
DCert: Towards Secure, Efficient, and Versatile Blockchain Light
Clients

Yang Ji

yangji@comp.hkbu.edu.hk

Hong Kong Baptist University

Kowloon, Hong Kong

Cheng Xu

chengxu@comp.hkbu.edu.hk

Hong Kong Baptist University

Kowloon, Hong Kong

Ce Zhang

cezhang@comp.hkbu.edu.hk

Hong Kong Baptist University

Kowloon, Hong Kong

Jianliang Xu

xujl@comp.hkbu.edu.hk

Hong Kong Baptist University

Kowloon, Hong Kong

ABSTRACT
Light clients have been widely used in blockchain systems to sup-

port lightweight nodes by synchronizing and verifying block head-

ers only. However, there are two major limitations with the current

light client design. First, with the ever increasing blockchain size,

the cost for light clients to process and store all the block headers

would soon become prohibitively high. Second, only simple queries

can be supported by light clients due to the limited functionality of

block headers. To address these issues, in this paper, we propose

DCert, a novel decentralized certification framework, to enable

superlight clients with constant storage and state validation costs.

The main idea is to leverage a trusted enclave (e.g., Intel SGX) to

recursively certify the entire history of the blockchain. With DCert,

the blockchain integrity can be easily validated by superlight clients

with a secure certificate. Furthermore, to support rich verifiable

queries on light clients, DCert can be extended to certify authentic-

ated indexes for different types of queries on an as-needed basis.

While DCert is compatible with existing blockchain systems, its se-

curity is guaranteed by the trusted enclave. Our benchmark-based

empirical study shows that DCert incurs a small certification over-

head, yet it is capable of supporting efficient verifiable queries with

a constant storage size of 2.97 KB and a constant bootstrapping

time of 0.14 ms.

CCS CONCEPTS
• Security and privacy→ Hardware-based security protocols;
Distributed systems security.

KEYWORDS
Trusted Hardware; Light Clients; Blockchains; Authenticated Index

ACM Reference Format:
Yang Ji, Cheng Xu, Ce Zhang, and Jianliang Xu. 2022. DCert: Towards

Secure, Efficient, and Versatile Blockchain Light Clients. In 23rd ACM/IFIP

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9340-9/22/11. . . $15.00

https://doi.org/10.1145/3528535.3565250

International Middleware Conference (Middleware ’22), November 7–11, 2022,
Quebec, QC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3528535.3565250

1 INTRODUCTION
Recent years have witnessed the rise of blockchain as a revolu-

tionary technique to empower cryptocurrencies and decentralized

applications [23, 30]. It is an append-only ledger that records the

transactions that are agreed upon by mutually untrusted nodes. The

data recorded on the blockchain is immutable and tamper-resistant

due to the hash-chaining design and the utilization of distributed

consensus protocols. A typical blockchain network consists of three

types of nodes: full node, miner, and light client. A full node stores

the complete blockchain data, including block headers, transactions,

and states. A miner is a special full node that can also propose new

blocks. A light client keeps track of only block headers to ensure

the blockchain integrity and verify specific transaction/state data

retrieved from full nodes. The light client design enhances the de-

centralization and robustness of the blockchain since more nodes

with limited storage resources can also participate in the blockchain

network.

Although a light client has a much smaller storage requirement

than a full node, its storage overhead is still considerably high, espe-

cially when the blockchain grows longer and longer. For example,

an Ethereum light client must store at least 7.93 GB of block headers

as of September 2022.
1
Such a significant storage requirement may

prevent some resource-limited clients (e.g., mobile or IoT devices)

from joining the network. Moreover, a newly joined client will

be required to check all the block headers to validate the integ-

rity of the blockchain, which results in a long bootstrapping time.

For example, it takes around an hour to synchronize and validate

Ethereum’s block headers for a light client, which is quite long

compared with Ethereum’s relatively short block interval (around

15 seconds).

Recently, with the boom of decentralized applications, there is an

increasing demand for users to query blockchain data for analytics.

For example, the BigQuery system from Google Cloud allows users

to search historical Bitcoin data [1]. However, since the query ser-

vice is out of the security guarantee of the blockchain system, the

result integrity is not guaranteed, i.e., the query service provider

1
Ethereum has reached 1.56 × 10

7
blocks by September 2022 according to

https://etherscan.io/blocks and the size of a block header is at least 508B [30].

https://doi.org/10.1145/3528535.3565250
https://doi.org/10.1145/3528535.3565250
https://doi.org/10.1145/3528535.3565250
https://etherscan.io/blocks

may tamper with query results intentionally or unintentionally.

There have been some works that studied verifiable queries over

blockchain databases, which allow light clients to query historical

blockchain data with integrity assurance [24, 27, 33]. However, the

limitation of these existing works is that they require additional au-

thenticated information to be built into the block structure for query

result verification, which is incompatible with existing blockchains.

Moreover, such a built-in approach only works for pre-defined

query types and is not able to support new query types in an on-

demand manner. It remains a challenge to design a verifiable query

processing solution that supports efficient and versatile queries for

light clients without modifying the underlying blockchains.

To address the above issues, in this paper, we design a decent-

ralized certification framework, called DCert, which is compatible

with existing blockchain systems and achieves constant-cost block-

chain integrity validation for light clients. The main idea is to

employ a trusted-hardware (e.g., Intel SGX) assisted full node to

recursively certify a block if and only if the following conditions

are successfully validated: (i) the integrity of the metadata in the

current block header, (ii) the integrity of state transitions from the

previous block to the current block, and (iii) the integrity of the

previous block’s certificate. DCert allows light clients to validate

the blockchain integrity by only checking and keeping the latest

block header and its certificate. Moreover, some novel designs are

proposed for certificate construction to mitigate the performance

overhead brought by the trusted hardware.

To support verifiable queries for light clients, a typical method

is to build an authenticated index over historical blockchain data,

which can provide proofs to attest to query integrity. To ensure

the integrity of the authenticated index, we propose an augmented

certificate that includes enough authentication information of the

authenticated index (e.g., the root digest). Similar to the block certi-

ficate construction, the trusted hardware certifies the integrity of

the authenticated index of the current block. With the augmented

certificate and the proof of query results, light clients can verify the

results’ integrity. Since an authenticated index is often designed for

a specific type of query, multiple authenticated indexes are usually

needed to support different types of queries. However, as the con-

struction of an augmented certificate binds the block certification

and authenticated index certification together, it has a high con-

struction overhead when having multiple authenticated indexes. To

tackle this, we propose a hierarchical certificate that separates the

block certification and authenticated index certification to reduce

the certificate construction overhead while supporting versatile

verifiable queries.

To summarize, our contributions made in this paper are as fol-

lows:

• We propose DCert, a novel decentralized certification frame-

work that is compatible with existing blockchain systems

and achieves constant-cost blockchain integrity validation

for light clients.

• We design an SGX-based certificate construction algorithm

and develop several optimizations to boost the performance.

• We further propose an augmented certificate and a hierarch-

ical certificate to support efficient and versatile verifiable

queries for light clients.

• We conduct extensive experiments to validate the perform-

ance of DCert. The results show that it takes constant cost

(0.14 ms time and 2.97 KB storage) for light clients to validate

the blockchain. Meanwhile, the construction time of all the

proposed certificates is within 500 ms, which is negligible

compared to the block interval.

The rest of this paper is organized as follows. Section 2 reviews

the background. Section 3 gives a system overview of DCert. Sec-

tion 4 presents the detailed certificate construction and verification

algorithms. In Section 5, we discuss how to construct the augmen-

ted and hierarchical certificates for verifiable queries. Section 6

presents the security analysis and the experimental results are re-

ported in Section 7. Section 8 discusses the related work. Finally,

we conclude our paper in Section 9.

2 BACKGROUND
In this section, we give some background knowledge necessary

for introducing our design, including blockchain basics and Intel

SGX enclaves.

... ...

Hprev_blk πcons Hstate Htx

...

Block i

Figure 1: Block Data Structure

2.1 Blockchain Basics
Blockchain consists of a sequence of chained blocks that record

transactions with a set of global states. As shown in Fig. 1, the

header of each block consists of four fields: (i) 𝐻𝑝𝑟𝑒𝑣_𝑏𝑙𝑘 , which

is the hash of the previous block; (ii) 𝜋𝑐𝑜𝑛𝑠 , which is a consensus

related data constructed by the miner; (iii) 𝐻𝑠𝑡𝑎𝑡𝑒 , which is the root

hash of the Merkle Hash Tree (MHT) constructed upon the global

states; (iv) 𝐻𝑡𝑥 , which is the root hash of the MHT built upon the

block transactions. In addition to the block header, each block also

stores all the transactions, the global states, and their corresponding

MHTs.

MHT is a hierarchical data structure for ensuring data integrity

with a collision-resistant hash function. Specifically, an MHT is a

hash tree constructed in a bottom-up manner. Figure 1 shows an

example of an MHT of four states 𝑆1 to 𝑆4. Each leaf node stores the

hash of the indexed object, while each internal node stores a hash

computed from its two child nodes (e.g., ℎ5 = 𝐻 (ℎ1 | |ℎ2), where “| |”
is the concatenation operation). In the general blockchain context,

MHT is often used to efficiently prove the existence of a transaction

or a global state, given its root hash included in the block header.

For example, in Fig. 1, in order to prove the existence of the state 𝑆2,

ℎ1 and ℎ6, which are the sibling hash values along its search path,

are returned as the proof. One can easily verify the existence of 𝑆2

by reconstructing the root hash using the proof and comparing it

with the one in the block header (𝐻𝑠𝑡𝑎𝑡𝑒 in Fig. 1). Apart from being

used in the block structure, MHT has also been extended to various

database indexes to construct authenticated indexes for different
queries. For example, to support authenticated queries in relational

databases, MHT can be extended to the multi-way Merkle B-tree

(MB-tree), which follows the B+-tree structure and augments each

index entry with a corresponding hash [19].

As mentioned in Section 1, miners are responsible for proposing

new blocks. Specifically, the transactions are first collected from

the blockchain network, and their validity is checked using the

senders’ public keys. Then, every transaction will be executed by

the miner, and the global states, as well as their MHT, will be

updated accordingly. Finally, the miner can publish a block once

it successfully finds 𝜋𝑐𝑜𝑛𝑠 according to the consensus protocol.

