaindefault

https://doi.org/10.14778/3476249.3476283
https://github.com/hkbudb/slimchain
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476283
https://www.blockchain.com/charts/blocks-size
https://etherscan.io/chartsync/chainarchive
https://etherscan.io/chartsync/chaindefault

block headers. However, although light nodes are able to follow the
consensus protocols, they alone are unable to verify the validity of
the transactions. Therefore, using light nodes does not address the
issue of centralization due to the state maintenance burden.

More recently, the concept of stateless blockchain has been pro-
posed [10, 11]. This is an off-chain scaling approach that moves
ledger states and transaction executions off-chain to a subset of the
nodes, thereby reducing the on-chain load. However, existing state-
less blockchain systems [10, 11, 12] are designed particularly for
cryptocurrencies. Attempting to develop a general-purpose state-
less blockchain that supports smart contracts presents several new
challenges. First, a fundamental issue is that in general applications,
transactions supported by smart contracts may contain arbitrary
logic. This demands novel proof techniques to attest to the integrity
of off-chain executions. Second, a smart contract transaction would
introduce read and write sets of arbitrary size. This is significantly
more complex than simple cryptocurrency transactions and re-
quires an extra design to support on-chain commitment updates.
Third, the cryptocurrency exchange methods proposed in existing
studies offer very limited support for parallel transaction execu-
tions. To improve system throughput, new transaction processing
methods are needed to support validating and committing concur-
rent transactions arrived from an asynchronous network despite of
the stateless design.

To address these challenges, in this paper, we present SlimChain,
a stateless blockchain system that scales transactions through off-
chain storage and parallel processing. The main idea is to leverage
off-chain storage nodes to store ledger states and simulate the exe-
cution of smart contracts, allowing the blockchain to maintain only
the short commitments of ledger states. We start by designing a
verifiable transaction execution algorithm for the storage nodes. It
executes transactions off-chain in parallel and computes some aux-
iliary information to attest to the integrity of the execution as well
as to facilitate subsequent transaction commitment by the on-chain
consensus nodes. We then develop a novel on-chain temporary
state, which provides minimal yet enough information to enable
stateless on-chain transaction validation, concurrency control, and
commitment. In particular, a novel partial Merkle trie structure
is proposed to enable stateless consensus nodes to maintain the
root of on-chain states without using a full Merkle trie. Our system
can handle parallel transactions submitted from an asynchronous
network even if they arrive in any arbitrary order and ensure that
the on-chain data can be collectively maintained and perfectly syn-
chronized among all nodes in the blockchain network.

Since the network layer is often a bottleneck in a blockchain sys-
tem [13, 14], we also propose several optimizations for SlimChain to
reduce its network transmissions during node synchronization. To
further improve the scalability of SlimChain, we propose a brand
new way to support sharding under stateless settings, which ad-
dresses many weaknesses of the existing sharding solutions. Our
method is independent of the consensus protocols and can be used
in both permissionless and permissioned settings.

To summarize, this paper’s contributions are as follows:

o We present SlimChain, a novel stateless blockchain system
for scalable transaction processing with smart contract capa-
bilities. To the best of our knowledge, this is the first of its
kind in the literature.

e We propose new off-chain smart contract execution, stateless

[] Extension Node
[] Branch Node

[Leaf Node

key value
al2e012f | o
a120e5b2 vy
ne | key:5b2 | [} | al2fe672 v

h(ny) = h(a12[h(ns))
h(nz) = h(olh(n) [Flh(n)) ™M
i) = ol (o el

ny) = h(e672|v.
h(ns) = h(12For) nzof1] | f

h(ne) = h(5b2[v,)

ﬂs‘@"“‘e‘ﬂ n4|key:eG72|03|

ns |key:12f|01 |
Figure 1: Merkle Patrica Trie

on-chain transaction validation, and novel state commitment
schemes to realize SlimChain in both permissionless and per-
missioned settings.

e We further propose optimization techniques for reducing net-
work transmissions during node synchronization and a novel
storage sharding technique to improve system scalability fur-
ther.

e We build an end-to-end prototype and conduct extensive ex-
periments to validate the performance of SlimChain system.
Compared with the existing systems, SlimChain reduces the
on-chain storage requirements by 97% ~ 99%, while also im-
proving the peak throughput by 1.4X ~ 15.6X.

The rest of the paper is organized as follows. We present the
background and related work in Section 2. Section 3 gives a system
overview of SlimChain. Section 4 presents transaction processing
and sharding techniques in our design. Sections 5 and 6 present the
implementation details and the experimental results, respectively.
Finally, we conclude our paper in Section 7.

2 BACKGROUND AND RELATED WORK

In this section, we give some background necessary for introducing
SlimChain, including cryptographic preliminaries, blockchain ba-
sics, and concurrency control methods. We also provide a review of
related blockchain systems and highlight the novelty of SlimChain.

2.1 Cryptographic Preliminaries

Cryptographic Hash Function. A cryptographic hash function
h(-) accepts an arbitrary-length string as its input and returns
a fixed-length bit string. It is collision resistant and difficult to
find two different messages m; and my such that h(m;) = h(my).
Classic cryptographic hash functions include the SHA-2 and SHA-3
families.

Merkle Patricia Trie. A Merkle Hash Tree (MHT) [15] is an
authenticated data structure for storing key-value pairs (k;, v;). It
supports verifiable membership testing with logarithmic complex-
ity. The MHT stores the data in an index tree, where each node
is assigned with a digest based on its hashed data value as well
as its child nodes. Subsequently, the root digest of the MHT can
be used to authenticate all the underlying data. For example, in
Fig. 1, a proof to attest to value v; (resp. v3) consists of the tree
path {n1, ny, n3, ns, h(ng), h(ne)} (resp. {ni, na, n4, h(n3)}). During
the verification, one can reconstruct the root digest and compare it
with the published value.

In blockchain systems, a trie is often used as the index tree
structure to reduce the storage cost [7]. As shown in Fig. 1, there
are three kinds of nodes in the trie: (i) extension node, which stores
a slice of the search key and a child node; (ii) branch node, which
branches out to a fixed number of child nodes; and (iii) leaf node,
which stores the remaining search key and its corresponding value.

If a search key is not present in the trie, the corresponding value
is defined as the default value, such as 0. This enables us to store
the values with a huge key space (e.g., 22°° for address space) in a
compact size. The Merkle Patricia trie is a specialized MHT that
uses the aforementioned trie as the index structure. For brevity,
hereafter we refer to Merkle Patricia trie as Merkle trie.

Merkle Multiproof. When accessing multiple values in a Merkle
trie, a Merkle multiproof is usually used to reduce the proof size.
Instead of returning a Merkle tree path for each accessed value,
we can combine them based on their common ancestors. For ex-
ample, considering a case where we want to access values v1 and
v3 simultaneously in Fig. 1, the Merkle multiproof will consist of
{n1, na, n3, n4, ns, h(ng) }. There is no need to return the hash val-
ues h(n3) and h(ng), which can be computed locally during the
verification.

Verifiable Computing. Verifiable computing (VC) is a method
for securing the integrity of computations performed by untrusted
parties. Formally, a VC scheme consists of the following algorithms:

. KeyGen(lA, F) — (EKFp,VKF): The key generation algo-
rithm takes the computation task (function) F and the security
parameter A as input, and outputs an evaluation key EKr and
a public verification key VKF.

e Compute(EKF,u) — (y,my): The compute algorithm uses
the evaluation key EKF and an input u to compute the result
F(u) — y and a proof 7 for verifying y’s integrity.

o Verify(VKF,u,y, Il'y) — {0,1}: Given the verification key
VKF, the input u, the result y, and the proof TTys the veri-
fication algorithm outputs 1 if F(u) = y, and 0 otherwise.

There are two general approaches to implementing a VC scheme:
(i) cryptography-based solutions and (ii) secure-hardware-based so-
lutions. For cryptography-based solutions, pioneered by the SNARKSs
scheme [16, 17, 18], a cryptographic proof is generated using a
circuit-based structure derived from the computation task. Owing
to the cryptographic primitives, the proof generation usually suffers
from high computation overheads. In contrast, secure-hardware-
based solutions are more efficient. Arbitrary computation tasks can
be executed inside a trusted execution environment (TEE), such as
the Intel Software Guard eXtension (SGX), in an integrity-assured
and privacy-preserving manner [19, 20]. Specifically, EKr encodes
a private key secretly embedded in the TEE hardware, and VKFp
encodes the TEE’s public key. The proof is computed as the result’s
attestation signature signed by EKF, and the client can verify the
signature using VKF, to ensure the computation integrity. There
are several existing works which propose to utilize VC schemes in
blockchain off-chain transaction execution [21, 22].

