
vChain+: Optimizing Verifiable Blockchain Boolean
Range Queries

Haixin Wang1, Cheng Xu1,2, Ce Zhang1, Jianliang Xu1, Zhe Peng1, and Jian Pei2

1 Department of Computer Science, Hong Kong Baptist University, Hong Kong
2 School of Computing Science, Simon Fraser University, Canada

{hxwang, chengxu, cezhang, xujl, pengzhe}@comp.hkbu.edu.hk, jpei@cs.sfu.ca

Abstract—Blockchain has recently gained massive attention
thanks to the success of cryptocurrencies and decentralized
applications. With immutability and tamper-resistance features, it
can be seen as a promising secure database solution. To address
the need of searches over blockchain databases, prior work
vChain proposed a novel verifiable processing framework that
ensures query integrity without maintaining a full copy of the
blockchain database. It however suffers from several limitations,
including linear-scan search performance in the worst case and
impractical public key management. In this paper, we propose
a new searchable blockchain system, vChain+, that supports
efficient verifiable boolean range queries with additional features.
Specifically, we propose a sliding window accumulator index to
achieve efficient query processing even for the worst case. We also
design an object registration index to enable practical public key
management without compromising the security guarantee. To
support richer queries, we employ optimal tree-based indexes to
index both keywords and numerical attributes of the data objects.
Several optimizations are also proposed to further improve the
query performance. Security analysis and empirical study validate
the robustness and performance improvement of the proposed
system. Compared with vChain, vChain+ improves the query
performance by up to 913×.

I. INTRODUCTION

Blockchain has been receiving tremendous attention in recent
years owing to the great success of decentralized applications in
various fields such as cryptocurrencies, healthcare, and supply
chain management [1]–[3]. It is an append-only ledger built
upon the incoming transactions that are agreed upon by a
network of untrusted nodes. With the utilization of the hash
chains and the distributed consensus protocols, blockchain
has the features of immutability and tamper resistance. In a
typical blockchain network, there are three types of nodes: full
node, miner, and light node, as shown in Fig. 1. A full node
maintains a full copy of the blockchain data, including both
block headers and complete block states. A miner is also a
full node but has an additional responsibility to generate new
blocks. A light node, on the other hand, does not maintain
the whole blockchain. Only block headers, which include the
consensus proofs and the digests of block states, are stored
by light nodes. Despite being small in size, the block headers
provide sufficient information to verify the integrity of a block.

The unique features of blockchain make it a promising secure
database solution, especially in the decentralized environment.
As such, there is a growing demand to query the data stored in
a blockchain database. For example, in the Bitcoin network, a
user may want to find all transactions whose transfer amounts

Miner Full Node (SP)

Light Node (user)

Full Node (SP) Miner

· · ·
Q

⟨R, V O⟩

Q
⟨R
, V
O
⟩

Fig. 1: A Blockchain Network

are between US$1 to US$10 or all transactions associated with
some specific sender and receiver addresses in a time interval.
Several database companies, such as IBM and Oracle, provide
searchable blockchain database solutions by materializing a
view of the blockchain data in a traditional centralized database.
However, such a design is not desirable for decentralized
applications. The query execution integrity is not guaranteed by
the centralized party, which could be malicious or compromised.
Alternatively, users can maintain a full copy of the entire
blockchain database and query the data locally. However, that
is impractical to ordinary users as it requires considerable
storage, computing, and bandwidth resources.

To tackle the issues mentioned above, Xu et al. [4] proposed
the vChain framework that supports verifiable boolean range
queries over blockchain databases. As shown in Fig. 1, a query
user in vChain is only required to act as a light node; the
queries are instead outsourced to a full node in the blockchain
network, which serves as a service provider (SP). Although
the SP might be untrusted, users can still verify the integrity
of the query results by checking an additional verification
object (VO). The VO is computed by the SP with the help
of a carefully designed authenticated data structure (ADS)
embedded in the block headers. We will briefly discuss the
basic design of the vChain framework and its challenges that
limit its practicability.

A. vChain and Its Limitations

In vChain, a specifically designed ADS, AttDigest (as
shown in Fig. 2), is added to each block header. AttDigest
is computed from a cryptographic set accumulator, which
serves as a constant-sized digest to represent a set of data
objects. It can also be used to efficiently prove that the data
objects in a block mismatch the query condition by using a
set disjoint operation. For example, if the object oi in blocki
has two keywords {“A”, “B”}, the corresponding AttDigest

. . . PreBkHash TS ConsProof ObjectHash AttDigest

blocki

oi

. . .

Fig. 2: Block Structure in vChain [4]

is computed as AttDigest = acc({“A”, “B”}), where acc(·)
computes the set accumulative value. When a user asks a
query q = “B” ∧ “C”, we can see that blocki mismatches q
since “C” ∩ {“A”, “B”} = ∅. As such, the SP computes a set
disjoint proof π∅ and sends VO = {π∅, “C”} to the user. Based
on the above information, the user can establish that blocki
mismatches the query condition “C” using π∅ and AttDigest
in the block header. In order to efficiently process multiple
mismatch blocks in batch for better performance, vChain also
proposed the inter-block index, which is a skiplist aggregating
data objects across blocks. For each skip, an accumulative
value is computed based on the objects in the skipped blocks.
If a query mismatches the aggregated blocks due to the
same mismatching query condition, we can generate a single
mismatch proof to skip these blocks and thus reduce the query
cost. Range queries in vChain are achieved by transforming
numerical attributes to set-valued attributes with the help of the
prefix tree and following a similar query processing procedure.