Full nodes simply observe the blockchain network. When a new

block arrives, the full node will check the validity of all metadata

in the block header and the validity of all transactions. Then, the

transactions will be re-executed for checking the integrity of global

states against 𝐻𝑠𝑡𝑎𝑡𝑒 . Once all the checking passes, the full node

can append the new block to its ledger. Light clients, different from

miners and full nodes, only validate and keep block headers to

validate the blockchain integrity due to limited resources.

2.2 SGX
A fundamental component of our design is Intel Software Guard

Extensions (SGX) [9], a prominent implementation of trusted hard-

ware. It enhances the security of remote programs and data with

the assurance of integrity and privacy. Remote users can place their

sensitive information into a protected address area called enclave.
Data and code inside the enclave are isolated from the outside en-

vironment, including privileged processes running at higher levels,

e.g., operating systems.

SGX enables a remote user to verify the programs running in-

side the enclave through a proving process called remote attestation.
Once the enclave is initialized, the CPU will generate a hash value

known as measurement to uniquely identify the program inside the

container. By calling the trusted enclave, it can produce a quote in-
cluding the measurement and user data, which is cryptographically

signed by the hardware-protected key. The Intel SGX attestation

service (IAS) is then responsible for verifying this quote and pro-

ducing an attestation report for further verification. Assuming the

trustworthiness of the IAS, this attestation report can prove the

integrity of the enclave program execution.

Despite the strong security guarantees, the current SGX-enabled

CPU restricts the enclave memory to 128 MB, whereof only 93 MB

are available for enclave applications. Once an application overuses

the enclavememory, the SGX kernel module will call the in-memory

paging between the inside and outside of the enclave [7], which

involves costly operations like encryption. Another performance

issue is from the enclave transitions, called Ecall and Ocall. External
applications can enter the enclave through the Ecall function and

exit the enclave through the Ocall function. Analyzed in [20, 25, 26,

28, 29], frequent enclave calls can degrade the program performance

significantly. Therefore, a well-designed enclave program should

minimize its enclave memory usage and the frequency of enclave

Superlight
Client

Blockchain

<Result, Proof>

Query Service Provider

(full node)

Index

SGX-enabled

Certificate Issuer

(full node)
Query

Sync blocks

Construct certificates

Broadcast certificates

Verify certificates

Figure 2: System Architecture

transitions.

3 DCert OVERVIEW
In this section, we provide an overview of DCert, a decentralized

certification framework that achieves constant-cost blockchain in-

tegrity validation for light clients. We focus on general-purpose

blockchain systems with smart contract capacities, e.g., Ethereum.

3.1 Design Goals
We aim to achieve the following design goals in DCert:

• Achieving constant-cost validation of blockchain integ-
rity. As discussed in the previous sections, for light clients, it

is essential to keep the cost of blockchain integrity validation

to be constant in terms of both time and space complexity.

• Compatible with existing blockchain systems. DCert
should be compatible with existing blockchains, which im-

plies no changes to underlying systems.

• Supporting versatile verifiable queries. It is important

to allow light clients to perform various types of verifiable

queries over blockchain data with efficient performance.

3.2 System Model
To meet the design goals, DCert introduces new variants of block-

chain full nodes. Figure 2 shows an overview of the DCert system

model, which consists of the following types of nodes apart from

typical blockchain nodes.

• SGX-enabledCertificate Issuer (CI). It is a full node equipped
with the SGX enclave, responsible for certifying block integ-

rity and authenticated index integrity for blockchain valida-

tion and query result verification, respectively.

• Query Service Provider (SP). It constructs and maintains

authenticated indexes upon blockchain data to support veri-

fiable queries with efficient performance.

• Superlight Client. It is a variant of the traditional light cli-
ent. The major difference is that superlight clients only keep

and validate the latest block and its certificate since they

are enough for validating the blockchain integrity. Mean-

while, superlight clients are also allowed to perform versatile

verifiable queries over blockchain data.

Threat Model and Assumptions. Following a widely adopted

blockchain threat model [18], we assume the underlying blockchain

is trusted for its integrity and availability. The CIs and SPs in the

Genesis

 Block

Blockchain SGX-enabled Certificate Issuer

Figure 3: Certificate Construction

DCert framework are considered to be untrusted since the processes

of certificate construction and query processing are beyond the

security guarantee of the blockchain system. The CIs may construct

forged certificates, and the SPs may return tampered or incomplete

results, intentionally or unintentionally. On the other hand, we

assume that the SGX enclave is trusted for its integrity and privacy,

as many works do [3, 8, 10, 21]. We also assume that superlight

clients are honest since they are end-users and will not do any

malicious behaviors against themselves. It’s worth noting that, as

an additional service, DCert does not affect the decentralization

and security of the underlying blockchain.

3.3 Solution Overview
The core idea of DCert is to leverage the SGX enclave to construct

a certificate for each block (see Fig. 3), to prove the integrity of the

block and the state transitions from its previous block (except for

the genesis block). Such a recursive block certificate design allows a

superlight client to use the latest block and its certificate to validate

the blockchain integrity with a constant cost. Furthermore, to sup-

port verifiable queries on superlight clients, authenticated indexes

can be used to provide proofs to attest to the results’ integrity. The

above block certificate can be extended to certify the authenticated

indexes associated with each block.

A straightforward method of certifying a block is that the SGX

enclave signs the block information using the hardware-protected

key so that a client can run remote attestation to validate the signa-

ture of the block. However, the remote attestation is quite costly

owing to the need of interaction with the Intel IAS. Therefore, we

consider using a hierarchical PKI design [37] that decouples the

block signing and the remote attestation process. Specifically, dur-

ing the initialization, the SGX enclave program generates a key pair,

(𝑠𝑘𝑒𝑛𝑐 , 𝑝𝑘𝑒𝑛𝑐). The secret key 𝑠𝑘𝑒𝑛𝑐 is kept inside the SGX enclave

to sign the block information in a secure manner and the public

key 𝑝𝑘𝑒𝑛𝑐 will be made public for future validation by superlight

clients. After the enclave initialization, an attestation report 𝑟𝑒𝑝

is generated to attest to the enclave program execution and the

generated public key.

When constructing a block certificate, the SGX enclave pro-

gram first checks whether the block is correctly transited from its

previous block. If so, it then constructs a block certificate 𝑐𝑒𝑟𝑡𝑖 ,

containing four elements: ⟨𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝, 𝑑𝑖𝑔𝑖 , 𝑠𝑖𝑔𝑖 ⟩. Here, 𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝
are the public key and the attestation report mentioned above. The

third element, 𝑑𝑖𝑔𝑖 , is the digest of the block, containing enough

information for validating the block integrity (e.g., block height,

consensus proof, and root digests of associated authenticated in-

dexes). The last element 𝑠𝑖𝑔𝑖 is the signature of 𝑑𝑖𝑔𝑖 signed by 𝑠𝑘𝑒𝑛𝑐 .

When validating the block certificate, a superlight client can use 𝑟𝑒𝑝

to validate 𝑝𝑘𝑒𝑛𝑐 , and further use 𝑝𝑘𝑒𝑛𝑐 , 𝑠𝑖𝑔𝑖 to validate the digest

𝑑𝑖𝑔𝑖 concerning with the block integrity. Note that the certificate

construction and validation process in DCert do not need to modify

the structure or protocol of the underlying blockchain, which is

compatible with existing blockchain systems.

Certification Workflow. As shown in Fig. 2, the certification

workflow in DCert generally consists of the following steps:

1 As a blockchain full node, the CI keeps synchronizing the

global states and prepares necessary information for con-

structing certificates using the SGX enclave.

2 Upon receiving the latest block, the CI calls the SGX enclave

program to construct the certificate for this block and its

associated authenticated indexes.

3 After certificate construction, the CI broadcasts the certific-

ate to the blockchain network.

4 Finally, the superlight client can validate the blockchain

integrity and authenticated index integrity in a constant cost

using the published certificate, so as to support verifiable

queries.

Challenge. The above solution overview shows the certificate

construction and the certification workflow in DCert. A simple

approach for the certificate construction is to implement all the

logic inside the SGX enclave. However, this approach suffers from

significant system overhead owing to the limitation of the enclave

memory and the high-cost operations (i.e., Ecall and Ocall) between
the inside-enclave and outside-enclave programs, which makes

the certificate construction impractical. To tackle this performance

issue, we design an efficient SGX-based certificate construction

algorithm as well as some optimizations for constant blockchain

integrity validation in the next section.

4 CERTIFICATE CONSTRUCTION AND
VALIDATION

In this section, we discuss how to construct block certificates for

blockchain integrity validation in DCert. We start by presenting

our overall idea. Then, we elaborate on our certificate construction

algorithms outside and inside the enclave on the CI. Finally, we

show how superlight clients validate blocks using certificates.

4.1 Overall Idea
To construct the certificate for a new block 𝑏𝑙𝑘𝑖 , a naive method is

to maintain all state data inside the enclave and update the states

based on the transactions contained in 𝑏𝑙𝑘𝑖 . However, this method

is impractical due to the large size of the state data (e.g., over 920

GB for Ethereum as of September 2022
2
) and the limited memory

of the enclave (i.e., 93 MB). To tackle this, inspired by the stateless

enclave design [14], we propose to apply verifiable computing to

execute part of the certificate construction program outside the

enclave so that the amount of data to be loaded into the enclave can

be minimized. More specifically, first, the outside-enclave program

computes a read set {𝑟 }𝑖 , a write set {𝑤}𝑖 , and their Merkle proofs

𝜋𝑟
𝑖
, 𝜋𝑤

𝑖
based on the previous block 𝑏𝑙𝑘𝑖−1’s states for updating the

new block 𝑏𝑙𝑘𝑖 ’s states. It is worth noting that the Merkle proofs

2
https://etherscan.io/chartsync/chaindefault

https://etherscan.io/chartsync/chaindefault

Algorithm 1: Certificate Construction Program (CI)

1 Function gen_cert(𝑏𝑙𝑘𝑖−1, 𝑐𝑒𝑟𝑡𝑖−1, 𝑏𝑙𝑘𝑖 , 𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝)
Input: Previous block 𝑏𝑙𝑘𝑖−1 and its certificate 𝑐𝑒𝑟𝑡𝑖−1, new

block 𝑏𝑙𝑘𝑖 , enclave-generated public key 𝑝𝑘𝑒𝑛𝑐 ,

attestation report 𝑟𝑒𝑝 ;

2 ⟨{𝑟 }𝑖 , {𝑤}𝑖 ⟩ ← comp_data_set(𝑏𝑙𝑘𝑖−1, 𝑏𝑙𝑘𝑖);