2.2 Blockchain Basics

Blockchain Data Structure. A blockchain consists of a chain of
blocks that maintain a set of world states and record the transactions
that modify those states. While blockchain nodes are mutually
untrusted, a consensus protocol (e.g., Proof of Work [4], Proof of
Stake [23], and PBFT [24]) is used to order transactions globally so
that each node has the same view of the world states.

Figure 2 shows the block data structure in a classic (stateful)
blockchain system. In a nutshell, the header of each block consists
of four fields: (i) Hprey_pik, Which is the hash of the previous block;
(if) 7cons, which is the data corresponding to the consensus proto-

...,4[1T£Ejfjgj+f.”

__---""" block; Tl

Tlcons Htx_root Hstate_root -~

o ‘*‘{ Hprevib[k

X1 : Xinput,1, 01 T
X3 : Xinput,2, 02

Merkle trie

swes (O]~ O

Figure 2: Stateful Block Data Structure

col (e.g., nonce computed by the miners in Proof-of-Work systems);
(iil) Htx_root, which is the root hash of the transactions in the cur-
rent block; and (iv) Hstate_root> Which is the root hash of the Merkle
trie corresponding to the current world states. In addition to the
block header, each block also stores the original transactions and
the state Merkle trie. These data are replicated in every node in the
blockchain network, which leads to significant storage overheads.
Furthermore, every node needs to replay all the transactions in
order to update the current world states, which incurs a high main-
tenance cost. To alleviate these problems, as mentioned in Section 1,
this paper designs SlimChain to offload as much data as possible to
off-chain nodes. More details will be given in Section 3.

Permissionless vs. Permissioned Blockchain. Blockchains
can be broadly categorized into two types, i.e., permissionless and
permissioned. In a permissionless blockchain (e.g., Bitcoin [4] and
Ethereum [7]), anybody is allowed to participate in the network
and the consensus process. On the other hand, a permissioned
blockchain (e.g., Hyperledger Fabric [13], R3 Corda [25], and Quo-
rum [26]) regulates who can initiate transactions and participate
in the consensus mechanism. Compared to permissionless block-
chains, permissioned blockchains usually achieve higher through-
put and lower consensus latency, but are less decentralized.

2.3 Concurrency Control Methods

Concurrency control is to maintain data consistency and serial-
izability despite concurrent execution of transactions. SlimChain
supports the following two prevalent concurrency control methods.
Optimistic Concurrency Control (OCC). OCC assumes that
multiple transactions can often complete without interfering with
each other. Thus, it simply checks whether other committed trans-
actions have modified the data that the current transaction accessed
(read or wrote). If so, the current transaction is aborted. OCC is
more suitable for workloads with low data contention.
Serializable Snapshot Isolation (SSI). Snapshot Isolation (SI)
executes a transaction in a consistent snapshot of the database. The
commit will be successful only if the values updated by the trans-
action have not been changed externally since the snapshot was
taken. However, the serializability may not be guaranteed due to
SI anomalies [36]. SSI remedies this by constructing a dependency
graph [37]. In the graph, each vertex represents a transaction; an
edge from T to T, indicates that Ty is preceded by T, in serial order.
There are three types of edges: (i) rw-dependency, (ii) wr-dependency,
and (iii) ww-dependency. In practice, the latter two can be ignored
due to the use of locks during writes. As long as there is no cycle
in the graph, the transactions are serializable. To improve the effi-
ciency of serializability checking, instead of using the graph, each
transaction is augmented with two flags to track whether there is a

Table 1: Comparison of SlimChain with Existing Blockchain Systems

Transaction Execution Features
System Stateless
Parallel Execution Concurrency Control Serializability! ~ Smart Contract Permissionless Sharding

Ethereum [7] X X N/A Strongly Serializable 4 v X
Fabric [13] X v OocCcC Strongly Serializable 4 X X
Fabric++ [27] X v OCC + TX reordering Strongly Serializable v X X
AHL [28] X v OocCC Strongly Serializable v X v
[29] X v SSI Serializable v X X
Fabric# [30] X v SSI + TX reordering Serializable 4 X X
FastFabric [31] X 4 ocCcC Strongly Serializable 4 X X
XOXFabric [32] X v SSI Serializable v X X
[33, 34] X X N/A Strongly Serializable v X v
[10, 11, 12] v X N/A Strongly Serializable X v X
[35] v X N/A Strongly Serializable v v X
SlimChain 4 v OCC or SSI Strongly Serializable? 4 v 4

! Strongly serializable means that the on-chain transaction commit order is the same as its serialization order.
2 SlimChain achieves strong serializability when OCC is used and normal serializability when SSI is used.

rw-dependency pointing to or originating from the transaction [38].
If both flags are set, the transaction is aborted.

2.4 Related Work

Table 1 shows a comparison of several related systems alongside
our own proposed system, SlimChain. In the section below, we
briefly review these systems in terms of stateless design, support of
concurrent transactions, and other features, such as smart contracts,
permissionlessness, and sharding.

Most existing blockchain systems are based on a stateful design
that stores all state data on-chain. Ethereum [7], the first permis-
sionless blockchain that supports smart contracts, does not allow
parallel transaction execution and suffers from low scalability. To
improve the concurrency of transaction processing, Hyperledger
Fabric [13], a permissioned blockchain with smart contract func-
tionality, employs the execute-then-order paradigm, in which mul-
tiple endorsing peers are allowed to execute transactions in par-
allel, and the execution results are then ordered and committed
sequentially by committing peers. However, this system supports
only optimistic concurrency control (OCC), which suffers from a
high abort rate when there is a high data contention. To remedy
this, Sharma et al. [27] propose transaction reordering to improve
OCC, and Nathan et al. [29] consider another concurrency control
method, Serializable Snapshot Isolation (SSI). Ruan et al. [30] the-
oretically analyze the execute-then-order paradigm and suggest
SSI with transaction reordering to further boost performance. On
the other hand, FastFabric [31] suggests several novel architectural
optimizations to reduce I/O and computation overheads in Fabric.
It is further enhanced by XOXFabric [32], where a re-execution
phase is introduced to handle aborted transactions. There are also
studies proposing improved consensus protocols [33, 34].

Recently, a stateless blockchain paradigm has been proposed for
permissionless settings, in which the validation states are moved
off the blockchain [10, 11, 12, 35]. However, [10, 11, 12] all target on
cryptocurrency applications and their methods cannot be applied
to our setting with smart contracts. Specifically, they can support
only simple cryptocurrency transfer transactions, but not the arbi-
trary computation logic required by smart contracts. Additionally,
they only consider the state maintenance for account balances,
which is insufficient for smart contracts as an unbound number of

states may be read or write during smart contract executions. Gor-
bunov et al. [35] propose a scheme called Pointproofs, which can
be used for stateless blockchains with smart contract functionality.
However, all of these works only support sequential transaction
processing in their stateless design. In comparison, in SlimChain,
smart contracts can be concurrently executed by off-chain nodes
with a VC scheme to ensure execution integrity. They can then be
validated and committed by stateless on-chain nodes even if they
are submitted asynchronously.

Furthermore, sharding is a viable approach to reduce state main-
tenance overheads by partitioning the blockchain ledger into dif-
ferent shards [8, 9, 28, 33]. In existing systems, sharding is often
implemented by creating several parallel sub-chains, where each
chain concerns only a subset of the smart contracts. However, such a
design has at least three disadvantages. First, existing sharding tech-
niques cannot completely address the state maintenance problem
owing to the limited number of shards one can create. Second, han-
dling cross-shard transactions requires a cumbersome two-phase
commit protocol (2PC), which introduces long latency and cannot
well handle forking events. Third, since sharding also partitions the
consensus among the nodes in some existing systems, this actually
leads to degraded security in the consensus layer. For example, in
RapidChain [8], a costly reconfiguration protocol needs to take
place to prevent newly joined nodes from breaching the threshold
of faulty nodes in some shard. In contrast, as we will show later, a
brand new sharding method can be integrated with SlimChain to
optimize off-chain storage performance in a novel way.

In summary, existing blockchain systems do not support state-
less data storage, smart contract functionality, parallel transaction
execution, and sharding techniques all at the same time. SlimChain
is the first system that supports all of these desired features.

3 SLIMCHAIN OVERVIEW

In this section, we provide an overview of SlimChain, the proposed
blockchain system for the enabling of scalable transaction process-
ing. We focus on general-purpose blockchain systems with smart
contract capabilities.