Although vChain for the first time supports verifiable
boolean range queries in blockchain databases, it still has
some challenges that limit its practicability. The first one is
that in the worst case, the inter-block index cannot help speed
up the proving for aggregated mismatching blocks so that the
query degenerates to a linear scan process. For example, asume
that q = “A” ∧ “B” and three consecutive blocks, containing
objects with keywords o1 = {“A”, “C”}, o2 = {“B”, “D”},
o3 = {“A”, “E”}, respectively, are aggregated so that the
accumulative value in the inter-block index is computed from
S = {“A”, “B”, “C”, “D”, “E”}. In this case, the inter-block
index fails to work since S satisfies q. This example shows that
in the worst case, vChain has to query each block one by one
as the inter-block index cannot aggregate multiple mismatching
blocks with different mismatch reasons. With this observation,
we evaluate vChain using the 4SQ dataset [5] to measure the
utilization of the inter-block indexes for mismatching blocks.
Figure 3 shows that in almost 80% cases, the inter-block index
fails to work (i.e., skip length is 0), which coincides with
the previous analysis. The second limitation of vChain is
its practical issue of public key management. Owing to the
characteristic of the cryptographic accumulator, its public key
size is determined by the largest possible value of the attributes
in the system, which would be 2256 if a 256-bits hash is used to
encode the data attributes. To circumvent this problem, vChain
proposed introducing a trusted oracle to generate the public
key on the fly. However, such an oracle may not exist in the
decentralized environment, which makes vChain challenging
to be deployed in real-life applications. Last but not least,
since vChain transforms the numerical attributes to set-valued
attributes, it can only support integer and fixed-point numbers,
which limits its application.

 0

 20

 40

 60

 80

 100

0 4 8 16 32

P
e
rc

e
n
ta

g
e

Inter-Block Index Skip Length

78.7

12.6
5.9 1.9 0.9

Fig. 3: Statistics of Inter-Block Index Utilization in vChain

B. Our Contributions

To tackle the limitations of vChain, we propose a new
searchable blockchain system, vChain+, that supports efficient
verifiable boolean range queries with novel designs of ADS to
be more efficient, practical, and functional. Instead of using
mismatching conditions to process the blocks, we propose a
novel sliding window accumulator design for building the ADS
in each block. Specifically, for each block, we build a sliding
window accumulator (SWA) index over the data objects in the
most recent k blocks, where k is the sliding window size. With
such a design, a time-window historical query q = [ts, te] is
first divided into multiple sub-queries, each with a time window
size of k. Then, each sub-query can be efficiently processed
and verified using the SWA index in a corresponding block.

The major improvement of the SWA index comes from the
use of the best index to support different queries (e.g., trie for
keyword queries and B+-tree for range queries). For example,
considering the aforementioned case with three consecutive
blocks, we set k = 3 and a trie-based SWA index, including
keywords “A”, “B”, “C”, “D”, “E”, can be constructed. During
the query processing, we first search the SWA index to get
the object sets of keywords “A” and “B”, which are {o1, o3}
and {o2}, respectively. Then, a set intersection proof π∩ is
computed using the accumulating values of the two object sets
to prove that the result is ∅. As such, the SWA index can help
speed up the proving for aggregated blocks and mitigates the
problem of the inter-block index in vChain.

Apart from the SWA index, we also address the practical
issue of public key management by introducing an object regis-
tration index. Note that the public key size of a cryptographic
set accumulator depends on the universe size of input set
elements. As the accumulator in our SWA index is built over
data objects (cf. keywords in vChain), we register and index
each data object with a small integer ID, so as to bound the
universe size and thus limit the public key size. The users
can use this index to retrieve the final query results from the
corresponding IDs with integrity assurance. Moreover, different
from vChain that transforms numeric attributes to set-valued
attributes, we use B+-tree to support numerical range queries
with floating-point numbers. We also consider arbitrary boolean
queries with multiple keywords (cf. limited monotone boolean
queries supported in vChain).

Furthermore, we propose several optimizations to further
improve the system performance. We propose to build multiple
SWA indexes with different sliding window sizes for each block
so that the SP can choose the best one according to the query

condition. Meanwhile, as a query may involve a sequence
of verifiable set operations, we employ an optimal query
plan to reduce the computation overhead of the cryptographic
set accumulator. We also propose to prune unnecessary set
operations based on empty sets. Security analysis and empirical
study are both conducted to validate the proposed methods.
Experimental results show that vChain+ improves the query
performance by up to 913× and 1098×, respectively, against
the two constructions of vChain [4].

The rest of this paper is organized as follows. Section II
introduces the formal problem formulation, followed by some
preliminaries of the cryptographic building blocks in Section III.
Section IV presents the processing of verifiable boolean queries,
which is then extended to rich query types in Section V.
Section VI introduces several optimization techniques and
the security analysis is presented in Section VII. Section VIII
gives the experiment results. Section IX discusses the related
works. Finally, we conclude our paper in Section X.

II. PROBLEM FORMULATION

As mentioned in Section I, vChain+ follows the same system
model as that of vChain [4], but proposes novel ADS designs
to provide better query processing efficiency and functionality.
The SP is a blockchain full node to provide verifiable query
services, while the users are light nodes that maintain only the
block headers for verification. On the other hand, the miners,
being full nodes, are responsible for appending new blocks
to the blockchain and constructing the specifically designed
sliding window accumulator (SWA) index in each block to
facilitate verifiable queries. With the help of the SWA index,
the SP returns both the results and an additional verification
object (VO) for result integrity verification (as shown in Fig. 1).

The data object in the blockchain is modeled as a tuple
in the form of oi = ⟨ti, vi,Wi⟩, where ti is the object’s
timestamp, vi denotes the numerical attribute, and Wi is
the keyword set of the object. In this paper, we focus on
verifiable historical boolean range queries within a certain
time window. Specifically, the query is in the form of
Q = ⟨[ts, te], [α, β],Υ⟩, where [ts, te] is the time window
predicate,1 [α, β] is the numerical range predicate, and Υ is
an arbitrary boolean function on the objects’ keyword sets.
Different from vChain, Υ is not limited to the monotonic
boolean function, but supports ¬ (NOT), ∧ (AND), ∨ (OR)
operators, which is more expressive. Given a query, the SP
returns all the data objects that satisfy the query conditions, i.e.,
{oi = ⟨ti, vi,Wi⟩ | ti ∈ [ts, te]∧vi ∈ [α, β]∧Υ(Wi) = 1}. For
instance, in the context of Bitcoin transaction data, a user may
ask a query q = ⟨[2021-10, 2021-11], [10, 20], send:2AC0 ∧
¬receive:3E7F⟩ to find all the transactions that happen from
October to November of 2021 with a transfer amount between
10 to 20 and associated sender 2AC0 but except with receiver
3E7F.