3 𝜋𝑖 ← get_update_proof(𝑏𝑙𝑘𝑖−1, {𝑟 }𝑖 , {𝑤}𝑖) ;
/* Enter the enclave */

4 𝑠𝑖𝑔𝑖 ← ecall_sig_gen(𝑏𝑙𝑘𝑖−1, 𝑐𝑒𝑟𝑡𝑖−1, 𝑏𝑙𝑘𝑖 , 𝜋𝑖);
/* Exit the enclave */

5 𝐻 (ℎ𝑑𝑟𝑖) ← get_blk_digest(𝑏𝑙𝑘𝑖);

6 𝑑𝑖𝑔𝑖 ← 𝐻 (ℎ𝑑𝑟𝑖) ;
7 𝑐𝑒𝑟𝑡𝑖 ← ⟨𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝,𝑑𝑖𝑔𝑖 , 𝑠𝑖𝑔𝑖 ⟩;
8 return 𝑐𝑒𝑟𝑡𝑖 ;

𝜋𝑟
𝑖
and 𝜋𝑤

𝑖
are used to validate the read set {𝑟 }𝑖 and the set of

neighboring nodes related to {𝑤}𝑖 with reference to the states in

𝑏𝑙𝑘𝑖−1, so that {𝑤}𝑖 can be correctly committed in 𝑏𝑙𝑘𝑖 . Then, an

update proof 𝜋𝑖 consisting of {{𝑟 }𝑖 , 𝜋𝑟𝑖 , 𝜋
𝑤
𝑖
}, along with 𝑏𝑙𝑘𝑖 , the

previous block 𝑏𝑙𝑘𝑖−1 and its certificate 𝑐𝑒𝑟𝑡𝑖−1, will be passed into

the enclave. After verifying the integrity of the update proof using

𝑏𝑙𝑘𝑖−1 and 𝑐𝑒𝑟𝑡𝑖−1, the inside-enclave program replays the new

transactions to validate the digest of 𝑏𝑙𝑘𝑖 and constructs a new

certificate 𝑐𝑒𝑟𝑡𝑖 .

4.2 Certificate Construction Algorithm
Algorithm 1 shows the detailed certificate construction algorithm,

including the outside-enclave program that pre-processes the block

data and the inside-enclave program for generating the certificate

signature. The outside-enclave program first executes the transac-

tions in 𝑏𝑙𝑘𝑖 and computes its read set {𝑟 }𝑖 and write set {𝑤}𝑖 upon
the states in 𝑏𝑙𝑘𝑖−1 (Line 2). Then, it generates the update proof
𝜋𝑖 of {𝑟 }𝑖 and {𝑤}𝑖 against the Merkle tree of the previous states

in 𝑏𝑙𝑘𝑖−1 (Line 3). The update proof 𝜋𝑖 will be used by the enclave

program to check the integrity of {𝑟 }𝑖 and update the state tree.

After pre-processing the block data, the CI calls the inside-

enclave program ecall_sig_gen via Ecall to generate the signature

𝑠𝑖𝑔𝑖 of the block certificate 𝑐𝑒𝑟𝑡𝑖 (Line 4). The enclave-generated

public key 𝑝𝑘𝑒𝑛𝑐 and the attestation report 𝑟𝑒𝑝 (obtained during the

enclave initialization as discussed in Section 3.3) are then placed

into 𝑐𝑒𝑟𝑡𝑖 . Furthermore, the hash of the block header 𝐻 (ℎ𝑑𝑟𝑖) is
also included as 𝑑𝑖𝑔𝑖 in 𝑐𝑒𝑟𝑡𝑖 for ensuring the block integrity.

The inside-enclave program ecall_sig_gen is essential in the

block certificate construction algorithm. Algorithm 2 describes

its procedure. It accepts three types of inputs: (i) the old block

information, including the previous block 𝑏𝑙𝑘𝑖−1 and its certificate

𝑐𝑒𝑟𝑡𝑖−1, (ii) the new block 𝑏𝑙𝑘𝑖 , and (iii) the update proof 𝜋𝑖 of the

read and write sets. If the previous block 𝑏𝑙𝑘𝑖−1 is the genesis block,
the program simply checks whether 𝑏𝑙𝑘𝑖−1 matches the hard-coded

genesis block digest 𝐻𝑔𝑒𝑛𝑒𝑠𝑖𝑠 (Line 4), because the genesis block is

deterministic and does not need a certificate as proof. Otherwise,

the programwill call the function cert_verify_t to check the validity
of the previous block 𝑏𝑙𝑘𝑖−1 using the certificate 𝑐𝑒𝑟𝑡𝑖−1 (Line 6),
including the following aspects: (i) 𝑟𝑒𝑝 is correctly signed by the IAS;

(ii) the current enclave program and the public key 𝑝𝑘𝑒𝑛𝑐 matches

the attestation report 𝑟𝑒𝑝 ; (iii) the digest in 𝑐𝑒𝑟𝑡𝑖−1 is valid against

the signature in 𝑐𝑒𝑟𝑡𝑖−1; and (iv) the digest of 𝑏𝑙𝑘𝑖−1 matches the

Algorithm 2: Signature Generation Program (inside the enclave)

1 Function ecall_sig_gen(𝑏𝑙𝑘𝑖−1, 𝑐𝑒𝑟𝑡𝑖−1, 𝑏𝑙𝑘𝑖 , 𝜋𝑖)
Input: Previous block 𝑏𝑙𝑘𝑖−1 and its certificate 𝑐𝑒𝑟𝑡𝑖−1, new

block 𝑏𝑙𝑘𝑖 , update proof 𝜋𝑖 ;

2 ⟨ℎ𝑒𝑖𝑔ℎ𝑡𝑖−1, ℎ𝑑𝑟𝑖−1, ℎ𝑑𝑟𝑖 ⟩ ← (𝑏𝑙𝑘𝑖−1, 𝑏𝑙𝑘𝑖);

3 if ℎ𝑒𝑖𝑔ℎ𝑡𝑖−1 = 0 then
4 assert 𝐻 (𝑏𝑙𝑘𝑖−1) = 𝐻𝑔𝑒𝑛𝑒𝑠𝑖𝑠 ;

5 else
6 assert cert_verify_t(ℎ𝑑𝑟𝑖−1, 𝑐𝑒𝑟𝑡𝑖−1);
7 assert blk_verify_t(𝑏𝑙𝑘𝑖−1, 𝑏𝑙𝑘𝑖 , 𝜋𝑖);
8 𝑠𝑘𝑒𝑛𝑐 ← load_sk();

9 return Sign(𝑠𝑘𝑒𝑛𝑐 , 𝐻 (ℎ𝑑𝑟𝑖)) ;
10 Function blk_verify_t(𝑏𝑙𝑘𝑖−1, 𝑏𝑙𝑘𝑖 , 𝜋𝑖)
11 ⟨𝐻𝑖−1, 𝜋𝑐𝑜𝑛𝑠

𝑖
, 𝐻𝑠

𝑖
, 𝐻𝑡𝑥

𝑖
, {𝑡𝑥 }𝑖 , ℎ𝑒𝑖𝑔ℎ𝑡𝑖 ⟩ ← 𝑏𝑙𝑘𝑖 ;

12 ⟨{𝑟 }𝑖 , 𝜋𝑟
𝑖
, 𝜋𝑤

𝑖
⟩ ← 𝜋𝑖 ;

13 ⟨ℎ𝑒𝑖𝑔ℎ𝑡𝑖−1, ℎ𝑑𝑟𝑖−1, 𝐻𝑠
𝑖−1 ⟩ ← 𝑏𝑙𝑘𝑖−1;

14 assert 𝐻𝑖−1 = 𝐻 (ℎ𝑑𝑟𝑖−1) and ℎ𝑒𝑖𝑔ℎ𝑡𝑖 = ℎ𝑒𝑖𝑔ℎ𝑡𝑖−1 + 1;
15 verify_cons(𝜋𝑐𝑜𝑛𝑠

𝑖
) ;

16 verify_hash(𝐻𝑡𝑥
𝑖

, {𝑡𝑥 }𝑖) ;
17 verify_mht(𝐻𝑠

𝑖−1, 𝜋
𝑟
𝑖
, {𝑟 }𝑖) ;

18 for each 𝑡𝑥 in {𝑡𝑥 }𝑖 do
19 verify(𝑡𝑥);

20 {𝑤}𝑡𝑥 ← execute(𝑡𝑥,𝐻𝑠
𝑖−1, {𝑟 }𝑖) ;

21 {𝑤}𝑖 ← {𝑤}𝑖 ∪ {𝑤}𝑡𝑥 ;
22 verify_mht(𝐻𝑠

𝑖−1, 𝜋
𝑤
𝑖
, {𝑤}𝑖) ;

23 assert 𝐻𝑠
𝑖
= update(𝜋𝑤

𝑖
, {𝑤}𝑖) ;

24 return true;

25 Function cert_verify_t(ℎ𝑑𝑟, 𝑐𝑒𝑟𝑡)
Input: Block header ℎ𝑑𝑟 , certificate 𝑐𝑒𝑟𝑡

26 ⟨𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝,𝑑𝑖𝑔, 𝑠𝑖𝑔⟩ ← 𝑐𝑒𝑟𝑡 ;

27 assert 𝑟𝑒𝑝 is signed by the IAS;

28 assert the current enclave program’s measurement equals

𝑟𝑒𝑝’s;

29 assert 𝑝𝑘𝑒𝑛𝑐 matches 𝑟𝑒𝑝’s public key signature;

30 verify_sig(𝑠𝑖𝑔,𝑑𝑖𝑔, 𝑝𝑘𝑒𝑛𝑐) ;
31 assert 𝑑𝑖𝑔 = 𝐻 (ℎ𝑑𝑟) ;
32 return true;

digest in 𝑐𝑒𝑟𝑡𝑖−1.
After validating𝑏𝑙𝑘𝑖−1, the program proceeds to call the function

blk_verify_t, which verifies the validity of the current block 𝑏𝑙𝑘𝑖
(Line 7). Function blk_verify_t first checks the previous hash 𝐻𝑖−1
and the block heightℎ𝑒𝑖𝑔ℎ𝑡𝑖 of𝑏𝑙𝑘𝑖 against𝑏𝑙𝑘𝑖−1 (Line 14). Then, it
checks the consensus proof 𝜋𝑐𝑜𝑛𝑠