3.1 Design Goals

We aim to achieve the following design goals in SlimChain:

] @ Synchronize ‘

Node 1 ;
Nodes
Ja) Smart Contract {{r} e {W}rx Ca) e T
input —> $55 —> Holgs Turies
(Einputs Ot et égf" . ‘d> ' @ Validate & append to ledger
e
@ Send TX !

[- R s, Node 4
Client 1 State Database E‘a
ORa)

Node 2

E (&) Smart Contract ({r}re {W}exs
{tXinput, Otx), Xinput —» '§§} — Hold, wiite, E
> ty e ey

Send TX
© sen [- R

Client 2 State Database

[— [

@ Validate & append to ledger

Node 5

I — [

? Broadcast l @ Validate & append to ledger

Storage Nodes Consensus Nodes

Figure 3: System Model

e Minimizing the maintenance burden of blockchain nodes. As
discussed in the previous sections, reducing the storage and
computation overheads of blockchain nodes is essential for
improving system scalability and robustness.

o Supporting parallel transaction execution. To maximize system
throughput, we should allow transactions to be executed in
parallel by different nodes. Meanwhile, we should be able to
resolve conflicts and establish a consensus on the order of
transactions among all nodes.

o Supporting effective sharding. Sharding has been demonstrated
to be an effective solution to maintaining high performance
in classic stateful blockchain systems. We should integrate
sharding into the stateless blockchain design.

e Retaining system security. System security should not be im-
paired. We should follow the same security assumptions that
existing blockchain systems do. For example, for a permis-
sioned blockchain, as long as the ratio of Byzantine nodes
does not exceed the threshold of the underlying consensus
protocol, the integrity of the blockchain should be guaranteed
among the honest nodes. On the other hand, we will allow
off-chain nodes to behave arbitrarily.

3.2 System Overview

To meet the design goals, SlimChain maintains only the short com-
mitments of ledger states on-chain, whereas the stateful data is
stored off-chain in dedicated nodes. Figure 3 presents an overview
of the system model, which consists of three types of nodes con-
necting each other in an asynchronous network.

e Clients, which can invoke smart contracts by sending transac-
tion requests to the blockchain network.

e Consensus nodes, which run a consensus protocol and col-
laboratively maintain a consensus view of the blockchain
ledger. They can take two different roles: (i) block proposers,
a.k.a. miners, which are tasked to generate new blocks; and
(ii) block observers, which participate in the consensus by
only observing and validating new blocks.

e Storage nodes, which are off-chain nodes with relatively high
storage and computation capabilities. In addition to synchro-
nizing on-chain commitments, they are also dedicated to main-
taining off-chain stateful data as well as executing transac-
tions.

Block Data Structure. To reduce the storage burden of the

consensus nodes and offload as much data as possible to the storage
nodes, we design a new stateless block data structure, as shown

On-chain (Consensus Nodes)

TEe

_---""" block; IR

— -

o F‘{ Hprevib[k ‘ Tlcons

Hstateiroot
Iy

Htxiroot

1
txy @ H[Xl :
txy :H,X2

Off-chain (Storage Nodes)
r

Transactions:

X1 EXinput, 15 {7 11 AW},
Hold,1, 7TEE 1

N X2 EXinput,2, {7 2, {Wha,

Hold 2 7TEE 2

e CTTT1T - O
A e

Figure 4: Stateless Block in SlimChain

in Fig. 4. Compared to the classic block structure shown in Fig. 2,
there are two main differences. First, we replace transactions with
their corresponding digests, H;y;, as the on-chain transaction data.
The storage nodes are instead responsible for keeping the full trans-
action data. Owing to the cryptographic hash function, anyone
can use the on-chain digests to ensure that the transaction data is
not tampered with when being retrieved from the untrusted stor-
age nodes. Second, the entire world states and the corresponding
Merkle trie are also moved to the storage nodes. We keep only
the root hash of the Merkle trie, Hstate_root, on-chain for integrity
assurance. Similar to the transaction data, anyone can use this root
hash Hstate_root to verify the integrity of the state data retrieved
from the storage nodes. In the above design, the consensus nodes
in SlimChain are lightweight and comparable to light nodes in ex-
isting blockchain systems in terms of resource demands. However,
unlike existing systems, the consensus nodes in SlimChain are still
capable of validating the integrity of transaction executions and
maintaining the same level of security guarantee as that of full
nodes in classic blockchains.

Transaction Processing Workflow. As illustrated in Fig. 3,
the transaction processing in SlimChain generally consists of the
following steps:

° o To invoke a smart contract, the client sends the transaction
request to one of the storage nodes. The request is a tuple
(tXinputs Orx), Where txinpyt and oz represent the transaction
input and the corresponding digital signature, respectively.

o @ Upon receiving the transaction, the storage node simulates
the smart contract execution locally to obtain its read set {r} ;.
and write set {w} ;.

. e The execution results along with an execution proof s,
and some other auxiliary data are broadcast to the consensus
nodes (more details will be discussed in Section 4.1).

° e After validating the execution results, the consensus nodes
append the transaction and update the state commitment
in the blockchain. This includes proposing a block by block
proposers and validating the block by block observers.

o @ Finally, the storage nodes will commit to their local state
storage, once they observe that the transaction has been in-
cluded in the blockchain.

In what follows, we propose novel algorithms to enable transac-
tion execution and validation in SlimChain.

4 SLIMCHAIN TRANSACTION PROCESSING

In this section, we discuss how SlimChain processes parallel trans-
actions with stateless blocks. There are three main challenges. First,
transactions can no longer be executed by the consensus nodes
since they do not maintain the ledger states. At the same time,
we cannot simply trust the storage nodes to execute transactions
faithfully. Second, the consensus nodes are not able to update the
on-chain commitments in a straightforward way due to a lack of
necessary information. Third, we need to ensure the ACID prop-
erties of committed transactions, since they are executed by the
off-chain storage nodes concurrently. We address these three chal-
lenges in Sections 4.1 to 4.3. Afterwards, we discuss how to extend
our SlimChain system to support sharding in Section 4.4.

4.1 Off-chain Transaction Execution

Because the ledger states are not stored on-chain, a smart contract
can only be executed off-chain with the help of storage nodes. To
ensure that executions are done faithfully, we can leverage forms
of public verifiable systems. That is, the storage nodes are required
to supply some additional proof to attest to the integrity of smart
contract executions. Given such proof, anyone can verify that the
transaction execution results are indeed correct using only publicly
available information. There are three ways to achieve this:

o Cryptography-based solution: Cryptographically verifiable com-
putation techniques such as SNARKs [17] can be used to con-
struct a verifiable Turing machine. Although they are usually
less efficient, they offer the strongest security guarantee.

o Secure-hardware-based solution: A trusted execution environ-
ment (TEE) is a special secure area of a processor. A TEE
provides a security-isolated world for trustworthy program
executions on an otherwise untrusted hardware platform. It is
highly efficient but relies on additional security assumptions
compared with pure cryptography-based solutions.

e Policy-based solution: For permissioned blockchains, a policy-
based approach can also be used. For example, one can assume
that the execution is faithful as long as there are enough en-
dorsers or auditors to digitally sign the results. This approach
offers the highest level of performance, though at the expense
of some security protections.

In this paper, we mainly consider using the secure-hardware-based
solution, specifically Intel SGX powered TEE [20]. It has the ad-
vantage of both offering high performance and requiring less trust.
Nevertheless, it is worth noting that our transaction commitment
and node synchronization schemes proposed in Sections 4.2 and 4.3
can work with either of the three solutions mentioned above.

To support verifiable off-chain transaction execution and provide
enough information to be used by the consensus nodes for stateless
on-chain transaction commitment, we develop a novel TEE-based
storage node transaction execution algorithm. As shown in Algo-
rithm 1, it accepts two inputs: (i) the transaction request from a
client, and (ii) the state root in the latest block observed by the
current storage node (denoted as Hy|q). Ho|q represents a snapshot
of the current world states. It serves two purposes. On one hand, it
creates a snapshot isolation environment w.r.t. Hy|4 for the smart

Algorithm 1: Storage Node Transaction Execution (TEE)

Input: transaction request {¢Xinput, 0zx), state root in the latest
block Hyg.

if verify (tXinput, 0rx) failed then abort;

<{r}txa {W}tx> — exeCUte(txinputhold);

Tread < get_merkle_proof ({r};,);

if verify({r},x, Hold Tread) failed then abort;

7ree < TEE. sign({¢Xinputs {7} rxeo {W}ex> Hold));

return ({r}, ., {w} ., 776E);

1 T BN T CH

Transaction fx4

{r}ix {00:0,} | 7read n n]
{wlix {11:07} | Fwrite fo]1]He]1]

Off-chain State

Figure 5: An Example of Transaction Execution

contract execution. On the other hand, as to be shown later, H4
serves as an anchor point to attest to the integrity of the transac-
tion read set. To execute the smart contract, the transaction request
is firstly verified against its digital signature (Line 1). Then, the
smart contract is executed normally with respect to the input and
the state root. During the execution, we record the read set {r};,
and the write set {w},, (Line 2). To ensure that the read values
obtained from outside TEE are correct, a Merkle multiproof with
respect to the read set is generated outside TEE (Line 3). Inside TEE,
the Merkle root is reconstructed using this proof and the recorded
read set {r},. The verification passes if this computed Merkle root
matches with the state root from the input Hy)q (Line 4).% Finally,
TEE signs a digital signature g using the technique known as
remote attestation [20] (Line 5). Note that the signature is created
with respect to the transaction input, the read/write sets, and the
original state root Hy|4 to prevent any tampering.