Threat Model. Similar to vChain [4], we assume that the SP
is untrusted and may return tampered or incomplete results due

1In the paper, we use timestamp ti and block height bi interchangeably.

5 8 20 31 35 43 52 59

Fig. 4: Merkle Hash Tree

to various reasons such as commercial dishonesty or security
breaches. On the other hand, we assume that the blockchain
works functionally, i.e., the majority of the miners in the
blockchain system are honest and the blockchain network is
strongly synchronized. Besides, we assume that the users are
trusted and faithfully follow the protocol in the process of query
verification. Specifically, with the help of the VO generated by
the SP, the users can verify the soundness and completeness
of the results. Soundness means that all the returned results
are originated from the blockchain database and satisfy the
query conditions. Completeness indicates that no valid result
is missing regarding the query conditions.

The objective of vChain+ is to design a novel ADS that
facilitates the system to achieve much better query performance,
more practical public key management, and more flexible query
types compared to the existing vChain framework without
compromising the security guarantee. We show our designs
that fulfill these requirements in the next few sections.

III. PRELIMINARIES

This section gives some preliminaries of cryptographic
building blocks which are used in the proposed algorithms.

Cryptographic Hash Function: A cryptographic hash
function H(·) is an algorithm which takes an arbitrary-length
message m as input and outputs a fixed-length hash digest
H(m). It has an important property, collision resistance,
indicating that a PPT adversary can find two message m1 ̸= m2

such that H(m1) = H(m2) with a negligible probability.
Merkle Hash Tree [6]: A Merkle Hash Tree (MHT) is a tree

structure used for efficiently authenticating a set of data objects.
Figure 4 shows an example of an MHT with eight objects. In a
nutshell, MHT is a binary hash tree constructed in a bottom-up
manner. Specifically, each leaf node stores the hash value of the
indexed object. Each internal node contains a hash computed
using its two child nodes (e.g., h6 = H(h3||h4), where “||” is
the concatenation operation). Thanks to the collision-resistant
hash function and the hierarchical structure, the root hash
of the MHT (h7 in Fig. 4) can be used to authenticate the
indexed data. For example, for a range query [6, 25], the results
are {8, 20} with its corresponding proof {5, 31, h6} (shown
in shaded nodes in Fig. 4). One can verify these results by
reconstructing the root hash using the proof and comparing it
with the signed root hash. If they match, it means the results
are not being tampered with. Meanwhile, the completeness of
the results is ensured by the boundary data 5, 31 in the proof.

To support other queries, MHT has been extended to

Merkle B+-tree for range queries [7], Merkle R-tree for spatial
queries [8], and Merkle Patricia Trie for string search [2].

Cryptographic Set Accumulator [9]: A cryptographic set
accumulator is a function that maps a set X to a constant-sized
digest acc(X). Similar to a cryptographic hash function, this
digest can attest to the corresponding set. Moreover, it supports
various verifiable set operations, including intersection (denoted
as ∩), union (denoted as ∪), and difference (denoted as \).
These set operations can be invoked in a nested fashion and
be verified using the accumulative values of the input sets.
Specifically, a cryptographic set accumulator scheme consists
of the following probabilistic polynomial-time algorithms:

• ACC.KeyGen(1λ, U) → pk: On input a security param-
eter λ and a universe U , it outputs the public key pk.

• ACC.Setup(X, pk) → acc(X): On input a set X and the
public key pk, it outputs the accumulative value acc(X)
of X .

• ACC.Update(acc(X), acc(∆), pk) → acc(X+∆): On
input the set accumulative value acc(X) of a set X ,
the accumulative value acc(∆) of an incremental update
∆ (including insertion or deletion of set elements), and
the public key pk, it outputs the accumulative value
acc(X+∆) with respect to the new set X+∆.

• ACC.Prove(X1, X2, opt, pk) → {R, πopt}: On input two
sets X1, X2, a set operation opt ∈ {∩,∪, \}, and the
public key pk, it returns the result of the set operation
R = opt(X1, X2) along with the proof πopt.

• ACC.Verify(acc(X1), acc(X2), opt, πopt, acc(R), pk) →
{0, 1}: On input the accumulative values acc(X1),
acc(X2) of sets X1 and X2, respectively, a proof πopt

with respect to the operation opt, the accumulative value
to the answer set R, and the public key pk, it returns 1
if and only if R = opt(X1, X2).

In this paper, we use the state-of-the-art cryptographic set
accumulator scheme proposed by Zhang et al. [9], which
supports not only incremental updates but also expressive nested
set operations. Another nice property of this scheme is that
the proof size for any set operation is constant and the cost of
proving a series of nested set operations is linear to the number
of set operations. However, it suffers from a relatively high
proof generation cost with a complexity of O(N1 ·N2), where
N1, N2 are the sizes of the input sets X1, X2, respectively.
Furthermore, at the expense of expressiveness, its proof size is
relatively larger than the one used in vChain [4]. Meanwhile,
the public key size of this scheme is O(|U |2), where |U | is
the universe size of the input set elements. To remedy these
shortcomings, we propose an object registration index, which
assigns each data object with a bounded ID to address the
public key size issue in Section IV-A. Furthermore, we propose
several techniques to reduce the proof generation overhead in
Section VI.

IV. VERIFIABLE BOOLEAN QUERY PROCESSING

In this section, we consider verifiable boolean queries
with multiple keywords. As we explained before, vChain’s
query processing may degenerate to a linear scan in the

PreBlkHash TS ConsProof ObjHash ObjRegRootAdsRoot

SWA-
Trie

ObjReg

index

Fig. 5: Extended Block Structure

Fig. 6: Object Registration Index

worst case. To tackle this issue, we propose a novel sliding
window accumulator index design for efficient query processing.
The main idea is for each block to build a sliding window
accumulator trie (SWA-Trie for short) for the data objects in
the most recent k blocks, where k is the sliding window size.
The root hash of the SWA-Trie is embedded in the blockchain
header (see Fig. 5) to support verifiable query processing. In the
following, we discuss in detail the issues related to this design:
(i) how to manage the accumulator’s public key by object
registration (Section IV-A), (ii) how to efficiently maintain the
SWA-Trie index (Section IV-B), (iii) how to support expressive
boolean keyword queries (Section IV-C), and (iv) how to verify
the query results (Section IV-D).