𝑖
(e.g., the nonce value satisfies the

desired difficulty in Proof of Work [23]) (Line 15). It also checks the

hash𝐻𝑡𝑥
𝑖

of the transactions (Line 16). The program next verifies the

integrity of the read set {𝑟 }𝑖 using its Merkle proof 𝜋𝑟
𝑖
and the state

root 𝐻𝑠
𝑖−1 in block 𝑏𝑙𝑘𝑖−1 (Line 17). If {𝑟 }𝑖 passes the verification,

the program executes all the transactions in 𝑏𝑙𝑘𝑖 based on {𝑟 }𝑖 and
generates the write set {𝑤}𝑖 (Lines 18-21). The write proof 𝜋𝑤𝑖 is

first checked with respect to {𝑤}𝑖 and then is used to compute the

updated state root for 𝑏𝑙𝑘𝑖 (Lines 22-23). If the updated state root

matches 𝐻𝑠
𝑖
in 𝑏𝑙𝑘𝑖 , it means the state transitions from 𝑏𝑙𝑘𝑖−1 to

𝑏𝑙𝑘𝑖 are correct. Finally, after all tests are passed, the enclave signs

a signature 𝑠𝑖𝑔𝑖 for the block digest 𝐻 (ℎ𝑑𝑟𝑖) (Lines 8-9).
Example. Figure 4 shows an example of block certificate construc-

tion. Suppose that the state tree of block 𝑏𝑙𝑘1 is shown in the top-left

0 1

0 1 0 1

{00 : }

{01 : }

0 1

State Tree of Read/Write Set and Merkle Proof of

0 1

0 1 0 1

:
:

0 1

0 1

0 1

0 1

Enclave

A B

C D E F

Figure 4: An Example of Chain State Update

part of the figure. Given a new block𝑏𝑙𝑘2, the outside-enclave program
generates its read set {𝑟 }2 = {00 : 𝑣1} and write set {𝑤}2 = {01 : 𝑣 ′

2
}.

Correspondingly, the read proof 𝜋𝑟
2
includes {ℎ𝐵, ℎ𝐷 }. The write proof

𝜋𝑤
2

consists of {ℎ𝐵, ℎ𝐶 , ℎ𝐷 }. To ensure the integrity of the data input
from the outside, the enclave program verifies the integrity of {𝑟 }2 by
reconstructing the hash root𝐻 (𝐻 (𝐻 (𝑣1) | |ℎ𝐷) | |ℎ𝐵) and comparing
it with 𝐻𝑠

1
in 𝑏𝑙𝑘1. Similarly, the write proof integrity is verified by

reconstructing the hash root 𝐻 (𝐻 (ℎ𝐶 | |ℎ𝐷) | |ℎ𝐵) and comparing it
with 𝐻𝑠

1
in 𝑏𝑙𝑘1. After executing all the transactions of 𝑏𝑙𝑘2, the write

set {𝑤}2 is obtained. Next, the enclave program computes the updated

state root of 𝑏𝑙𝑘2 by 𝐻
(
𝐻

(
ℎ𝐶 | |𝐻 (𝑣

′
2
)
)
| |ℎ𝐵

)
and checks whether the

new state root matches 𝐻𝑠
2
in 𝑏𝑙𝑘2. If so, it means the state trans-

itions from 𝑏𝑙𝑘1 to 𝑏𝑙𝑘2 are correct. Finally, the signature 𝑠𝑖𝑔2 can be
computed.

4.3 Blockchain Integrity Validation
Next, we describe how a superlight client validates the blockchain

integrity with the certificate issued by the CI. As shown in Al-

gorithm 3, the superlight client starts by validating the block in-

formation with the certificate (Lines 2–7), using a procedure similar

to blk_verify_t in Algorithm 2. Note that a consensus protocol needs

to check (i) the consensus proof and (ii) the chain selection in case

of blockchain forks. While the consensus proof has been validated

by the block certificate, we still need to check that the block con-

forms with the system’s chain selection rule (Line 8). For example,

Bitcoin adopts the longest chain rule; thus, the superlight client

always selects the validated block with the largest block height as

the latest block, which corresponds to the longest chain.

It is worth noting that the superlight client needs to check an

attestation report only once for the same enclave. Only if the su-

perlight client switches to the certification service of another CI, a

new attestation report needs to be examined.

5 EXTENSION TO VERIFIABLE QUERIES
In this section, we discuss how to extend our block certificate to

support verifiable queries for superlight clients in DCert. We first

briefly introduce the overview of our design. Then, we elaborate on

the detailed certificate schemes, including the augmented certificate

and the hierarchical certificate. Finally, we give a case study to show

how our certification framework supports verifiable queries.

Algorithm 3: Blockchain Integrity Validation (Superlight Client)

1 Function validate_chain(ℎ𝑑𝑟𝑖 , 𝑐𝑒𝑟𝑡𝑖)
Input: New block header ℎ𝑑𝑟𝑖 , certificate 𝑐𝑒𝑟𝑡𝑖

2 ⟨𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝,𝑑𝑖𝑔𝑖 , 𝑠𝑖𝑔𝑖 ⟩ ← 𝑐𝑒𝑟𝑡𝑖 ;

3 assert 𝑟𝑒𝑝 is signed by the IAS;

4 assert 𝑟𝑒𝑝’s measurement matches the certificate-construction

enclave program;

5 assert 𝑝𝑘𝑒𝑛𝑐 matches 𝑟𝑒𝑝’s public key signature;

6 verify_sig(𝑠𝑖𝑔𝑖 , 𝑑𝑖𝑔𝑖 , 𝑝𝑘𝑒𝑛𝑐) ;
7 assert 𝑑𝑖𝑔𝑖 = 𝐻 (ℎ𝑑𝑟𝑖) ;
8 assert ℎ𝑑𝑟𝑖 follows the system’s chain selection rule;

9 return true;

5.1 Design Overview
To support verifiable queries for superlight clients, the SP needs to

construct and maintain an authenticated index over the blockchain

data and then provide both query results and integrity proofs for

result verification. It is worth noting that DCert can support any

queries where authenticated query processing algorithms are avail-

able (e.g., simple blockchain queries such as range/keyword quer-

ies [24] and complex queries such as aggregations [32]). However,

since the authenticated index is built off the chain, the blockchain

system cannot guarantee its integrity. To solve this problem, we

propose an augmented certificate to extend our block certificate,

which can efficiently prove the integrity of the authenticated index

off the chain without any on-chain modifications. More specifically,

the CI utilizes the enclave to validate the index updates with the

block state transitions from the previous block. Only if passing the

validation, the CI can construct a new augmented certificate for

authenticated index integrity. On the SP side, it processes queries

and returns query results as well as the corresponding integrity

proofs to superlight clients. Then, superlight clients can verify the

correctness of query results with the help of the augmented certi-

ficate issued by the CI and the integrity proofs generated by the

SP.

The augmented certificate scheme binds the block certification

logic with the authenticated index certification logic by invoking the

Ecall function once. By following the design rationale in Section 2.2,

this scheme achieves good performance for a single authenticated

index. Nevertheless, with the increasing number of query types, the

CI needs to maintain more authenticated indexes with the index

certification, which incurs high construction overhead. To alleviate

this problem, we further propose a hierarchical certificate scheme

that separates the block certification and the authenticated index

certification to reduce the certificate construction overhead.

5.2 Certificate Construction Schemes
To prove that the authenticated index is correctly updated by new

blocks, we propose new certificate schemes to certify the digest of

the authenticated index with respect to the underlying block states.

This implies that the certificate needs to verify the following three

perspectives: (i) the underlying block states are correct; (ii) the write

data for the index update generated by the new block is complete

and correct; and (iii) the new authenticated index digest is correctly

updated by the write data based on its previous digest. In what

follows, we present two schemes of constructing the certificate

Algorithm 4: Augmented Certificate Construction (CI)
Input: Previous block 𝑏𝑙𝑘𝑖−1, previous augmented certificate

𝑐𝑒𝑟𝑡𝑖𝑑𝑥
𝑖−1 , previous index digest 𝐻

𝑖𝑑𝑥
𝑖−1 , new block 𝑏𝑙𝑘𝑖 , new

index digest 𝐻 𝑖𝑑𝑥
𝑖

, auxiliary data 𝑎𝑢𝑥 ;

/* Enter the enclave */

1 ⟨𝜋𝑖 , 𝜋𝑖𝑑𝑥
𝑖
⟩ ← 𝑎𝑢𝑥 ;

2 ⟨ℎ𝑒𝑖𝑔ℎ𝑡𝑖−1, ℎ𝑑𝑟𝑖−1, ℎ𝑑𝑟𝑖 ⟩ ← (𝑏𝑙𝑘𝑖−1, 𝑏𝑙𝑘𝑖);

3 if ℎ𝑒𝑖𝑔ℎ𝑡𝑖−1 ≠ 0 then
4 assert cert_verify_t(ℎ𝑑𝑟𝑖−1 | |𝐻 𝑖𝑑𝑥

𝑖−1 , 𝑐𝑒𝑟𝑡
𝑖𝑑𝑥
𝑖−1);

5 else
6 assert 𝐻 𝑖𝑑𝑥

𝑖−1 = 𝐻 𝑖𝑑𝑥
𝑔𝑒𝑛𝑒𝑠𝑖𝑠

;

7 assert blk_verify_t(𝑏𝑙𝑘𝑖−1, 𝑏𝑙𝑘𝑖 , 𝜋𝑖);
8 {𝑤}𝑖𝑑𝑥

𝑖
← get_index_write_data(𝑏𝑙𝑘𝑖) ;

9 verify_mht(𝐻 𝑖𝑑𝑥
𝑖−1 , 𝜋

𝑖𝑑𝑥
𝑖

, {𝑤}𝑖𝑑𝑥
𝑖
) ;

10 assert 𝐻 𝑖𝑑𝑥
𝑖

= update(𝜋𝑖𝑑𝑥
𝑖

, {𝑤}𝑖𝑑𝑥
𝑖
) ;

11 𝑠𝑘𝑒𝑛𝑐 ← load_sk();

12 𝑠𝑖𝑔𝑖 ← Sign(𝑠𝑘𝑒𝑛𝑐 , 𝐻 (ℎ𝑑𝑟𝑖 | |𝐻 𝑖𝑑𝑥
𝑖
)) ;

/* Exit the enclave */

13 𝑑𝑖𝑔𝑖 ← 𝐻 (ℎ𝑑𝑟𝑖−1 | |𝐻 𝑖𝑑𝑥
𝑖−1) ;

14 𝑐𝑒𝑟𝑡𝑖𝑑𝑥
𝑖
← ⟨𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝,𝑑𝑖𝑔𝑖 , 𝑠𝑖𝑔𝑖 ⟩;

15 return 𝑐𝑒𝑟𝑡𝑖𝑑𝑥
𝑖

;

using the enclave.