Outside TEE, the storage node also computes an additional
Merkle proof (denoted as myyite) With respect to the written ad-
dresses in the write set {w};,. This is needed to facilitate the state-
less consensus nodes to update the on-chain state root. We will
discuss this in more detail in the next section. Putting all these
things together, the off-chain execution result txg,pmit, which will
be broadcast to the consensus nodes for final commitment, has the
following components:

EXsubmit = <txinput’ {r} s {W} s Holds ZTEEs Twrite)-

Example. Figure 5 shows an example of transaction execution.
Suppose that the current off-chain state trie is the one shown in the left.
After verifying the signature of the transaction request, the transaction
txy4 is executed with respect to the current state root Hyoo. Assume that
we obtain the read set {00 : v1} and the write set {11 : v7}. A Merkle
Pproof myeqq as shown in the figure is computed from the current off-
chain state and read set. Using this proof and the read value, the TEE
recomputes the Merkle root Higo to verify the integrity of the transac-
tion reads. After verification, the value in the read set is discarded, leav-
ing the read set to be {00}. Then, TEE signs the execution result in the
form of wree = TEE.sign({tXinpus, {00}, {11 : 07}, H100)). Finally,
the storage node computes another Merkle proof mite With respect to

4 After the verification of /Tyead, we only need to keep track of the read addresses in
the read set {r},,. In comparison, the write set {w},, includes both the written
addresses and written values.

the write set as shown in the figure, and broadcasts the final execution
result as tXgypmit = <txinpub {00}, {11 : 07}, H100, ZTEE Twrite)-

4.2 On-chain Transaction Commitment

After collecting a certain number of off-chain transaction execution
results, the block proposers of the consensus nodes can bundle
them together to generate a new block. In other words, they are
responsible for ordering and committing the transactions on-chain.

4.2.1 Solution Overview. There are two major obstacles for state-
less transaction commitment. On one hand, the consensus nodes
need to validate then commit the transactions despite of being state-
less. In particular, the root of the Merkle trie Hstate_root Needs to
be updated by the consensus nodes without access to the full trie.
On the other hand, due to the nature of the asynchronous network,
transactions from the storage nodes may arrive in any arbitrary
order. This entails us to design algorithms such that they are able
to not only handle concurrency control to ensure ACID proper-
ties among parallel transactions, but also ensure the on-chain data
being collectively maintained and perfectly synchronized among
all nodes in the blockchain network. To this end, we propose to
maintain some minimal yet enough auxiliary information on the
consensus nodes to follow the state of the Merkle trie and track the
dependencies between different transactions.

To make the aforementioned on-chain auxiliary information as
small as possible, we make two important observations. First, the
longer the latency between the transaction execution and the ar-
rival on the consensus nodes, the higher the probability of a conflict.
Second, there is no need to keep the stateful data forever. Thus, we
only need the information for a few of the most recent blocks. We let
each consensus node keep track of a minimal amount of temporary
stateful data for the most recent k blocks. The setting of on-chain
temporary state length k is a system parameter shared by all parties
in the network. If a transaction received by the consensus nodes
was executed based on a block whose age is more than k blocks,
the consensus nodes simply discard the transaction. Note that the
temporary data serves two purposes: detecting read/write conflicts
and updating the on-chain state root. Furthermore, it should also
support incremental updates since the on-chain transaction com-
mitment happens in sequential order and has a big impact on the
system performance. Therefore, we design the temporary state to
include five components: (i) A map between the block height to
the corresponding read addresses set, denoted as M;,; (ii) A map
between the block height to the corresponding written addresses
set, denoted as M;i—y; (iii) A map between the read addresses to an
ordered list of block heights, denoted as My;; (iv) A map between
the written addresses to an ordered list of block heights, denoted as
M,y—i; and (v) A partial Merkle trie which only records the write
set that happened in the past k blocks along with their Merkle paths,
denoted as 7s,.

Algorithm 2 describes the overall procedure for committing the
transactions. We will go through the pending transactions one by
one. Consider one transaction. First, it checks that the transaction
is indeed recent enough (Line 4) and has a valid TEE signature
(Line 5) as well as a valid write proof myite (Line 6). Next, it checks
whether the transaction has any read or write conflict with other
committed transactions (Line 7). Then, we merge myrite and {w};,
into the partial Merkle trie 7, (Line 8). At the same time, we can

Algorithm 2: Consensus Node Transaction Commitment

Input: transactions executed by the storage nodes {¢xsypmit }»
current block height i.
1 for tx € {txsupmit} do

2 (tXinputs {7 } x> AW} x> Holds TTEEs Twrite) < £X;

3 j < get_block_height (Hy);

4 if i — j > k then continue;

5 if verify ({tXinput, {7} x> {W}exs Hold)s 7r7eE) failed then
continue;

6 if verify(Hoyq, Twrite) failed then continue;

7 if check_conflict({r};x, {W}sx. j) failed then continue;
8 Update 7,y using 7yrite and {w},,; // See Alg. 3
9 M [i +1].append ({r},5);

10 My [i+1].append({w},y);

1 for r € {r};, do M,;[r].append(i +1);

12 for w € {w},, do M,,,;[w].append(i + 1);

13 Cgmpute Hgtate_root from 75, generate new block block;y1;

1 forr € M, [i—k+1] do

15 Mysi[r].remove(i — k + 1);

16 if M, [r] is empty then M, ,;.remove(r);

17 A/EHr.remove(i —k+1);

18 for w € M, [i —k+1] do

19 Myysi[w].remove(i — k +1);

20 if M,yi[w] is empty then

21 M,y i.remove (w);

22 Tw.remove (path associated to w); // See Alg. 4

23 Mijs.remove (i — k +1);

update the four maps stored in the temporary states to include
the new transaction. Upon applying the above algorithm to all the
transactions, a new block is computed. The new block includes a list
of digests of the valid transactions and a new state root computed
from 7, (Line 13). This proposed new block will later be passed
to the consensus protocol for ordering. Finally, we remove the
information related to the k-th recent block from the temporary
states. This is done by removing the k-th block from M;,; and
M,y—i. If an address has no corresponding block in these two maps,
it is removed completely from the maps. For the removed written
addresses, we also remove their associated tree paths from 75,
(Line 22).

4.2.2 Partial Merkle Trie Maintenance. The core design of our pro-
posed temporary state is a novel partial Merkle trie 75,, which
enables the consensus nodes to update the state root digest without
accessing the full Merkle trie. The partial trie has an identical struc-
ture to the full trie stored by the storage nodes, so they share the
same root digest. However, the majority of tree nodes in 75, are sup-
pressed. Instead, only the tree nodes corresponding to the written
values happening in the past k blocks as well as their Merkle paths
are materialized. The partial trie supports two operations, namely
update and tidy. The update operation takes the Merkle proof myrite
and write set {w}, to apply the writes from the transaction. Note
that the proof contains the original Merkle trie paths corresponding
to the written addresses when the transaction is executed, whereas
the write set records the written values. A simplified version of the
algorithm is shown in Algorithm 3, which assumes that there are
only branch nodes and leaf nodes without the remaining search
key in the Merkle trie. It traverses both the partial trie and the

Consensus Node Temporary States Transactions
Block Height 100 101 102 Tix Wex Hyq Twrite

TX List {tx1} {tx2} {tx3,tx4} tx; {10} {01:v,} Hyy (o] 1] Yo 1]
M; 100: {10 100: {10}, 101: {10 101: {10}, 102: {00, 10

i-or { } { } { } { } { } txy {10} {00:05} I_I5|9 n n
Misw 100: {01} 100: {01}, 101: {00} 101: {00}, 102: {10, 11}
M, 10: {100} 10: {100, 101} 10: {101, 102}, @@: {102} » (1o} o ol e o[t} He[1]
My 01: {100} 00: {101}, 01: {100} @0: {101}, 10: {102}, 11: {102} || *+ {00} {11: 07} Hieo [o]1]He 1]

b {00} {10:%) Hu [eT1] (o]