A. Object Registration

As mentioned earlier, we use a cryptographic set accumulator
scheme to verify various set operations. However, the public
key size of the accumulator scheme used in our design is
quadratic to the universe size of input set elements. Recall
that the input set elements are the data objects in each sliding
window. This poses a challenge in public key management for
practical applications. For example, we cannot simply use a
cryptographic hash function to encode data objects into 256-bit
integer numbers, which would yield a public key with a size of
(2256)2 = 2512. To tackle a similar issue, vChain proposes to
introduce a trusted oracle, which owns a secret key to generate
the public keys on the fly [4]. However, such a solution is not
very desirable in the context of blockchain applications. It is
not easy to find a trusted third party in a decentralized public
blockchain environment.

To properly address this issue, we propose to embed an object
registration (ObjReg) index in each block of the blockchain, as
shown in Fig. 5. Instead of storing data objects directly in the
set accumulator, we register each data object with an ID and
store the IDs in the set accumulator. The ObjReg index is used
to track the mapping between the data objects in the recent
2k−1 blocks and their IDs. Here, we enforce a maximum ID,
denoted as MaxID, which is the maximum possible number
of data objects spanned across 2k−1 blocks. Thus, the universe

Object Block ID Value Object Block ID Value

Fig. 7: Example of SWA-Trie

size of input set elements to the set accumulator is bounded
to MaxID, thereby limiting the public key size. For example,
we set MaxID to 212 for the datasets in our experiments,
which limits the public key size to (212)2 = 224 only. At
the same time, this also ensures that the data objects in every
consecutive 2k−1 blocks will always have a distinct ID. As will
be shown later, our set operations concern only the data objects
within 2k−1 blocks. Thus, each object in any set operation is
guaranteed to have a unique ID.

The ObjReg index is a fully balanced MHT with a fixed
fanout. Whenever a new data object arrives, the miner will
register the object and assign an ID by incrementing a counter
with a modular of MaxID. Then, the object is inserted into
the ObjReg index according to its ID. Since the ObjReg index
is a full tree with a fixed fanout, the location of the object can
be easily computed by interpreting the ID as a number using
the fanout as the radix. Consider data object o6 in Fig. 6. As
ID 6 can be interpreted as 020 in radix-3, o6 can be located
by following the 1st, 3rd, and 1st node in the respective tree
levels. With the ObjReg index and the IDs of the query results,
the user can use the ObjReg index to verify the query results
as in normal MHT. In the example of Fig. 6, where o6 is the
query result, the SP will return {o6, h11, h12, h1, h2} to the
user. On the user’s side, the root hash of the ObjReg tree is
reconstructed and compared against the one stored in the block
header. If the verification passes, it can be ensured that data
object o6 indeed corresponds to ID 6.

B. Maintenance of SWA-Trie

Recall that in our design, each SWA-Trie is built over the data
objects in the most recent k blocks. Figure 7 shows an example
of our designed trie structure with an index sliding window size
of 4. For ease of illustration, we assume that each block contains
a single data object. In this example, the trie structure Ti is built
over the objects with IDs {id1, id2, id3, id4}. Each trie node n
contains a hash digest (denoted by hn) to form a Merkle tree.
For the root node and each leaf node, we also store an object
ID set (denoted by Sn) and the corresponding set accumulative
value (denoted by accn). Let H(·) be a cryptographic hash
function, || be the string concatenation operator, and acc(·) be
the cryptographic set accumulator. We define the fields of each

Algorithm 1: SWA-Trie Maintenance (by the miner)

1 Function SWATrieMaintenance(bi+1, bi−k+1)
Input: current block bi+1, block bi−k+1

2 Ti+1 ← Ti;
3 Get ObjReg indexes ObjRegIdxi−k+1 and ObjRegIdxi+1

w.r.t. bi−k+1 and bi+1, respectively;
4 for each data object o in bi−k+1 do
5 ID ← ObjRegIdxi−k+1.lookup(o);
6 Ti+1.Update(o, ID, false);
7 for each data object o in bi+1 do
8 ID ← ObjRegIdxi+1.insert(o);
9 Ti+1.Update(o, ID, true);

10 Write Ti+1 to bi+1;
11 Function Update(o, ID, is insert)

Input: data o, id ID, insert flag is insert
12 if is insert then new nodes← insert o to Trie ;
13 else new nodes← delete o from Trie ;
14 l← new nodes[0] ; // leaf node
15 r ← new nodes[−1] ; // root node
16 if ID ∈ Sl then acc∆ ← acc(∅) ;
17 else acc∆ ← acc({id}) ;
18 if is insert then
19 Sl ← Sl ∪ {ID}; Sr ← Sr ∪ {ID};
20 else
21 Sl ← Sl \ {ID}; Sr ← Sr \ {ID}; acc∆ ← −acc∆;
22 accl ← ACC.Update(accl, acc∆, pk);
23 accr ← ACC.Update(accr, acc∆, pk);
24 Update l’s hash;
25 for n in new nodes[1:-1] do // non-leaf nodes
26 update n’s hash;
27 Update r’s hash;

trie node as follows.

Definition 1 (SWA-Trie Leaf Node). The fields of a leaf node
n are defined as:

• wn = the associated keyword segment of n;
• Sn = the ID set of the objects covered by n;
• accn = acc(Sn);
• hn = H(H(wn)||accn).

Definition 2 (SWA-Trie Non-Leaf Node). Denote the child
nodes of a non-leaf node n as {c1, · · · , cF }. The fields of n
are defined as:

• wn = the associated keyword segment of n;
• Sn = the ID set of the objects covered by n (if n is the

root);
• accn = acc(Sn) (if n is the root);
• childHashn = H(hc1 || · · · ||hcF);
• hn = H(H(wn)||childHashn||acc(Sn)) (if n is root);
• hn = H(H(wn)||childHashn) (if n is non-root).