5.2.1 Augmented Certificate Construction. The augmented scheme

is to directly append the authenticated index update procedure

to the block certificate construction algorithm and augment its

certificate information with the index digest 𝐻 𝑖𝑑𝑥
𝑖

. For efficiency

reasons, the augmented certificate construction algorithm also fol-

lows the Merkle-proof-based approach to update the authenticated

index inside the enclave. That means the enclave only handles the

low-cost proof verification operations inside the enclave and re-

ceives the auxiliary data from the outside. Algorithm 4 describes

the detailed process. Besides the inputs for the block certificate

construction, it accepts three more inputs: (i) the previous index

digest 𝐻 𝑖𝑑𝑥
𝑖−1 with its augmented certificate 𝑐𝑒𝑟𝑡𝑖𝑑𝑥

𝑖−1 , (ii) the current
index digest 𝐻 𝑖𝑑𝑥

𝑖
, and (iii) the auxiliary data 𝑎𝑢𝑥 , which includes

the write proof 𝜋𝑖𝑑𝑥
𝑖

for updating the authenticated index. Line 7

applies the validation logic of the block certificate construction.

As for the untrusted write proof 𝜋𝑖𝑑𝑥
𝑖

, it first checks the integrity

of this Merkle proof against the previous index root 𝐻 𝑖𝑑𝑥
𝑖−1 and the

index write data {𝑤}𝑖𝑑𝑥
𝑖

retrieved from 𝑏𝑙𝑘𝑖 (Line 9). Afterwards, it

updates a new root digest of the authenticated index using {𝑤}𝑖𝑑𝑥
𝑖

and 𝜋𝑖𝑑𝑥
𝑖

. If the re-computed root is not identical to 𝐻 𝑖𝑑𝑥
𝑖

, the pro-

gram will abort immediately (Line 10). Otherwise, after all tests are

passed, the enclave signs the certificate information (ℎ𝑑𝑟𝑖 | |𝐻 𝑖𝑑𝑥
𝑖
)

by using 𝑠𝑘𝑒𝑛𝑐 .

5.2.2 Hierarchical Certificate Construction. Despite the concise

design of the augmented certificate construction scheme, it has a

performance issue when dealing with multiple authenticated in-

dexes for different query types. Observing Algorithm 4, we can find

that each time a new augmented certificate is constructed for a new

authenticated index, the enclave replays the block validation func-

tion blk_verify_t, which incurs expensive repetitive computations.

To tackle this problem, we propose a hierarchical certificate scheme

Algorithm 5: Hierarchical Certificate Construction (CI)
Input: Previous block 𝑏𝑙𝑘𝑖−1, new block 𝑏𝑙𝑘𝑖 , sets of index

integrity information {𝐻 𝑖𝑑𝑥
𝑖−1 , 𝑐𝑒𝑟𝑡

𝑖𝑑𝑥
𝑖−1 , 𝐻

𝑖𝑑𝑥
𝑖
}𝑖𝑑𝑥 , auxiliary

data 𝑎𝑢𝑥 ;

/* Get the block certificate */

1 𝑐𝑒𝑟𝑡𝑖 ←gen_cert(𝑏𝑙𝑘𝑖−1, 𝑐𝑒𝑟𝑡𝑖−1, 𝑏𝑙𝑘𝑖 , 𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝);
2 for each index set in {𝐻 𝑖𝑑𝑥

𝑖−1 , 𝑐𝑒𝑟𝑡
𝑖𝑑𝑥
𝑖−1 , 𝐻

𝑖𝑑𝑥
𝑖
} do

/* Ecall into the enclave again */

3 ⟨{𝑟 }𝑖 , 𝜋𝑟
𝑖
, 𝜋𝑖𝑑𝑥

𝑖
⟩ ← 𝑎𝑢𝑥 ;

4 ⟨ℎ𝑒𝑖𝑔ℎ𝑡𝑖−1, ℎ𝑑𝑟𝑖−1, ℎ𝑑𝑟𝑖 ⟩ ← (𝑏𝑙𝑘𝑖−1, 𝑏𝑙𝑘𝑖);

5 if ℎ𝑒𝑖𝑔ℎ𝑡𝑖−1 ≠ 0 then
6 assert cert_verify_t(ℎ𝑑𝑟𝑖−1 | |𝐻 𝑖𝑑𝑥

𝑖−1 , 𝑐𝑒𝑟𝑡
𝑖𝑑𝑥
𝑖−1) ;

7 else
8 assert 𝐻 (𝑏𝑙𝑘𝑖−1) = 𝐻𝑔𝑒𝑛𝑒𝑠𝑖𝑠 ;

9 assert 𝐻 𝑖𝑑𝑥
𝑖−1 = 𝐻 𝑖𝑑𝑥

𝑔𝑒𝑛𝑒𝑠𝑖𝑠
;

10 assert cert_verify_t(ℎ𝑑𝑟𝑖 , 𝑐𝑒𝑟𝑡𝑖) ;
11 {𝑤}𝑖𝑑𝑥

𝑖
← get_index_write_data(𝑏𝑙𝑘𝑖) ;

12 verify_mht(𝐻 𝑖𝑑𝑥
𝑖−1 , 𝜋

𝑖𝑑𝑥
𝑖

, {𝑤}𝑖𝑑𝑥
𝑖
) ;

13 assert 𝐻 𝑖𝑑𝑥
𝑖

= update(𝜋𝑖𝑑𝑥
𝑖

, {𝑤}𝑖𝑑𝑥
𝑖
) ;

14 𝑠𝑘𝑒𝑛𝑐 ← load_sk();

15 𝑠𝑖𝑔𝑖 ← Sign(𝑠𝑘𝑒𝑛𝑐 , 𝐻 (ℎ𝑑𝑟𝑖 | |𝐻 𝑖𝑑𝑥
𝑖
)) ;

/* Exit the enclave */

16 𝑑𝑖𝑔𝑖 ← 𝐻 (ℎ𝑑𝑟𝑖−1 | |𝐻 𝑖𝑑𝑥
𝑖−1) ;

17 𝑐𝑒𝑟𝑡𝑖𝑑𝑥
𝑖
← ⟨𝑝𝑘𝑒𝑛𝑐 , 𝑟𝑒𝑝,𝑑𝑖𝑔𝑖 , 𝑠𝑖𝑔𝑖 ⟩;

18 {𝑐𝑒𝑟𝑡 }𝑖𝑑𝑥 .insert(𝑐𝑒𝑟𝑡𝑖𝑑𝑥𝑖
);

19 return {𝑐𝑒𝑟𝑡 }𝑖𝑑𝑥 ;

(Algorithm 5) to separate the block certification and the authen-

ticated index certification. When a new block 𝑏𝑙𝑘𝑖 is received, the

CI first calls the function gen_cert to get the block certificate 𝑐𝑒𝑟𝑡𝑖
(Line 1). Based on this block certificate 𝑐𝑒𝑟𝑡𝑖 and multiple sets of

index integrity information, the certificates of the authenticated in-

dexes will be constructed one by one (Line 2 to Line 18). During the

construction, it first checks the correctness of the previous states

of the index 𝐻 𝑖𝑑𝑥
𝑖−1 through the previous certificate 𝑐𝑒𝑟𝑡𝑖𝑑𝑥

𝑖−1 . Then,
it updates the digest of the authenticated index as the augmented

certificate scheme does. The difference is that, due to the prior con-

struction of 𝑐𝑒𝑟𝑡𝑖 , the hierarchical certificate program can directly

verify 𝑏𝑙𝑘𝑖 using its 𝑐𝑒𝑟𝑡𝑖 , instead of re-executing it again (Line 10).

Finally, the hierarchical certificate with the certificate information

(ℎ𝑑𝑟𝑖 | |𝐻 𝑖𝑑𝑥
𝑖
) is signed and inserted into the hierarchical certificate

set {𝑐𝑒𝑟𝑡}𝑖𝑑𝑥 .

5.3 Query Processing and Verification
In DCert, superlight clients keep track of the certificates issued by

the CI. They can send query requests to the SP. The SP will process

queries upon the authenticated index, and return the query results

and the corresponding integrity proofs. To verify the query results,

superlight clients first asserts that the authenticated index used by

the SP is correct by checking its Merkle root against (ℎ𝑑𝑟𝑖 |𝐻 𝑖𝑑𝑥
𝑖
) in

the certificate. Afterwards, superlight clients can check the query

results against the index’s digest using the corresponding integrity

proofs.

A B

C D E F

G H

Addr

Historical Accounts

311

811

200

701
410
111

911

511

600

TS Bal

Query q1 = (addr1 AND [ts1, ts2]) Query q2 = (keyword1 AND keyword2)

TermID

Inverted Index

Stock 0,1,50

Trade2
Cash3

Futures4

Goods6

Bank 0,6,81

Term TxList

ERC7

2,5
1,4,6,8

3,6

4,6,7
1,2,5

Broker5 4,5

Stock Bank Trade Cash Futures Broker Goods ERC

Hprev_blk πcons Hstate Htx Hidx1

Built-In Approach
 DCert (On-Demand)

Hprev_blk πcons Hstate HtxHidx2

Block Header Block Header

Figure 5: Case Study of Verifiable Queries

5.4 Case Study
We now show how our certificate design supports verifiable queries

without modifying the underlying blockchain structure. Figure 5

presents a detailed case study with two types of queries: historical

query over blockchain accounts [24] and conjunctive keyword

query over blockchain transactions [12]. Here, we first discuss why

the existing approaches [24, 27, 33] fail to support efficient verifiable

queries. Then, we will elaborate on how our DCert supports these

queries.

Limitation of Existing Approaches. The top-left part of Fig. 5
shows the built-in approach adopted by the existing works. To an-

swer historical queries, LineageChain [24] designs an authenticated

deterministic skip list and integrates this index into each block of

the chain. Similarly, vChain [33] and vChain+ [27] also add the

root digests of specifically designed authenticated indexes to the

block headers. Despite the query integrity assurance, such built-in

approaches forcibly modify the block structure of the underlying

blockchain, which is incompatible with existing blockchain sys-

tems. It is also difficult to support new query types in an on-demand

manner.