Compressed 7y rite for blockioz

Full Merkle Trie
(in storage nodes)

Prefix: 1 Prefix: 1 Prefix: 1

el + 0 - [
[heo| | hn) | B]

Figure 6: An Example of Transaction Commitment

Algorithm 3: Update Partial Merkle Trie 7, (Simplified)

Input: write set Merkle proof myrite, write set {w};,..
1 Q « init_queue();
2 Q.enqueue ((yrite.root (), Try.root()));

3 while not Q.is_empty() do

4 (g, ng) «— Q.dequeue();

5 for (ny,i) € ny.child_nodes_with_index() do

6 ny « ng.child[i];

7 if ny is suppressed then

8 Update n;’s subtree using values from {w},,;
9 Replace ny with ny;

10 else Q.enqueue({ni, n2));

Algorithm 4: Tidy Partial Merkle Trie 75,

Input: address to be removed w, write set map Myy;.
1 len « max{common_prefix_len(w, w)|¥Vw' € M,y;};
node «— T,,.root(); depth « 0;
while depth < len do

L node < node.child wr.t. address w; depth < depth + 1;
Replace node with its digest value;

[BN

proof in a top-down fashion to find the proper places to insert the
missing subtrees and the written values. For normal Merkle trie, the
full version of the algorithm is shown in our technical report [39] .
On the other hand, the tidy operation is used to remove the write
addresses whose age is more than k blocks. This is needed to keep
the size of partial Merkle trie 75, small. Its algorithm is shown in
Algorithm 4. We start by comparing the removing address with the
rest of the addresses in the write set map M,,—; to find the maxi-
mum common prefix length (Line 1). Then, we simply remove all
nodes who are on the Merkle path corresponding to the removing
address and have a tree depth larger than the previous found prefix
length.

Example. Figure 6 shows a full example of transaction commit-
ment. In this example, the on-chain temporary state length k is 2,
which means that the consensus nodes only keep track of the partial
states for the last two blocks. Assume that the current block height is

101, and a consensus node is working to create block 102. There are
three candidate transactions {tx3, tx4, txs}, all of which are executed
by the storage nodes using block 100 as the starting point.

Suppose that tx3 and txs are the only transactions passing both the
validation of w7, Tyrite and the concurrency control, a consensus
node now needs to commit them into the partial Merkle trie T, for the
purpose to compute the state digest for the new block 102. First, the
consensus node uses myyrite’s of tx3 and txy to materialize the missing
tree nodes in the partial trie T,,. The missing tree nodes all lie in the
Merkle paths corresponding to keys 10 and 11. Next, the write sets
{10 : v} and {11 : vy} of these two transactions are applied to update
the written values {ve, v7}. This updated partial trie is then used to
compute the new state root Hiop and subsequently to create the new
block 102. Finally, the consensus node removes the unneeded tree path
associated with keys whose age is more than 2 blocks from the partial
trie to keep the trie size small. In our example, it is the path associated
to key 01 (i.e., leaf node h(v)).

4.2.3 Concurrency Control. Our system supports two methods of
concurrency control, i.e., Optimistic Concurrency Control (OCC)
and Serializable Snapshot Isolation (SSI) using the heuristic from [38].
Both of them only rely on the minimal amount information stored in
the temporary state. When OCC is used, we simply check whether
any read or write set of the transaction has been updated by other
more recently committed transactions. In comparison, we check two
criteria in SSI: (i) whether any part of the write set is also updated
by other transactions; and (ii) whether there are rw-dependencies
both pointing to and originating from the current transaction. Sim-
ilar to traditional DBMS, we do not need to keep track of either
wr-dependency or ww-dependency. This is because the transactions
are committed in a sequence with no concurrent writes. It is also
worth noting that the order of transactions in the blockchain may
not represent their execution order in SSI. Instead, each transaction
is considered to start at the block corresponding to Hy|4 and to be
committed in the block where it is stored. The detailed concurrency
control algorithms are shown in Algorithms 5 and 6.

Example. In the previous example shown in Fig. 6, the consensus
node needs to check whether there is any conflict between candidate

Algorithm 5: Check Read/Write Conflict (OCC)

Input: read set {r},,, write set {w},,., block height j which
corresponds to Hyq.
1 forr € {r},, do
2 L if 3is.t.i € Myyi[r] Ai > j then return failed;
3 for w € {w},, do
4 L if Ji s.t.i € Myyi[w] Ai > j then return failed;
5 return success;

Algorithm 6: Check Read/Write Conflict (SSI)
Input: read set {r},,, write set {w},,, block height j which
corresponds to Hoq.

1 flag, « false, flag, «— false;
2 for w € {w},, do
3 if 3i s.t.i € Myyi[w] Ai > j then return failed;

L if 3ist.i € Mpi[w] Ai > jthen flag, < true;
5 forr € {r};, do
6 L if Jist.i € Myysi[r] Ai > j then flagy « true;
7 if flag: A flag, then return failed else return success;

4

transactions (i.e., {tx3, tx4, txs5}) and the transactions already com-
mitted in the last two blocks. It is easy to see that txs satisfies the
serializability requirement. For txy, since it reads a value at key 00
during off-chain execution (i.e., blockigo), which is later written by
txo committed in blockyy1, it will be aborted when OCC is used. How-
ever, it can still be committed when SSI is used. In this case, txy4 is
considered to be executed before txy although it is committed in a
later block. The transaction txs, on the other hand, is not serializable
under either of the concurrency control methods.

4.3 Node Synchronization

After the consensus nodes create a new block, it needs to be syn-
chronized with the rest of the network. There are three kinds of
nodes to be considered, namely block observers, storage nodes, and
newly joined nodes.

4.3.1 Block Observers. As discussed in Section 3.2, only a subset
of the consensus nodes, known as block proposers, are responsible
for creating the new block. On the other hand, the block observers
merely validate and log the blocks created by the block proposers.
Here, they can simply run the same algorithms introduced in Sec-
tion 4.2 to validate the transactions associated with the new block.
If any of the transactions fails the validation, the proposed block
is considered to be invalid and is discarded. Depending on the un-
derlying consensus protocol, a view change procedure may also
be triggered when an invalid block is observed from the block
proposers.

Since the network transmission plays a big role in blockchain
bottlenecks [14], it is important to reduce the amount of data sent
to the block observers. One idea is to reduce the size of the Merkle
proof myrite. Instead of using the proof computed by the storage
nodes at the time of transaction execution, the block proposers
can compress it with three means. First, through comparison with
the original proof that is computed based on the Merkle trie corre-
sponding to H4, the compressed one is built based on the latest
block, i.e., the one immediately preceding the current block. This
also has the benefit of reducing the block observers’ computation
overheads during updating 73,. Second, the compressed proof does

not need to start from the root of the Merkle trie. All tree nodes
that are shared with the previous partial trie 7, can be omitted
and be replaced with a common prefix of the search keys to save
bandwidth. Third, instead of returning one proof per transaction
in the block, the block proposers can bundle them together into
one Merkle multiproof. The algorithm to compute this compressed
proof for a single transaction is similar to Algorithm 3. The only
difference is that instead of finding the proper places to insert the
missing subtrees (Lines 8 to 9 in Algorithm 3), it extracts these
subtrees along with their prefix of the search key to generate the
compressed proof. To produce the compressed proof for multiple
transactions in a block, the block proposer can invoke the above
procedure to create a compressed proof for each individual transac-
tion. Then these proofs can be merged by combining subtrees that
share the same prefix to create the final compressed proof. When
the block observers receive the compressed proof, it is no longer
verified against the old state root Hy|q but against the most recent
partial trie 75,. Apart from this, the rest of the algorithm is identical
to Algorithm 2.

Example. In the example shown in Fig. 6, the compressed proof
is illustrated in the bottom right corner. This proof uses the common
prefix 1 to represent its location in the partial Merkle trie T,,. It is
computed by first comparing the differences between yjte’s of tx3
and tx4 with the partial trie T, in the previous block then combining
these differences into one proof. When received by the block observers,
the Merkle root hash of the subtree in the proof is computed and
compared with the hash value stored locally in the corresponding
node of T,y (highlighted by the red rectangle) to ensure the integrity
of the compressed proof.