To incrementally update the SWA-Trie index, we maintain
it as a persistent data structure. Algorithm 1 describes the
maintenance algorithm. Upon receiving a new block of data
objects, the algorithm removes the object IDs in the k-th oldest
block (denoted by bi−k+1) and inserts the object IDs in the
new block (denoted by bi+1). In the example shown in Fig. 7,
to build the SWA-Trie Ti+1 for bi+1, the algorithm removes o1
from Ti and then inserts o5 into Ti+1. Afterwards, new nodes
{n8, n9, n10, n11} are computed in a bottom-up fashion. It is
worth noting that we do not need to recompute the accumulative

Algorithm 2: Boolean Query Processing (by the SP)

1 Function BooleanQuery(Q)
Input: query condition Q = ⟨[ts, te],Υ⟩
Output: query result R, verification object V O

2 R← ∅; qs← DivideQuery(Q);
3 for q in qs do
4 ⟨[ts′ , te′],Υ⟩ ← q; Get block be′ w.r.t. te′ ;
5 πtrie ← ∅; Rtrie ← ∅;
6 for each keyword w in Υ do
7 ⟨Rw, πw⟩ ← QuerySWATrie(w, be′ .root);
8 Merge πw to πtrie; Add Rw to Rtrie;
9 ⟨RΥ, πΥ⟩ ← Perform ACC.Prove on Rtrie based on Υ;

10 Get ObjReg index ObjRegIdxe′ w.r.t. be′ ;
11 ⟨Robj , πobj⟩ ← ObjRegIdxe′ .lookup(RΥ);
12 R← R ∪Robj ;
13 Add ⟨πtrie, RΥ, πΥ, πobj⟩ to V O;
14 return ⟨R, V O⟩;

value of the new root n8 from scratch. Instead, we can invoke
ACC.Update to incrementally update the accumulative value
based on the updated object IDs.

C. Verifiable Query Processing

Given a boolean query in the form of Q = ⟨[ts, te],Υ⟩,
the SP should return all data objects within the time period
whose keywords satisfy the boolean expression Υ, i.e., {oi =
⟨ti,Wi⟩ | ti ∈ [ts, te] ∧ Υ(Wi) = 1}. To process the query
request, our algorithm consists of three steps. First, the query
will be divided into a set of sub-queries, each with a time
window length of k. Then, each sub-query will be processed
by making use of the SWA index and the ObjReg index. Finally,
the results of all sub-queries will be merged to generate the
final results. The overall query processing procedure is given
in Algorithm 2.

1) Query Dividing: Given a query Q, if the query time
window length is no less than k, Q will be divided into multiple
k-length sub-queries. If the query window cannot be divided
properly, we let the time window of the last sub-query overlap
with that of the previous sub-query. For example, assume k = 4
and given a query with a time window [t1, t10], besides the
sub-queries with time windows [t1, t4] and [t5, t8], the last
sub-query will be created with a time window [t7, t10]. Note
that this may produce redundant results but the correctness
of query processing is not affected. On the other hand, if the
query time window length is less than k, Q will be treated as
a special sub-query, which will be discussed in Section IV-C3.

2) Sub-query Processing: For each sub-query q =
⟨[ts′ , te′],Υ⟩ with a time window length of k, we first traverse
the SWA-Trie located in block be′ to obtain the intermediate
results Rw with corresponding Merkle proof πw for each
keyword w in Υ. To reduce the proof size, we merge πws
as πtrie. Then, verifiable set operations based on Υ will be
performed on the intermediate results to obtain the result ID set
RΥ and the set operation proof πΥ. Finally, the SP will query
the ObjReg index located in be′ to find the corresponding data
objects with a Merkle proof πobj .

More specifically, first, for each keyword w in Υ, the SP
searches the SWA-Trie to find all objects in the trie containing

w, which is summarized in Algorithm 3. Starting from the
root, the SP traverses the SWA-Trie in a top-down manner. If
the keyword segment of a trie node n does not match w, all
the data objects under this node do not belong to Rw. In this
case, if n is a leaf node, the SP adds wn and accn to πtrie

as part of the Merkle proof; otherwise, the SP adds wn and
childHashn (as well as accn if n is the root) to πtrie. For
each node n whose keyword segment matches w, if it is a leaf
node, the SP adds Sn to Rw and wn, accn to πtrie; otherwise,
the subtree will be further explored with wn (as well as accn if
n is the root) being added to πtrie. Note that the Merkle proofs
of different keywords could share some common paths. Hence,
the Merkle proofs for all keywords in Υ can be combined to
reduce the proof size.

Example. In the example in Fig. 8, consider sub-
queries with time window [ti−2, ti+1] and two keywords
5e7a and 5e9b. We should search the trie Ti+1 located in
bi+1. We will get the results R5e7a = S6 = {id3, id4},
R5e9b = S7 = {id2, id3} and the Merkle proof πtrie =
{⟨*, acc8⟩, ⟨5e⟩, ⟨9a, childHash9⟩, ⟨7a, acc6⟩, ⟨9b, acc7⟩}.

After getting the intermediate results from trie searches,
the SP will conduct verifiable set operations according to Υ
using the set accumulator. To support arbitrary boolean queries
including the ¬ (NOT), ∧ (AND), and ∨ (OR) operators, we
employ the accumulator proposed in [9]. Specifically, the ¬, ∧,
and ∨ operators in the query boolean expression can be mapped
to the corresponding set difference (\), set intersection (∩),
and set union (∪) operations in the set accumulator scheme.

Example. In the running example of Fig. 8, for the boolean
function Υ1 = 5e7a ∧ 5e9b, the SP can obtain the result
RΥ1

= R5e7a ∩R5e9b = {id3} and the set operation proof πΥ1

by invoking ACC.Prove(R5e7a, R5e9b,∩, pk). Similarly, for the
boolean function Υ2 = 5e7a ∨ 5e9b, the SP can obtain the
results RΥ2

= R5e7a∪R5e9b = {id2, id3, id4} and the set oper-
ation proof πΥ2

by invoking ACC.Prove(R5e7a, R5e9b,∪, pk).
For the boolean function Υ3 = ¬5e9b, the SP first retrieves
all object IDs in Ti+1, i.e., R∗ = {id2, id3, id4, id5}, with
its Merkle proof π∗ = {⟨∗, childHash8)⟩}. Then, it can
perform a verifiable set difference operation to obtain the
results RΥ3

= R∗ \ R5e9b = {id4, id5} and the proof πΥ3

by invoking ACC.Prove(R∗, R5e9b, \, pk). For the boolean
function Υ4 = 5e7a ∧ (¬5e9b), a verifiable set difference
R5e7a \ R5e9b can be performed. For the boolean function
Υ5 = 5e7a ∨ (¬5e9b), nested verifiable set operations will be
performed. Specifically, the SP will first invoke ACC.Prove
on R∗ \ R5e9b to get R¬5e9b. Then, a verifiable set union
R5e7a ∪ R¬5e9b will be computed to obtain the set operation
proof.