Our Approach. Different from the previous works, our DCert

does not integrate the authenticated indexes with the underlying

blockchain structure. Instead, DCert allows the CI to issue certific-

ates for superlight clients to track the updates of the authenticated

indexes. With this, the SP can provide flexible integrity-assured

query services using the authenticated indexes.

As shown in the lower-left part of Fig. 5, a two-level tree index

can be employed for searching historical versions of every account.

In this two-level tree, the upper level is a Merkle Patricia Trie [30]

that stores the hashes of the account addresses, and the lower level

is a Merkle B-tree [19] that records the time-stamped states of each

account. The leaf node of the lower tree is the state value with a

specific timestamp, denoted as 𝑆
(𝑣)
𝑘

, where 𝑣 is the timestamp and

𝑘 is the account key. For example, 𝑆1 has the account key 00 and

contains the states with two timestamps: 𝑆
(2)
1

and 𝑆
(6)
1

.

Instead of augmenting the block structure with the index’s digest

𝐻𝑖𝑑𝑥1, DCert leverages the decentralized certificate to attest to the

authenticated index. Suppose that the state value 𝑛9 (dashed line)

is inserted with the account key 11 and timestamp 9. During the

certificate construction, the CI prepares a write proof 𝜋𝑖𝑑𝑥1 for the

enclave’s. It consists of {ℎ𝐴, ℎ𝐸 , ℎ𝐺 , ℎ(𝑆 (5)
4
), ℎ(𝑆 (8)

4
)}. For verific-

ation purposes, the enclave can reconstruct the root hash of the

index 𝐻

(
ℎ𝐴 | |𝐻

(
ℎ𝐸 | |𝐻

(
ℎ𝐺 | |𝐻

(
ℎ(𝑆 (5)

4
) | |ℎ(𝑆 (8)

4
)
))))

using 𝜋𝑖𝑑𝑥1

and compare it with the previous root hash 𝐻𝑖𝑑𝑥1. If they match,

𝜋𝑖𝑑𝑥1 is valid. Finally, the digest is further updated to 𝐻 ′
𝑖𝑑𝑥1

by fol-

lowing𝐻

(
ℎ𝐴 | |𝐻

(
ℎ𝐸 | |𝐻

(
ℎ𝐺 | |𝐻

(
ℎ(𝑆 (5)

4
) | |ℎ(𝑆 (8)

4
) | |𝐻 (𝑛9)

))))
, and

the enclave signs 𝐻 ′
𝑖𝑑𝑥1

with the corresponding block information

ℎ𝑑𝑟𝑖 to construct a new certificate 𝑐𝑒𝑟𝑡𝑖𝑑𝑥1. By signing the index

digest 𝐻 ′
𝑖𝑑𝑥1

with its underlying block, the certificate 𝑐𝑒𝑟𝑡𝑖𝑑𝑥1 guar-

antees the authenticated index integrity.

With the certificate 𝑐𝑒𝑟𝑡𝑖𝑑𝑥1, a superlight client can send query

requests to the SP. Consider a historical query with account key 11

over the time window [2, 3]. The SP computes and sends back the

query result 𝑆
(3)
4

and its corresponding integrity proof {ℎ𝐴, ℎ𝐸 , ℎ𝐻 ,
ℎ(𝑆 (1)

4
)}. In the verification phase, the superlight client can first

use the certificate 𝑐𝑒𝑟𝑡𝑖𝑑𝑥1 to validate the index root hash and then

verify the correctness of the query result by reconstructing the

index root hash𝐻

(
ℎ𝐴 | |𝐻

(
ℎ𝐸 | |𝐻

(
𝐻

(
ℎ(𝑆 (1)

4
) | |ℎ(𝑆 (3)

4
)
)
| |ℎ𝐻

)))
us-

ing the integrity proof.

Next, consider keyword queries over blockchain transactions.

For example, a query 𝑞 = [Stock AND Bank] wants to find all

the transactions that contain the keywords "Stock" and "Bank". To

efficiently support such keyword queries, an inverted index [12] can

be maintained by the SP and the CI. When needed, a new certificate

𝑐𝑒𝑟𝑡𝑖𝑑𝑥2 can be constructed by the enclave of the CI by signing

the digest 𝐻𝑖𝑑𝑥2 of this authenticated index (shown in the right-

lower part of Fig. 5). Based on this certificate, superlight clients can

perform verifiable queries by following the query scheme proposed

in [12].

6 SECURITY ANALYSIS AND DISCUSSION
This section performs a security analysis on our proposed block

certificate and verifiable query schemes. We start by presenting a

formal security definition of the block certificate.

Definition 1 (Block Certificate Security). We say a decentralized

certificate scheme is secure if, given a blockchain network B, it
is impossible for any polynomial-time adversary to construct a

valid block certificate 𝑐𝑒𝑟𝑡 for the block 𝑏𝑙𝑘 with the following

conditions: (i) 𝑏𝑙𝑘 is an invalid block; or (ii) 𝑏𝑙𝑘 does not satisfy the

chain selection rule according to network consensus.

The above definition ensures that the chance for a malicious CI

to persuade a verifier with an invalid latest block is negligible. We

now show that our proposed block certificate satisfies the desired

security requirement.

Theorem 1. Our proposed block certificate scheme is secure with
respect to Definition 1 if the underlying cryptographic primitives and
the trusted hardware are secure.

Proof. We prove this theorem by contradiction.

• Case 1: The block 𝑏𝑙𝑘 is an invalid block. In this case, if an ad-

versary can forge a block certificate 𝑐𝑒𝑟𝑡𝑖 for an invalid block

𝑏𝑙𝑘𝑖 , then there must exist a polynomial-time adversary A
who either (1) can persuade the enclave program to accept an

invalid previous block, (2) can persuade the enclave program

to accept invalid blockchain states, or (3) can penetrate the

security isolation of the SGX enclave to interfere its program

isolation. The first case is impossible because the enclave

program will validate the certificate 𝑐𝑒𝑟𝑡𝑖−1 for block 𝑏𝑙𝑘𝑖−1.
Thanking to the recursive nature, the enclave program can

establish the validity of each block tracing all the way back

to the genesis block. The second case is also impossible as the

CI will construct Merkle proofs to attest to the block state in-

puts. A successful forgery of the Merkle proofs would mean

a collision in the underlying cryptographic hash function,

which contradicts our assumption. Finally, the last case dir-

ectly contradicts our assumption that the trusted hardware

is secure.

• Case 2: The block 𝑏𝑙𝑘 does not satisfy the chain selection

rule. Since the client will check whether the block metadata

such as the block height satisfies the system’s chain selection

rule, this case is impossible.

□

We next give a formal security definition of the verifiable query

scheme and analyze its security guarantee.

Definition 2 (Verifiable Query Security). We say a verifiable query

is secure if, given a blockchainB, it is impossible for any polynomial-

time adversary to construct a valid integrity proof 𝜋 along with a

valid certificate 𝑐𝑒𝑟𝑡 for a tampered or incomplete query result 𝑅

of a query 𝑄 .

The above definition guarantees that the chance for an adversary

to convince the user of a tampered or incomplete result is negligible.

We now show that our proposed algorithms satisfy the desired

security requirements.

Theorem 2. Our proposed verifiable query schemes are secure with
respect to Definition 2 if (i) the underlying cryptographic primitives
and the trusted hardware used to construct the index certificate 𝑐𝑒𝑟𝑡
are secure; and (ii) the underlying verifiable query algorithm used to
construct the integrity proof 𝜋 is secure.

Merkle Tree SGX Enclave

Certificate Engine Query Engine

Merkle Tree

Query Service Provider
SGX-enabled Certificate Issuer
 Superlight Client

Blockchain Validator

Query Verifier

Figure 6: System Modules of DCert

Proof. The integrity of the query result depends on the integrity

of the query index and the underlying verifiable query algorithm.

Here, our index certificate 𝑐𝑒𝑟𝑡 attests to the integrity of the query

index. Since its construction is similar to that of block certificate,

the security proof follows that of Theorem 1. Given a validated

query index, a tampered or incomplete result means that the ad-

versary is able to forge the integrity proof 𝜋 , which contradicts

our assumption that the underlying verifiable query algorithm is

secure.

□

The above analysis proves the security of our proposed block

certificate and verifiable query schemes. It is worth noting that

DCert currently implements the signature generation program (Al-

gorithm 2) using Intel SGX, which relies on a centralized TEE

authority, i.e, Intel. Although the decentralization of the underly-

ing blockchain is independent to that of DCert, one may wish to

avoid relying solely on Intel. To this end, we note that the DCert

can be deployed using any other TEE implementations such as

ARM TrustZone, RISC-V MultiZone, and AMD Platform Security

Processor.

7 IMPLEMENTATION AND EVALUATION
We implement a prototype of DCert in Rust programming language,

with around 8,000 lines of codes. The enclave implementation uses

Apache Teaclave SGX SDK
3
. We instantiate an SGX-enabled certi-

ficate issuer on a machine equipped with SGX-enabled CPU Intel

i7-7567U @ 3.50GHz, 32GB RAM, running Ubuntu 20.04LTS. For

each of the SP and the superlight client, a desktop computer with

Intel Core i7-10710U 1.10GHz CPU and 16 GB RAM is used.

7.1 Implementation
As shown in Fig. 6, we implement the essential modules of DCert

based on an Ethereum prototype, including (i) certificate engine,
which is built based on the Rust Ethereum Virtual Machine

4
and is

responsible for constructing block and index certificates; (ii)Merkle
tree, which offers the functionalities of manipulating authentic-

ated indexes; (iii) SGX enclave, which is a secure enclave with the

pre-defined interface; (iv) query engine, which processes verifiable

queries over blockchain data and generates proofs to attest to the

integrity of query results; (v) blockchain validator, which enables

superlight clients to validate the blockchain integrity; and (vi) query
verifier, which verifies the integrity of query results with the block

and index certificates.