4.3.2 Storage Nodes. The storage nodes follow similar behaviors to
the consensus nodes. That is, they execute the same procedure de-
scribed in Section 4.2 to commit the transactions ordered by the con-
sensus protocol. At the same time, they also store the relevant data
instead of just their digests. This includes both the transaction data
and the state data. For the transaction data, the storage nodes record
the transaction input txjnpyt, the read/write set ({r};y, {w};y), the
state root Hy|q that the transaction is executed upon, and the sig-
nature wrgp generated by TEE for each transaction. There is no
need to store the Merkle proof for the write set 7yite, because it
can be recomputed on-the-fly from the full Merkle trie. As for the
state data, the storage nodes maintain the full Merkle trie locally.
This is achieved by updating the trie directly during the transaction
commitment instead of using the temporary partial trie 7,.

4.3.3 Newly Joined Nodes. When a fresh node joins the network,
it has to synchronize and examine all the blocks as well as their
transactions, starting from the genesis block. This procedure is
quite similar to that of existing blockchain systems, where a newly
joined node invokes Algorithm 2 to validate all the blocks down-
loaded from the blockchain network. Yet, there are two notable
differences. First, the newly joined node will retrieve the existing
blocks from the storage nodes instead of the consensus nodes. This
is due to the fact that only the storage nodes keep a whole copy
of the transaction data in our SlimChain design. Second, while it
is still required to maintain the temporary states comprising the
last k blocks for the read/write set maps in order to check the
serializability of the transactions, we can optimize the usage of
the partial trie 7,,. Instead of invoking the update (Algorithm 3)

Blockchain Blockchain Blockchain
e [OH e O e O
Storage Storage Storage

Layer Merkle trie Layer Merkle trie Layer Merkle trie
(upper level) (upper level) (upper level)

S8 ||B B||EEE

Shard 1 Shard 2 Shard 1 Shard 3 Shard 1 Shard2 Shard 3

Node 1 Node 2 Node 3

Figure 7: Example of Sharding among Storage Nodes

and tidy (Algorithm 4) operations on 75, for each block, we can
resort to a batching strategy. Specifically, the storage nodes can
compute a mega Merkle multiproof to the addresses which will be
updated in the next m blocks and send it to the newly joined node.
After that, the newly joined node can compute the root state for
the next m blocks by applying the relevant write sets to the afore-
mentioned mega multiproof. The parameter m can be dynamically
chosen based on network conditions and the memory capacity of
the nodes. Clearly, this has the advantage of saving bandwidth by
avoiding transmitting duplicate tree nodes.

4.4 Sharding

Sharding is a common technique employed to improve scalability
and boost performance for distributed systems. The core idea is
to partition the database or states horizontally among different
peers. Here, each individual partition is referred to as a shard and
is maintained by a separate database instance. Sharding not only
has the advantage of reducing the storage cost among individual
nodes in the network, but also benefits the transaction execution
by spreading the load. To address the issues of existing sharding
techniques mentioned in Section 2.4, we propose a brand new shard-
ing method. Instead of creating a fixed number of sub-chains, in
SlimChain, sharding only happens among the off-chain storage
nodes. Owing to the stateless design, the on-chain consensus nodes
are lightweight and thus can forgo the sharding. For the off-chain
storage nodes, the sharding is highly flexible and completely dy-
namic. The storage nodes can choose to store partial or full states,
on the basis of their storage capacities. An example of sharding
is shown in Fig. 7: Nodes 1 and 2 store only two shards, whereas
Node 3 stores the entire replica of the states. Furthermore, nodes
can expand or shrink their local storage dynamically based on the
needs of the application. For the sake of system efficiency, each
node may choose to always store the upper layer of the Merkle trie,
which is updated frequently.

During the off-chain transaction execution, there is no special
treatment needed for cross-shard transactions. When a transaction
involves multiple shards, the client can choose to send it to a stor-
age node that has all the necessary shards; alternatively, multiple
storage nodes can work together to process the transaction. In the
latter case, one of the storage nodes can be chosen to execute the
transaction inside TEE, where the necessary state data is retrieved
either from local storage or from the remote nodes that own other
shards. The rest of the algorithm is identical to the one described
in Section 4.1. Finally, since there is no sharding in the on-chain
layer, sharding is completely transparent to the on-chain trans-
action commitment procedure. As such, not only SlimChain can
maintain the same level of security in the consensus layer with or
without sharding, but also ensures cross-shard transactions to be
committed on-chain in an atomic fashion without any extra latency.

Block

I Storage Node E)J Block Proposer Pl Block Observer I
L J J

Y

Y

A
SlimChain

I’I'X Execution ‘ Block Propose ‘ Block Synchronization ‘

| Off-chain State | | On-chain State |
TX Engine |

| Consensus | |

Low-level Modules

Storage Merkle Trie Network SGX Enclave

Figure 8: System Architecture of SlimChain

5 IMPLEMENTATION

We implement an end-to-end prototype of SlimChain in the Rust
programming language, which consists of around 26,000 lines of
codes. The source codes are available at https://github.com/hkbudb/
slimchain. Figure 8 shows the system architecture, which consists
of three layers.

The bottom layer consists of multiple low-level modules. This in-
cludes: (i) Storage. We use RocksDB as the data storage; (ii) Merkle
trie. It offers the functionalities of manipulating the Merkle Patricia
Trie. We choose BLAKEZ2D as the cryptographic hash function used
throughout SlimChain; (iii) Network. Two different network en-
gines are developed. HTTP protocol is used for communication in
the permissioned settings, whereas the libp2p library is used in the
permissionless settings. The latter offers the functionalities of node
discovery, gossip broadcast, and P2P RPC messaging;® (iv) SGX en-
clave. The Rust SGX SDK is used to implement the secure enclave.”

The middle layer implements the essential functions of the block-
chain system. The off-chain state module manages the states stored
in the storage nodes, including the sharding support. Furthermore,
the on-chain state module manages the blockchain’s temporary
states and associated transaction commitment algorithms as dis-
cussed in Section 4.2. For the consensus, since our proposed algo-
rithms in SlimChain are not involved in the consensus process,
we use a pioneering consensus protocol for permissioned and per-
missionless settings, respectively. Specifically, the Raft consensus
protocol is used in the permissioned setting.® On the other hand,
Proof-of-Work (PoW) is used for the permissionless system whose
mining difficulty is set such that a new block is generated for every
5 ~ 10 seconds. To execute smart contracts, the TX Engine is built
based on a Rust Ethereum Virtual Machine, which interprets smart
contracts written in Solidity.” The TX Engine runs inside an SGX
enclave and signs the execution results using an ephemeral key
generated inside the same enclave. This ephemeral key is in turn
signed by the Intel SGX attestation services.'” This hierarchical PKI
design can significantly improve the performance of SGX remote
attestation.

The top layer handles the entire transaction and block processing
cycle. Specifically, this includes: (i) off-chain transaction execution,
(if) block proposing, and (iii) block synchronization.

Shttps://rocksdb.org
Chttps://github.com/libp2p/rust-libp2p
"https://github.com/apache/incubator-teaclave- sgx-sdk
8https://github.com/async-raft/async-raft
“https://github.com/rust-blockchain/evm
Ohttps://api.portal.trustedservices.intel.com

https://github.com/hkbudb/slimchain
https://github.com/hkbudb/slimchain
https://rocksdb.org
https://github.com/libp2p/rust-libp2p
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/async-raft/async-raft
https://github.com/rust-blockchain/evm
https://api.portal.trustedservices.intel.com

Table 2: System Parameters

Parameters Permissioned Permissionless

consensus protocol Raft Pow
concurrency control method OCC, SSI
proof compression optimization (Sec 4.3.1) Disable, Enable

of consensus nodes 4,8, 16

of storage nodes 1,234
maximum TX per block 1,024 4,096
on-chain temporary state length k 16

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed Slim-
Chain system against three baselines:

e Classic: It follows the design of traditional blockchains like
Ethereum [7]. There are only on-chain consensus nodes in
the system. Transactions are executed by block proposers
during block generation, then by block observers during block
validation. All these executions are done sequentially. Since all
nodes are stateful, all transaction and state data are replicated
by every node.

e Stateful: It is a stateful counterpart of SlimChain, which con-
tains all the components of SlimChain except the partial
Merkle trie 75,. The transaction processing is similar to that of
SlimChain. However, the entire transaction and state data are
directly stored by all nodes during transaction commitment.

e Fabric#: In the permissioned setting, we also compare our
system with FabricSharp [30]. The transactions are first exe-
cuted by the endorsement nodes, who play a similar role as
the storage nodes in SlimChain. For fair comparison, the en-
dorsement policy is set to only require the transaction being
endorsed by a single endorsement node. Then, transactions
are ordered and committed by the consensus nodes. All nodes
are stateful and thus store all ledger information.

For fairness, both Classic and Stateful are implemented using the
same program language and libraries as discussed in Section 5.