Next, the SP queries the ObjReg index located in be′ to
find the corresponding data objects based on result IDs. It also
computes a Merkle proof πobj for the retrieved result objects.
Note that the results of the last sub-query may share some
common objects with its previous sub-query. As such, when
searching the data objects for the last sub-query, the SP will
not search those already obtained in the previous sub-query.
Finally, the SP packs πtrie, RΥ, πΥ and πobj together as the

Algorithm 3: Keyword Search (by the SP)

1 Function QuerySWATrie(root, w)
Input: SWA-Trie root root, keyword w
Output: query result R, Merkle proof π

2 R← ∅;
3 Create an empty queue queue; queue.enqueue(root);
4 while queue is not empty do
5 n← queue.dequeue();
6 if wn mismatches w then
7 if n.isLeaf() then
8 Add ⟨wn, accn⟩ to π;
9 else if n.isRoot() then

10 Add ⟨wn, accn, childHashn⟩ to π;
11 else
12 Add ⟨wn, childHashn⟩ to π;
13 else if n.isLeaf() then
14 R← R ∪ Sn; Add ⟨wn, accn⟩ to π;
15 else
16 if n.isRoot() then
17 Add ⟨wn, accn⟩ to π;
18 else
19 Add ⟨wn⟩ to π;
20 for each child c of n do queue.enqueue(c);
21 return ⟨R, π⟩;

Algorithm 4: Boolean Query Verification (by the user)

1 Function Verify(R, V O)
Input: result R, verification object V O

2 for π in V O do
3 ⟨πtrie, RΥ, πΥ, πobj⟩ ← π;
4 Verify πΥ, πobj w.r.t. the corresponding block header;
5 Check R w.r.t. RΥ and πobj ;
6 Perform ACC.Verify based on Υ and πΥ;

V O for the sub-query.
3) Result Merging: After getting the results of each sub-

query, the SP merges them as the final results of the original
query.

Note that in a special case where the length of the query time
window [ts, te] is less than k, the query Q will be processed as
follows. The SP will first visit the block be and obtain the result
set RΥ = {oi = ⟨ti,Wi⟩ | ti ∈ [te−k+1, te]∧Υ(Wi) = 1} with
the proofs. Next, the SP locates the block bs−1, whose SWA-
Trie’s root node is used to retrieve the ID set Sns−1

of all objects
in the sliding window [ts−k, ts−1] and its accumulative value
accns−1

. After that, the SP invokes a verifiable set difference
operation ACC.Prove(RΥ, Sns−1 , \, pk) to compute the result
set.

D. Query Result Verification

On the user’s side, the integrity of the query results can be
verified in the following steps. First, the user extracts the proofs
from the VO ⟨πtrie, RΥ, πΥ, πobj⟩. Then, the user can verify
the integrity of the keyword searches on the SWA-Trie index
and the object searches on the ObjReg index by reconstructing
their root hashes using πtrie and πobj , respectively. If they
match the ones stored in the block header, we can establish the
soundness and completeness of these searches. After that, the
user can perform ACC.Verify using πΥ to check the integrity
of the set operations for the boolean function Υ. The complete

Object Block ID Value Object Block ID Value

Fig. 8: Example of Boolean Query

verification procedure is given in Algorithm 4.
Example. In the running example of Fig. 8. On receiving

the query results and the VO, the user first reconstructs the trie
root hash h′

8 using πtrie as follows: h′
6 = H(H(7a)||acc6),

h′
7 = H(H(9b)||acc7), h′

3 = H(5e||H(h′
6||h′

7)), h′
9 =

H(9a||childHash9), and h′
8 = H(*||H(h′

3||h′
9)||acc8). If h′

8

is identical to h8 retrieved from the block header, the integrity
of the keyword searches is verified. Next, the user verifies the ob-
ject results with respect to RΥ using πobj . Finally, the user ver-
ifies the integrity of the set operations by invoking ACC.Verify
(e.g., ACC.Verify(acc6, acc7,∩, πΥ, acc(RΥ), pk)).

V. EXTENSION TO OTHER QUERY TYPES

In this section, we discuss how to extend our proposed
methods to support other query types such as range queries
and boolean range queries.

Single-dimensional Range Queries. Given a range query
in the form of Q = ⟨[ts, te], [α, β]⟩, the SP should return all
data objects within the time period whose numerical value falls
within [α, β], i.e., {oi = ⟨ti, vi⟩ | ti ∈ [ts, te] ∧ vi ∈ [α, β]}.
We can follow a similar sliding window design for query
processing. The miner can build an SWA-B+-Tree to index the
numerical values of data objects. Figure 9 shows an example
of such an SWA-B+-Tree, where the index sliding window
size is 4. Each tree node n contains the following fields: a
hash digest (denoted by hn), a numerical value or a numerical
range (denoted by vn or [ln, un]), an object ID set (denoted by
Sn), and the corresponding set accumulative value (denoted
by accn). We define them as follows.

Definition 3 (SWA-B+-Tree Leaf Node). The fields of a leaf
node n are defined as:

• vn = the numerical value of n;
• Sn = the ID set of the objects covered by n;
• accn = acc(Sn);
• hn = H(H(vn)||accn).

Definition 4 (SWA-B+-Tree Non-Leaf Node). Denote the child
nodes of a non-leaf node n as {c1, · · · , cF }. The fields of n
are defined as:

Object Block ID Value
1
6
7

Object Block ID Value
3
9
8

Fig. 9: Example of Range Query

• [ln, un] = [lc1 , ucF];
• Sn = Sc1 ∪ · · · ∪ ScF ;
• accn = acc(Sn);
• childHashn = H(hc1 || · · · ||hcF);
• hn = H(ln||un||childHashn||accn).