7.2 Experiment Setup
We use Blockbench [11] to evaluate the performance. It offers

both micro-benchmarks consisting of DoNothing (denoted as DN),

3
https://github.com/apache/incubator-teaclave-sgx-sdk

4
https://github.com/rust-blockchain/evm

https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/rust-blockchain/evm

Parameters Value
of generated blocks 10

3
, 10

4
, 105, 106

of transactions per block 25, 50, 75, 100
Workload DN, KV, CPU, SB, IO
Table 1: System Parameters

 0

 50

 100

 150

 200

10
3

10
4

10
5

10
6

S
to

ra
g

e
 S

iz
e

 (
M

B
)

(a) Number of Blocks

Light Client
Superlight Client

 0

 500

 1000

 1500

 2000

10
3

10
4

10
5

10
6

V
e

ri
fi
c
a

ti
o

n
 T

im
e

 (
s
)

(b) Number of Blocks

Light Client
Superlight Client

Figure 7: Bootstrapping Cost vs. # Blocks

CPUHeavy (denoted as CPU), and IOHeavy (denoted as IO), and

macro benchmarks consisting of KVStore (denoted as KV) and

SmallBank (denoted as SB). For the experiments of certificate con-

struction, we initially deploy 500 smart contracts and then continu-

ously invoke these smart contracts until there are more than 100k

blocks in the ledger. We randomly generate 100k sender accounts

for sending transaction requests in each experiment. For the verifi-

able query experiments, we create 500 key-value tuples and then

continuously issue update transactions until there are 10k blocks

in the ledger. Then, we perform historical account queries with

different time windows. Table 1 lists all the system parameters used

in the experiments, where the default settings are highlighted in

boldface.

7.3 Evaluation Metrics
The following metrics are used to evaluate our proposed frame-

work: (i) bootstrapping costs, including the storage size and chain

validation time of superlight clients; (ii) time of block certificate

construction of the CI, including the pre-processing program out-

side and certificate construction program inside the enclave; (iii)

time of augmented and hierarchical certificate construction; and

(iv) verifiable query performance, including the query processing

time and the proof size.

7.4 Evaluation Results
7.4.1 Bootstrapping Cost. We start with evaluating the perform-

ance of blockchain bootstrapping for superlight clients. From Fig. 7a,

we can see that the storage requirement of the traditional light cli-

ent increases significantly with the growth of the chain length. In

contrast, the superlight client in DCert maintains a constant stor-

age size of 2.97 KB (including the latest block and its certificate).

Figure 7b further shows the comparison from the perspective of

chain validation time. Notably, the superlight client only takes a

constant bootstrapping time of 0.14 ms, while the traditional light

client suffers from the continually increasing validation time.

7.4.2 Certificate Construction Cost. Figure 8 reports the perform-

ance of certificate construction and its performance overhead in-

curred by the enclave. We break down the certificate construction

time into two components: an untrusted pre-processing program

outside the enclave (read/write set and Merkle proof generation)

and trusted certificate generation program inside the enclave.

0

50

100

150

200

250

DN CPU IO KV SB

C
P

U
 T

im
e

 (
m

s
)

Smart Contract

25.5

133.0
153.1

48.0 46.646.9

186.3

211.4

84.8 84.6

Cert Gen
Merkle Proof Gen

Data Set Gen

DCert w/o sgx
DCert w sgx

Figure 8: Performance vs. Smart Contract

0

70

140

210

280

25 50 75 100

C
P

U
 T

im
e

 (
m

s
)

(a) Number of TX per Block (SB)

17.1
46.6

77.2

129.1

28.5

84.6

149.7

259.7

Cert Gen
Merkle Proof Gen

Data Set Gen

DCert w/o sgx
DCert w sgx

0

70

140

210

280

25 50 75 100

C
P

U
 T

im
e

 (
m

s
)

(b) Number of TX per Block (KV)

19.0
48.0

79.1

125.8

29.2

85.7

153.3

266.3

Cert Gen
Merkle Proof Gen

Data Set Gen

DCert w/o sgx
DCert w sgx

Figure 9: Performance vs. Block Size

It can be seen that the inside-enclave operations account for

the majority of the cost. We observe that the enclave only brings

about at most 1.8x performance degradation, which would not

dramatically affect the construction of block certificates. As for the

pre-processing operations outside the enclave, we can find that the

time of Merkle proof generation is too small to be visible in the

figure. The cost of the read/write set generation mainly depends

on the complexity of smart contracts. Since the enclave overhead

is mainly induced by the state tree updates, the complex smart

contracts (CPU, IO) incur a longer transaction execution time and

weaken the impact of the enclave overhead.

7.4.3 Impact of Block Size. We vary the block size (i.e., the number

of transactions) to evaluate its impact on the performance of the

block certificate construction. We test the two macro benchmarks,

namely KVStore (KV) and SmallBank (SB). Figure 9 shows their

certificate construction time and related breakdown costs. With

the input of more transactions, the certificate engine takes more

time to execute transactions and prepare their Merkle proofs for

the enclave. We can find that the performance overhead incurred

by the enclave is also increasing. This is mainly because the size

of the read/write set and its Merkle proofs passed into the enclave

increases with the number of transactions, which degrades the

performance of the enclave. Even so, the overall performance is

within a reasonable range and would not much affect the DCert

certification service.

7.4.4 Augmented and Hierarchical Certificate Construction. Fig-
ure 10 shows that the overall performance of augmented and hier-

archical certificate construction when varying the number of au-

thenticated indexes. With the increase of authenticated indexes,

there is a substantial increase of the augmented certificate construc-

tion time. In contrast, the hierarchical scheme only yields a slight

increase. This is mainly because the augmented scheme re-executes

the chain certification program each time adding a new authentic-

ated index, while the hierarchical scheme can efficiently certifying

the corresponding block using the prepared block certificate. When

there is only one authenticated index, the augmented scheme per-

0

100

200

300

400

1 2 3 4

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
m

s
)

(a) Number of Authenticated Indexes (SB)

Augmented DCert
Hierarchical DCert

0

100

200

300

400

1 2 3 4

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
m

s
)

(b) Number of Authenticated Indexes (KV)

Augmented DCert
Hierarchical DCert

Figure 10: Performance vs. # Authenticated Indexes

0

5

10

15

20

25

2
2

2
3

2
4

2
5

2
6

2
7

C
P

U
 T

im
e

 (
m

s
)

(a) Time-Window Distance

DCert
LineageChain

0

2

4

6

8

2
2

2
3

2
4

2
5

2
6

2
7

P
ro

o
f

S
iz

e
 (

K
B

)

(b) Time-Window Distance

DCert
LineageChain

Figure 11: Query Performance vs. Time-Window Distance

forms slightly better than the hierarchical one. This is because the

hierarchical scheme separates the block certification logic and the

index certification logic, which incurs one more Ecall function call.

7.4.5 Verifiable Query Performance. Finally, we evaluate the per-
formance of the historical queries over blockchain accounts. We im-

plement two indexes for such historical queries: one is the two-level

tree with the lower tree of Merkle skip list proposed in Lineage-

Chain [24], and the other is the two-level tree of DCert presented

in Fig. 5. Figure 11 shows the query latency with the increasing

time-window distance from the latest block. As can be seen, our

DCert achieves a better performance of query processing and a

smaller size of integrity proofs than LineageChain in all cases. This

is because with the versatile feature of DCert, we are able to use a

more efficient two-level index structure (i.e., Merkle Patricia Trie

and Merkle B-tree) to process and verify the queries.

8 RELATEDWORK
In this section, we briefly review several related studies on block-

chain light client validation, verifiable blockchain queries, and

blockchain system based on trusted hardware.

8.1 Blockchain Light Client Validation
Due to the linear complexity of block headers, the current block-

chain light clients suffer from comparably heavy storage and com-

munication overheads. To tackle this problem, several studies pro-

posed sublinear light clients based on the consensus protocol [6,

16, 17]. Kiayias et al. [16] proposed the proofs of proof of work

(PoPow) and reduced the linear complexity to a logarithmic one for

light clients. Later, an improved version, non-interactive PoPoW

(NIPoPoW) [17], is proposed to mitigate the potential attacks caused

by PoPow. Afterwards, to further improve the applicability of NI-

PoPoW, Flyclient [6] is proposed for chains of varied difficulty by

using an optimal probabilistic block sampling protocol and Merkle

Mountain Range (MMR) commitments. However, the complexity

for these light clients is still comparably high. In comparison, our

proposed DCert provides constant complexity without changing

the consensus protocol of the underlying blockchain.

Some existing studies are proposed to reduce the bootstrapping

cost of light clients to a constant level by utilizing recursive block

validation [5, 15]. Specifically, they utilized the cryptography-based

verifiable computation scheme, i.e., SNARKs [2, 4] for recursively

verifying each block and its state transitions from the previous

block. However, their design focuses on building new blockchain

systems by integrating a specific consensus protocol with a succinct

proof. Furthermore, they are all particularly designed for crypto-

currencies and failed to support smart contracts which involve

arbitrary execution logic and state size. In contrast, our proposed

DCert considers providing a decentralized certification framework,

which is compatible with any existing blockchain systems, includ-

ing the ones with smart contract functionality. Meanwhile, DCert

also enables light clients to support on-demand rich queries with

integrity assurance.

8.2 Verifiable Blockchain Queries
Many works studied verifiable query processing for blockchain

systems. Hu et al. [13] proposed a searchable encryption scheme on

a blockchain system to achieve query verifiability. Xu et al. [33] pro-

posed the vChain framework that supports verifiable boolean range

queries over blockchain databases by designing an accumulator-

based authenticated data structure. Zhang et al. [35, 36] designed

gas-efficient authenticated data structures to support authentic-

ated range and keyword search queries over hybrid-storage block-

chains. Wu et al. [31] proposed the VQL system that employs a

middleware-based cloud to provide verifiable query services with

traceable database fingerprints. Ruan et al. [24] designed a secure

and efficient data provenance system, LineageChain, by augment-

ing the smart contract interface with provenance information and

proposing a novel authenticated skip list index for efficient proven-

ance query processing. Different from all these prior works, our

proposed DCert does not require modifying the underlying block-

chain [24, 33] and is not confined to specific query types [13, 35, 36].

It can dynamically support new query types by constructing cor-

responding certificates of the indexes in an on-demand manner.

8.3 Blockchain Systems based on Trusted
Hardware

The idea of utilizing the trusted hardware for blockchain systems

has been adopted bymanyworks [8, 10, 22, 34, 38]. There aremainly

two categories of trusted-hardware-backed blockchain models. One

categorymainly focuses on protecting user privacy across the block-

chain network. Ekiden [8] provides a confidential smart contract

solution by separating consensus nodes and compute nodes with

the trusted hardware. Bite [22] integrates several private inform-

ation retrieval and side-channel protection techniques with the

trusted hardware to protect the clients’ addresses and transactions.