6.1 Experiment Setup

We deploy the blockchain network in the Azure cloud in the US-
East region. The consensus nodes are run on the Standard_D2_v2
machines, whereas the storage nodes or endorsement nodes use
the Standard_DC4s_v2 machines.!! The default network topology
consists of 16 consensus nodes and 4 storage nodes or endorse-
ment nodes. The network bandwidth among nodes is 1500 Mbps.
Moreover, we enable multithread computation in the storage nodes,
where three parallel threads are used to drive the TX engine. The
consensus nodes on the other hand run in a single thread. Table 2
lists all the system parameters used in the experiment, where the
default values are highlighted in boldface.

Blockbench [1] is used to evaluate the performance. It offers
both micro benchmarks consisting of DoNothing (denoted as DN),
CPUHeavy (denoted as CPU), IOHeavy (denoted as 10), and macro
benchmarks consisting of KVStore (denoted as KV) and SmallBank
(denoted as SB). We measure the following metrics to evaluate the
proposed system: (i) success rate, the ratio between the number
of the committed transactions and the sent transaction requests;
(ii) peak throughput, the maximum number of committed trans-

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes- general

Classic Stateful &2 Classic Stateful &= Slimchain ©a
Fabric# 3 Slimchain =1 20K T T T T
20K T T T T =

= = 15.0k

= 15.2k o 15K

@ 15K |- =

3 8

@ 10K @

g 2

g 5K 8k 5;"‘3.ak H

g ko (B, &

0

DN CPU 10 KV SB
(a) Smart Contract (Permissioned)

Figure 9: Consensus Node Storage Size (B/tx) vs. Smart Contract

(b) Smart Contract (Permissionless)

Classic Stateful &z Classic — SlimChain — propose
Fabric# 3 Slimchain =1

Fabric# — exec validate
Stateful — wait-prop net+raft &2
T T T T T

L 9.
8.1

9. 8.2

5
7.4
.4 7.

%

0
7.3
q
7 4
2.5 2.4

i
K 38]
I B 2, 2 2,,

Throughput (tps)

DN CPU 10 KV SB DN CPU 10 KV SB
(a) Smart Contract (b) Smart Contract

Latency (s)
onN B O ®O
T

Figure 10: Throughput/Latency vs. Smart Contract (Permissioned)

Classic Stateful &= Slimchain =1 Classic exec propose
T T Stateful — wait-prop validate
SlimChain — mining < net &
7 500 b RE T T ‘
< 400 342 150

—
BRI
5

e
RS

P>

L
XX &
@

=
S

100

Latency (s)

50

2

[
RS

3

X
DN CPU IO KV SB
(a) Smart Contract

A A\ v
DN CPU IO KV SB
(b) Smart Contract

Figure 11: Throughput/Latency vs. Smart Contract (Permissionless)

actions per second. It is measured by performing a binary search
among varying transaction sending rates; (iii) latency, the average
time from sending a transaction request to the transaction commit-
ment in the local consensus node; and (iv) storage size, the average
per transaction storage size. Except for Fabric#, we further break
the latency down to multiple components, including (i) storage
node execution time (denoted as exec); (ii) time of transactions
staying idle in the queue of block proposers before being processed
(denoted as wait-prop); (iii) block proposing time excluding the
consensus process (denoted as propose); (iv) time related to con-
sensus (denoted as raft/mining); (v) block validation time by block
observers (denoted as validate); and (vi) network communication
time (denoted as net). For each experiment, 300,000 transaction
requests are randomly generated using 100,000 sender accounts.
In the following, we first compare the overall performance be-
tween SlimChain and baselines when processing different smart
contracts under the default system parameters. Then, we present
the performance evaluation with varying system parameters. Fi-
nally, we investigate the system performance when the proposed
sharding technique is used. Due to the space limitation, additional
experimental results are presented in our technical report [39].

6.2 Experimental Results

6.2.1 Overall Performance. Figure 9 shows the average per transac-
tion storage size for the consensus nodes in SlimChain and baselines.
We can see that SlimChain reduces the on-chain storage require-
ments for the consensus nodes by 97% ~ 99%. This is because our
stateless design shifts most of the storage burden to the off-chain
storage nodes. We also observe that the on-chain storage size of

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-general

Table 3: Success Rate vs. Concurrency Control (Permissioned)

Smart Contract KV SB

OCC Success Rate 90.49% 99.62%
SSI Success Rate 95.34% 99.75%

lat-exec 2 lat-validate
lat-wait-prop = lat-(net+raft) &
lat-propose throughput &2

lat-exec 2 lat-validate
lat-wait-prop £ lat-(net+raft) =
lat-propose

throughput =

T T 1200 T T 1200

D 10 945 @
o <%
28 =z
R E
e 2 £
Ea E
s g 4 s
= 2 =

3 0

occ Ssi occ SslI

(a) Concurrency Control (KV) (b) Concurrency Control (SB)

Figure 12: Performance vs. Concurrency Control (Permissioned)

SlimChain remains constant regardless of the smart contracts.

Figures 10 and 11 report the the peak throughput and respective
transaction commit latency for different smart contracts under the
default system parameters. As shown in Figs. 10a and 11a, Slim-
Chain improves the throughput by 1.6X ~ 11.3X and 2.6X ~ 15.6X
against Classic for all smart contracts. In particular, SlimChain
achieves the best performance improvement for CPUHeavy thanks
to the outsourcing computation and the concurrent execution of
smart contracts. Compared with Fabric#, SlimChain improves the
throughput by 1.4X ~ 2.6X. SlimChain shares similar throughput
with Stateful, although some notable improvement can be observed
in KV and SB in the permissioned setting.

For latency, Figs. 10b and 11b show that SlimChain and Stateful
achieve the lowest latency in comparison with Classic and Fabric#
across almost all smart contracts. Note that the storage node execu-
tion time in SlimChain and Stateful is too small to be visible in the
figure. Moreover, it can be observed from the latency breakdown
that the biggest contributor to the latency is network communi-
cation and Raft consensus (net+raft) in the permissioned setting.
In comparison, the transactions spend most of time in the queue
(wait-prop) in the permissionless setting.

Overall, we can observe that SlimChain achieves the lowest
storage requirement with no sacrifice in terms of performance.

6.2.2 Impact of System Parameters. In this section, we evaluate the
performance of SlimChain under different system parameters to
test their impact. We only test the two macro benchmarks in the
permissioned setting here, i.e., KVStore (KV) and SmallBank (SB).

First, we evaluate the influence of two concurrency control meth-
ods, namely OCC and SSI. Their commit success rates are presented
in Table 3, in which SSI yields a higher success rate than OCC for
both smart contracts. The results are aligned with the analysis in
Section 4.2. As shown in Fig. 12, these higher success rates con-
tribute to an increase in throughput by 7% ~ 8% and a decrease in
latency by 6% ~ 21%.

Next, we evaluate how the proposed proof compression optimiza-
tion discussed in Section 4.3.1 impacts the system performance. As
shown in Fig. 13, SlimChain yields a better performance in through-
put by 1.5X ~ 1.6X and a reduction in latency by 36% ~ 38% when
the proof compression optimization is used. This is expected as the
network often contributes to the bottleneck of distributed system
and the proof compression helps reduce transmission overheads
during block synchronization.

lat-exec I lat-validate
lat-wait-prop £ lat-(net+raft) &

lat-exec 2 lat-validate
lat-wait-prop & lat-(net+raft) =

lat-propose throughput &2 lat-propose throughput &2
T T 1200 T T 1200

P 10 —

%00 & 900 &
= 3 gl £
RS =]

600 & 2 6| 600 £
ez, g

300 £ -~ 300 £
= 2 =

0 0 W 0

Disable
(b) Proof Compression (SB)

Disable
(a) Proof Compression (KV)

Figure 13: Performance vs. Proof Compression (Permissioned)

lat-exec 2 lat-validate 8k
lat-wait-prop £ lat-(net+raft) =
lat-propose throughput —+
. . . : 1200 = 6k - 5959
5 B %2 w92 900 & E a o 4782 4604
OF) S 58 | i
= 5 <]
%) 3 Q oZ
< £ oY%
2 2 So
52 3 9€ 2| i
s 09
1 = %]
0 0
1 2 3 4
(a) # of Shards (b) # of Shards

Figure 14: Performance vs. # of Shards (KV, Permissioned)

6.2.3 Sharding Performance. Finally, we investigate the perfor-
mance of SlimChain with sharding. We evenly partition the smart
contract world states based on smart contract addresses. Figure 14a
shows KVStore’s peak throughput and latency with storage nodes
being partitioned to different numbers of shards. Here, the number
of shards being equal to 1 means that sharding is disabled. Since our
proposed sharding technique is completely transparent to the con-
sensus nodes, we observe only very small changes in transaction
commit latency and peak throughput. On the other hand, Fig. 14b
shows that with more shards, more storage spaces are saved among
the storage nodes. Because all of the storage nodes need to store
the upper-level Merkle trie, this space saving is however not linear
in terms of the number of shards.