For example in Fig. 9, h4 = H(H(3)||acc(S4)) and h2 =
H(3||7||H(h4||h5)||acc(S2)). The procedure of maintaining
the SWA-B+-Tree is similar to that of the SWA-Trie as
discussed in Section IV. Upon receiving a new block bi+1,
the miner removes the data objects in bi−k+1 and inserts the
new data objects in bi+1. For each object update, the miner
traverses the updated path in a bottom-up manner to update
the corresponding object sets, accumulative values, and hash
digests. Similar to the SWA-Trie, the accumulative values can
be updated incrementally by invoking ACC.Update. In the
case of tree split or merge, the miner can also incrementally
update the accumulative values of the affected tree nodes.

The query processing algorithm of single-dimensional range
queries is also similar to that of processing boolean keyword
queries. The SP will first divide the given query into sub-
queries. For simplicity, in the following, we only discuss the
range query processing of sub-queries. Given a sub-query
q = ⟨[ts, te], [α, β]⟩, the SWA-B+-Tree in block be is traversed
to obtain the result ID set Rrange and its corresponding Merkle
proof πrange. Starting from the root node, we traverse the
SWA-B+-Tree in a top-down manner. For each node n, if its
range [ln, un] is entirely covered by [α, β], the SP adds Sn

to Rrange and [ln, un], childHashn, and accn to πrange; if
[α, β] partially intersects with [ln, un], the child nodes of n
will be further explored with [ln, un] and accn being added to
πrange; otherwise if [α, β] and [ln, un] have no intersection,
the SP simply adds [ln, un], childHashn, and accn to πrange

as part of the Merkle proof. Algorithm 5 describes the detailed
query procedure. Then, the SP searches the ObjReg index in
be to find the data objects corresponding to Rrange along with
a Merkle proof πobj . The result verification on the user’s side
works similarly to boolean keyword queries. The user uses the
proofs returned to reconstruct the root hashes of the SWA-B+-
Tree and the ObjReg index, which are then compared with the
ones stored in the block header to verify the integrity.

Algorithm 5: Range Query (by the SP)

1 Function QuerySWABPlusTree(root, [α, β])
Input: SWA-B+-Tree root root, query condition [α, β]
Output: query reuslt R, Merkle proof π

2 Create an empty queue queue; queue.enqueue(root);
3 while queue is not empty do
4 n← queue.dequeue();
5 if [ln, un] ⊂ [α, β] then
6 R← R ∪ Sn;
7 if n.isLeaf() then Add ⟨vn, accn⟩ to π;
8 else Add ⟨[ln, un], childHashn, accn⟩ to π;
9 else if [α, β] ∩ [ln, un] ̸= ∅ then

10 Add ⟨[ln, un], accn⟩ to π;
11 for each child c of n do queue.enqueue(c);
12 else
13 if n.isLeaf() then Add ⟨vn, accn⟩ to π;
14 else Add ⟨[ln, un], childHashn, accn⟩ to π;
15 return ⟨R, π⟩;

Example. Consider a range query Q = ⟨[ti−1, ti+2], [2, 8]⟩
in Fig. 9. The SP will traverse Ti+2 top down and
obtain the result ID set Rrange = {id3, id4, id6} and
a corresponding Merkle proof πrange = {⟨[3, 9], acc1⟩,
⟨[3, 7], childHash2, acc2⟩,⟨[8, 9], acc3⟩, ⟨8, acc6⟩, ⟨9, acc7⟩}
(shaded in Fig. 9). Then, the SP searches the ObjReg
index to get the result object set Robj = {o3, o4, o6} with
a Merkle proof πobj . The query results Robj along with
the V O = ⟨πrange, Rrange, πobj⟩ are sent to the user.
Upon receiving the query results and the VO, the user
reconstructs the SWA-B+-Tree root hash h′

1 as follows:
h′
2 = H(3||7||childHash2||acc2), h′

6 = H(H(8)||acc6),
h′
7 = H(H(9)||acc7), h′

3 = H(8||9||H(h′
6||h′

7)||acc3),
h′
1 = H(3||9||H(h′

2||h′
3)||acc1). If h′

1 is identical to h1 stored
in the block header, the integrity of Rrange is attested. Next,
the user verifies Robj with respect to Rrange by reconstructing
the root hash of the ObjReg index using πobj .

Multi-dimensional Range Queries. It is straightforward to
extend our proposed algorithms to support multi-dimensional
range queries. For multi-dimensional data, one SWA-B+-Tree
can be built for each dimension. The SP can search on each
SWA-B+-Tree during query processing to get the query results
satisfying the query condition in that dimension. Then, the
SP can invoke verifiable set intersections to compute the final
results.

Boolean Range Queries. For queries with both a boolean
predicate over the keywords and a range predicate over
the numerical attributes, the SP can process them as two
separate queries to get the intermediate query results satisfying
each query condition. Then, the SP invokes a verifiable set
intersection to compute the final results. The rest of the
algorithm is the same as discussed previously.

To summarize, thanks to the sliding window design, we can
choose the most suitable indexes to index the data objects’
keywords and numerical attributes, respectively. As such,
we can achieve efficient processing for both keyword and
range queries. Moreover, due to the expressiveness of the set
accumulator adopted in our design, a variety of boolean queries
can be supported.

VI. OPTIMIZATIONS

We observe that the bottleneck of the query processing lies
in the verifiable set operations, whose overheads are determined
by the size of the input sets. In this section, we present three
optimization techniques to improve the query performance.

A. Utilizing Multiple Sliding Windows

In our sliding window design, if a query cannot be divided
properly, the result set of the last sub-query may share some
common objects with the previous sub-query, which affects
the overall query performance. It is easy to see that the result
set of the last sub-query is influenced by the sliding window
size. Therefore, one way to improve the query performance is
to build multiple SWA indexes with different sliding window
sizes. For example, the miner can build three SWA indexes
with sliding window sizes of 2, 4, 8, respectively. During the
query processing, the SP firstly uses the largest sliding window
to divide the query into multiple sub-queries. Then, the last sub-
query is processed by choosing the minimal sliding window
that still covers the required query time window. In particular,
assume that the query has a residual time window [ts′ , te′];
the window size chosen for the last sub-query should be the
minimum value that satisfies k ≥ te′ − ts′ + 1. For example,
given three SWA indexes with sliding window sizes of 2, 4, 8
and a query with time window [t1, t11], the SP can choose
k1 = 8 to process the sub-query with time window [t1, t8] and
k2 = 4 to process the remaining sub-query with time window
[t8, t11].