The other category mainly relies upon the computation integrity

feature provided by the trusted hardware. REM [38] proposed a

new consensus called proof of useful work, which relies on the

faithful random number generator in Intel SGX to replace the hash

puzzle. Dang et al. [10] involved the SGX-backed trusted random-

ness in the running process of the consensus protocol and built a

sharded blockchain system with high transaction throughputs. In

our DCert, the trusted hardware is used as a trusted computation

tool to support the blockchain integrity validation. Meanwhile, our

certification framework also relies on the trusted hardware to pro-

tect the confidentiality of the initialized secret key used for signing

block certificates.

9 CONCLUSION
In this paper, we have proposed DCert, a novel decentralized certi-

fication framework that is compatible with existing blockchains and

achieves constant-cost chain integrity validation with full security

guarantee for light clients. We have developed an efficient certific-

ate construction algorithm to mitigate the performance bottleneck

of the trusted hardware. To enable verifiable queries, we have fur-

ther proposed augmented and hierarchical certificate schemes for

proving the integrity of the authenticated indexes, based on which

various types of verifiable queries can be supported on superlight

clients in an on-demand manner. Extensive experiments show that

the proposed DCert can significantly reduce the storage and boot-

strapping overhead of light clients and provide efficient verifiable

queries over blockchain data.

ACKNOWLEDGEMENT
This work was supported by Hong Kong RGC Grants (No. 12200819,

12201520, and C2004-21GF), CCF-AFSGResearch Fund (No. RF20210

014), and Guangdong Science and Technology Special Fund (No.

SDZX2020036).

REFERENCES
[1] Colin Bookman Allen Day. 2018. Bitcoin in BigQuery: blockchain analytics on

public data. Retrieved October 7, 2022 from https://cloud.google.com/blog/topics/

public-datasets/bitcoin-in-bigquery-blockchain-analytics-on-public-data

[2] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying program executions succinctly and in zero

knowledge. In Annual cryptology conference (Berlin, Heidelberg, August 18-22,
2013). Springer, 90–108.

[3] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.

2019. Tesseract: Real-time cryptocurrency exchange using trusted hardware. In

ACM CCS (London, UK, November 11-15, 2019). 1521–1538.

[4] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive

composition and bootstrapping for SNARKs and proof-carrying data. In ACM
STOC (Palo Alto, California, USA, June 1-4, 2013). 111–120.

[5] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. 2020. Coda: De-

centralized Cryptocurrency at Scale. Cryptology ePrint Archive, Paper 2020/352.

[6] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. 2020. Flyclient:

Super-light clients for cryptocurrencies. In IEEE S&P (San Francisco, CA, USA,

May 18-21, 2020). 928–946.

[7] Somnath Chakrabarti, Rebekah Leslie-Hurd, Mona Vij, Frank McKeen, Carlos

Rozas, Dror Caspi, Ilya Alexandrovich, and Ittai Anati. 2017. Intel® software guard

extensions (Intel® SGX) architecture for oversubscription of secure memory in a

virtualized environment. In Proceedings of the Hardware and Architectural Support
for Security and Privacy (Toronto, ON, Canada, 25 June 2017). 1–8.

[8] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah

Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform for

confidentiality-preserving, trustworthy, and performant smart contracts. In IEEE
EuroS&P (Stockholm, Sweden, June 17-19, 2019). 185–200.

[9] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. IACR Cryptol.
ePrint Arch. 2016, 86 (2016), 1–118.

[10] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. 2019. Towards scaling blockchain systems via sharding. In

ACM SIGMOD (Amsterdam, Netherlands, July 5, 2019). 123–140.

[11] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee

Tan. 2017. Blockbench: A framework for analyzing private blockchains. In ACM
SIGMOD (Chicago, Illinois, USA, May 14 - 19, 2017). 1085–1100.

[12] Michael T Goodrich, Charalampos Papamanthou, DuyNguyen, Roberto Tamassia,

Cristina Videira Lopes, Olga Ohrimenko, and Nikos Triandopoulos. 2012. Effi-

cient verification of web-content searching through authenticated web crawlers.

PVLDB (August 2012), 920–931.

[13] Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, and

Kui Ren. 2018. Searching an encrypted cloud meets blockchain: A decentralized,

reliable and fair realization. In IEEE INFOCOM (Honolulu, HI, USA, April 16-19,

2018). 792–800.

[14] Gabriel Kaptchuk, Matthew Green, and Ian Miers. 2019. Giving State to the

Stateless: Augmenting Trustworthy Computation with Ledgers. In NDSS (San
Diego, CA, USA, 24-27 February 2019). 1–15.

[15] Assimakis Kattis and Joseph Bonneau. 2020. Proof of Necessary Work: Succinct

State Verification with Fairness Guarantees. In 3rd Stanford Blockchain Conference
(SBC) (Stanford, CA, USA, February 19-21, 2020).

[16] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. 2016.

Proofs of proofs of work with sublinear complexity. In FC (Berlin, Heidelberg,

February 26, 2016). Springer, 61–78.

[17] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. 2020. Non-interactive

proofs of proof-of-work. In Financial Cryptography and Data Security (Cham,

February 10–14, 2020). Springer, 505–522.

[18] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papam-

anthou. 2016. Hawk: The blockchain model of cryptography and privacy-

preserving smart contracts. In IEEE SP (San Jose, CA, USA, May 22-26, 2016).

839–858.

[19] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2006. Dy-

namic authenticated index structures for outsourced databases. In ACM SIGMOD
(Chicago, Illinois, USA, June 27-29, 2006). 121–132.

[20] Kai Li, Yuzhe Tang, Qi Zhang, Jianliang Xu, and Ju Chen. 2021. Authenticated

key-value stores with hardware enclaves. In Proceedings of the 22nd International
Middleware Conference: Industrial Track (Virtual Event, Canada, December 6–10,

2021). 1–8.

[21] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Peter

Pietzuch. 2019. Teechain: a secure payment network with asynchronous block-

chain access. In ACM SOSP (Huntsville, ON, Canada, October 27-30, 2019). 63–79.

[22] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame,

and Srdjan Capkun. 2019. BITE: Bitcoin lightweight client privacy using trusted

execution. In USENIX Security (Santa Clara, CA, USA, August 14-16, 2019). 783–

800.

[23] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Retrieved

October 7, 2022 from https://bitcoin.org/bitcoin.pdf

[24] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin Ooi,

and Meihui Zhang. 2019. Fine-grained, secure and efficient data provenance on

blockchain systems. PVLDB (2019), 975–988.

[25] Vasily A Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara Bouchenak, Gaël

Thomas, and Rüdiger Kapitza. 2018. EActors: Fast and flexible trusted computing

using SGX. In Proceedings of the 19th International Middleware Conference (Rennes,
France, December 10–14, 2018). 187–200.

[26] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A practical

library OS for unmodified applications on SGX. In USENIX ATC (Santa Clara, CA,

USA, July 12-14, 2017). 645–658.

[27] Haixin Wang, Cheng Xu, Ce Zhang, Jianliang Xu, Zhe Peng, and Jian Pei. 2022.

vChain+: Optimizing Verifiable Blockchain Boolean Range Queries. In IEEE ICDE
(Kuala Lumpur, Malaysia, May 9-12, 2022). 1928–1941.

[28] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. SGX-perf:

A performance analysis tool for intel sgx enclaves. In Proceedings of the 19th
International Middleware Conference (France, December 10-14, 2018). 201–213.

[29] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining lost cycles with

HotCalls: A fast interface for SGX secure enclaves. ACM SIGARCH Computer
Architecture News (June 2017), 81–93.

[30] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger.
Retrieved October 7, 2022 from https://ethereum.github.io/yellowpaper/paper.pdf

[31] Haotian Wu, Zhe Peng, Songtao Guo, Yuanyuan Yang, and Bin Xiao. 2021. VQL:

Efficient and Verifiable Cloud Query Services for Blockchain Systems. IEEE TPDS
33, 6 (September 2021), 1393–1406.

[32] Cheng Xu, Qian Chen, Haibo Hu, Jianliang Xu, and Xiaojun Hei. 2018. Authen-

ticating Aggregate Queries over Set-Valued Data with Confidentiality. TKDE 30,

4 (April 2018), 630–644.

[33] Cheng Xu, Ce Zhang, and Jianliang Xu. 2019. vChain: Enabling Verifiable Boolean

Range Queries over Blockchain Databases. In ACM SIGMOD (Amsterdam, The

Netherlands, June 30 - July 5, 2019). 141–158.

[34] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. 2021. SlimChain: Scaling

Blockchain Transactions through Off-Chain Storage and Parallel Processing.

PVLDB 14, 11 (July 2021), 2314–2326.

[35] Ce Zhang, Cheng Xu, Haixin Wang, Jianliang Xu, and Byron Choi. 2021. Authen-

ticated Keyword Search in Scalable Hybrid-Storage Blockchains. In IEEE ICDE
(Chania, Greece, April 19-22, 2021). 996–1007.

[36] Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, and Byron Choi. 2019. GEM
2
-

tree: A gas-efficient structure for authenticated range queries in blockchain. In

IEEE ICDE (Macao, China, April 8-11, 2019). 842–853.

[37] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town

crier: An authenticated data feed for smart contracts. In ACM CCS (Vienna,

Austria, October 24-28, 2016). 270–282.

[38] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert Van Renesse. 2017.

REM: Resource-efficient mining for blockchains. In USENIX Security (Vancouver,

BC, August 16–18, 2017). 1427–1444.

https://cloud.google.com/blog/topics/public-datasets/bitcoin-in-bigquery-blockchain-analytics-on-public-data
https://cloud.google.com/blog/topics/public-datasets/bitcoin-in-bigquery-blockchain-analytics-on-public-data
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain Basics
	2.2 SGX

	3 DCert Overview
	3.1 Design Goals
	3.2 System Model
	3.3 Solution Overview

	4 Certificate Construction and Validation
	4.1 Overall Idea
	4.2 Certificate Construction Algorithm
	4.3 Blockchain Integrity Validation

	5 Extension to Verifiable Queries
	5.1 Design Overview
	5.2 Certificate Construction Schemes
	5.3 Query Processing and Verification
	5.4 Case Study

	6 Security Analysis and Discussion
	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Experiment Setup
	7.3 Evaluation Metrics
	7.4 Evaluation Results

	8 Related Work
	8.1 Blockchain Light Client Validation
	8.2 Verifiable Blockchain Queries
	8.3 Blockchain Systems based on Trusted Hardware

	9 Conclusion
	References