7 CONCLUSION

In this paper, we have designed a novel stateless blockchain sys-
tem, SlimChain, that scales transactions through off-chain storage
and parallel processing. Specifically, the ledger states and transac-
tion executions are moved to off-chain storage nodes to improve
system scalability. To support stateless transaction commitment,
we designed new off-chain transaction execution, on-chain trans-
action validation, and node synchronization schemes, along with
a novel partial Merkle trie structure. To further improve system
performance, we proposed optimizations to reduce network trans-
missions and a new sharding technique. Extensive experiments
show that the proposed SlimChain system reduces the on-chain
storage requirements by 97% ~ 99% and improves the peak through-
put by 1.4X ~ 15.6X over the existing systems.

There are many interesting research problems that deserve fur-
ther investigation for stateless blockchain, e.g., how to further re-
duce on-chain states by utilizing more advanced data structures;
how to decrease the operating costs for storage nodes; and how to
support data provenance under the new stateless design.

ACKNOWLEDGMENTS

This work was supported by Research Grants Council of Hong Kong
(Project Nos. 12201520, 12200819) and NSERC Discovery Grants.
Jianliang Xu is the corresponding author.

REFERENCES

(1]

(2]

(3]

(71
(8]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

T.T. A. Dinh,]. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan. 2017. Blockbench:
A framework for analyzing private blockchains. In Proceedings of the 2017 ACM
SIGMOD International Conference on Management of Data, 1085-1100.

C. Xu, C. Zhang, and J. Xu. 2019. vChain: Enabling verifiable boolean range
queries over blockchain databases. In Proceedings of the 2019 ACM SIGMOD
International Conference on Management, 141-158.

C. Zhang, C. Xu, H. Wang, J. Xu, and B. Choi. 2021. Authenticated keyword
search in scalable hybrid-storage blockchains. In Proceedings of the 37th IEEE
International Conference on Data Engineering, 996-1007.

S. Nakamoto. 2008. Bitcoin: a peer-to-peer electronic cash system. https://
bitcoin.org/bitcoin.pdf.

A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. 2016. Medrec: Using blockchain
for medical data access and permission management. In 2nd International
Conference on Open and Big Data, 25-30.

S. A. Abeyratne and R. P. Monfared. 2016. Blockchain ready manufacturing
supply chain using distributed ledger. International Journal of Research in
Engineering and Technology, 5, 9, 1-10.

G. Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger.
https://ethereum.github.io/yellowpaper/paper.pdf.

M. Zamani, M. Movahedi, and M. Raykova. 2018. Rapidchain: Scaling block-
chain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 931-948.

M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy. 2019.
BlockchainDB: A shared database on blockchains. Proceedings of the VLDB
Endowment, 12, 11, 1597-1609.

A. Chepurnoy, C. Papamanthou, and Y. Zhang. 2018. EDRAX: A cryptocur-
rency with stateless transaction validation. Cryptology ePrint Archive, Report
2018/968. (2018).

D. Boneh, B. Biinz, and B. Fisch. 2019. Batching techniques for accumulators
with applications to iops and stateless blockchains. In Annual International
Cryptology Conference, 561-586.

A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovratovich.
2020. Aggregatable subvector commitments for stateless cryptocurrencies.
Cryptology ePrint Archive, Report 2020/527. (2020).

E. Androulaki et al. 2018. Hyperledger Fabric: A distributed operating sys-
tem for permissioned blockchains. In Proceedings of the Thirteenth EuroSys
Conference.

C. Fan, S. Ghaemi, H. Khazaei, and P. Musilek. 2020. Performance evaluation
of blockchain systems: a systematic survey. IEEE Access, 8, 126927-126950.

R. C. Merkle. 1989. A certified digital signature. In Conference on the Theory
and Application of Cryptology, 218-238.

B. Parno, J. Howell, C. Gentry, and M. Raykova. 2013. Pinocchio: Nearly practi-
cal verifiable computation. In 2013 IEEE Symposium on Security and Privacy,
238-252.

E.Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. 2014. Succinct non-interactive
zero knowledge for a von Neumann architecture. In 23rd USENIX Security Sym-
posium, 781-796.

C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B.
Parno, and S. Zahur. 2015. Geppetto: Versatile verifiable computation. In 2015
IEEE Symposium on Security and Privacy, 253-270.

(28]

[29]

[30]

(36]

(37]
[38]

(39]

J.-E. Ekberg, K. Kostiainen, and N. Asokan. 2013. Trusted execution environ-
ments on mobile devices. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, 1497-1498.

V. Costan and S. Devadas. 2016. Intel SGX explained. Cryptology ePrint Archive,
Report 2016/086. (2016).

O. P. Project. 2020. The oasis blockchain platform. https://oasisprotocol.org/
papers.

J. Teutsch and C. Reitwiefiner. 2019. A scalable verification solution for block-
chains. arXiv.

F. Saleh. 2020. Blockchain without waste: Proof-of-stake. The Review of Financial
Studies, 34, 3, 1156-1190.

M. Castro and B. Liskov. 2002. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems, 20, 4, 398-461.

R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. 2016. Corda: An introduction.
https://docs.corda.net/en/pdf/corda-introductory-whitepaper.pdf.

J. P. M. Chase. [n. d.] Quorum: A permissioned implementation of ethereum.
https://github.com/jpmorganchase/quorum.

A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich. 2019. Blurring the
lines between blockchains and database systems: the case of hyperledger fabric.
In Proceedings of the 2019 International Conference on Management of Data,
105-122.

H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi. 2019.
Towards scaling blockchain systems via sharding. In Proceedings of the 2019
International Conference on Management of Data, 123-140.

S.Nathan, C. Govindarajan, A. Saraf, M. Sethi, and P. Jayachandran. 2019. Block-
chain meets database: Design and implementation of a blockchain relational

database. Proceedings of the VLDB Endowment, 12, 11, 1539-1552.
P. Ruan, D. Loghin, %,» . Ta, M. Zhang, G. Chen, and B. C. Ooi. 2020. A transac-

tional perspective on execute-order-validate blockchains. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, 543-557.
C. Gorenflo, S. Lee, L. Golab, and S. Keshav. 2019. FastFabric: Scaling hyper-
ledger fabric to 20,000 transactions per second. In 2019 IEEE International
Conference on Blockchain and Cryptocurrency, 455-463.

C. Gorenflo, L. Golab, and S. Keshav. 2020. XOX Fabric: A hybrid approach
to blockchain transaction execution. In 2020 IEEE International Conference on
Blockchain and Cryptocurrency, 1-9.

M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis. 2017.
Chainspace: A sharded smart contracts platform. arXiv.

S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. 2020. ResilientDB: Global
scale resilient blockchain fabric. Proceedings of the VLDB Endowment, 13, 6,
868-883.

S. Gorbunov, L. Reyzin, H. Wee, and Z. Zhang. 2020. Pointproofs: Aggregating
proofs for multiple vector commitments. Cryptology ePrint Archive, Report
2020/419. (2020).

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. 1995. A
critique of ANSI SQL isolation levels. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, 1-10.

A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level definitions.
In Proceedings of 16th International Conference on Data Engineering, 67-78.

M. J. Cahill, U. Réhm, and A. D. Fekete. 2009. Serializable isolation for snapshot
databases. ACM Transactions on Database Systems, 20-42.

C. Xu, C. Zhang, J. Xu, and J. Pei. 2021. SlimChain: Scaling blockchain trans-
actions through off-chain storage and parallel processing (technical report).
https://www.comp.hkbu.edu.hk/~db/slimchain.pdf.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://oasisprotocol.org/papers
https://oasisprotocol.org/papers
https://docs.corda.net/en/pdf/corda-introductory-whitepaper.pdf
https://github.com/jpmorganchase/quorum
https://www.comp.hkbu.edu.hk/~db/slimchain.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cryptographic Preliminaries
	2.2 Blockchain Basics
	2.3 Concurrency Control Methods
	2.4 Related Work

	3 SlimChain Overview
	3.1 Design Goals
	3.2 System Overview

	4 SlimChain Transaction Processing
	4.1 Off-chain Transaction Execution
	4.2 On-chain Transaction Commitment
	4.3 Node Synchronization
	4.4 Sharding

	5 Implementation
	6 Performance Evaluation
	6.1 Experiment Setup
	6.2 Experimental Results

	7 Conclusion
	Acknowledgments