B. Optimizing Query Plans

As mentioned in Section III, the verifiable set operations
suffer from an expensive proof generation cost with com-
plexity O(N1N2), where N1 and N2 are the sizes of the
input sets. For example, given two sets A = {o1, o2, o3}
and B = {o1, o2, o3, o4}, we can estimate the cost of
ACC.Prove(A,B,∩, pk) being cost(A∩B) = |A|×|B| = 12.
It is worth noting that the SP can estimate this cost easily
since it can compute the results of all set operations without
invoking heavy set accumulator operations. Recall that in
our system, the SP searches the relevant SWA indexes and
then perform a series of verifiable set operations during the
query processing. We observe that some sequences of set
operations can be rewritten to other equivalent ones with a
smaller proof generation overhead. For instance, given three
sets A = {o1, o2, o3}, B = {o1, o2, o3, o4}, and C = {o1}, a
set operation sequence (A ∩B) ∩ C yields a proof generation
cost C1 = |A| × |B| + |A ∩ B| × |C| = 15. However, its
equivalent set operation sequence A∩(B∩C) has a lower cost
C2 = |B| × |C|+ |A| × |B ∩ C| = 7. Therefore, we propose
a query plan optimizer to minimize the cost of the verifiable
set operations.

Equality saturation is a technique utilizing an e-graph to
represent a congruence relation among expressions for program
optimizations [10], [11]. Specifically, given a program p with
pattern-based rewrites, it first constructs an e-graph that consists
of programs equivalent to p based on a set of given rewrite rules.

TABLE I: Rewrite Rules for Set Operations

1 A ∪B ≡ B ∪A
2 A ∩B ≡ B ∩A
3 (A ∪B) ∪ C ≡ A ∪ (B ∪ C)
4 (A ∩B) ∩ C ≡ A ∩ (B ∩ C)
5 (A ∪B) \ C ≡ (A \ C) ∪ (B \ C)
6 A \ (B ∩ C) ≡ (A \B) ∪ (A \ C)
7 (A ∩B) \ C ≡ (A \ C) ∩ (B \ C)
8 A \ (B ∪ C) ≡ (A \B) ∩ (A \ C)
9 (A ∪B) ∩ C ≡ (A ∩ C) ∪ (B ∩ C)

10 (A \B) ∩ C ≡ (A ∩ C) \ (B ∩ C)

Then, it extracts the best program from the e-graph. To utilize
the equality saturation technique, we define 10 set operation
rewrite rules as shown in Table I. The SP can construct an
e-graph over the query conditions and find the optimal query
plan for the verifiable set operations that yields the lowest
proof generation cost.

Furthermore, we observe that we can let the user process
the union operations locally, if they are the final operations
in the set operation sequence. For example, given a sequence
of set operations ((A ∩ B) ∪ C) ∪ D, the SP can computes
only RA∩B = (A ∩B) using the verifiable set operation and
return C, D, as well as RA∩B with an intersection proof. The
user can locally execute the final union operations (RA∩B ∪
C) ∪ D. This optimization not only reduces the expensive
verifiable set operations but also saves space for set operation
proofs. Furthermore, the data transmission cost will not increase
because all objects in RA∩B , C, and D are results, thus no
extra non-result objects are returned.

C. Pruning Empty Sets

During the query processing, some intermediate sets may turn
out to be empty. Thus, we may apply an early stop technique
to prune unnecessary set operations. For example, given a
sequence of set operation A \ (B ∩ (C ∪ D)), if B = ∅,
then the result of this sequence is A. In this case, the SP can
skip computing C, D, C ∪D, and A \∅. In general, the SP
can traverse the set operation query plan, which is a directed
acyclic graph, to find intermediate empty sets and then prune
unnecessary set operations. By doing so, we can improve both
the query and verification performance and achieve a smaller
VO size.

VII. SECURITY ANALYSIS

In this section, we perform a security analysis on our
verifiable query processing algorithms. We start by defining
the security notion.

Definition 5 (Secure). The verifiable query processing algo-
rithms are secure if the probability for all PPT adversaries to
succeed in the following experiment is negligible:

• Run the SWA index construction algorithm and send all
data objects O to an adversary;

• The adversary outputs a query Q, a result R, and a VO.
We say the adversary succeeds if the VO passes the verification
and one of the following conditions is satisfied:

• There exists an object ox such that ox ∈ R and ox /∈ O;

• There exists an object ox such that ox ∈ R and ox does
not satisfy Q;

• There exists an object ox such that ox ∈ O and ox satisfies
Q, but ox /∈ R;

The above definition guarantees that the probability, for
a malicious SP to convince the user with an unsound or
incomplete result, is negligible. We now show that the verifiable
query processing algorithms indeed satisfy the desired security
requirement.

Theorem 1. Our proposed verifiable query processing al-
gorithms are secure with respect to Definition 5, if the
cryptographic hash function and set accumulator are collision
resistant, the set operation proof is secure, and the blockchain
integrity as well as availability are ensured.

Proof We prove this theorem by contradiction.
Case 1: There exists an object ox such that ox ∈ R and

ox /∈ O. In this case, the adversary forges an object as a query
result. However, the user will check the integrity of the query
result with respect to the ObjReg index by reconstructing its
hash root and verifying with the one stored in the block header.
A successfully forged result yields two ObjReg indexes with
different data objects but the same hash root. This implies that
a collision of the underlying cryptographic hash function exists,
which leads to a contradiction.

Case 2: There exists an object ox such that ox ∈ R and ox
does not satisfy Q. This case is impossible since the user will
check if the returned result matches the query locally.

Case 3: There exists an object ox such that ox ∈ O and ox
satisfies Q, but ox /∈ R. Note that the user (running a light
node) syncs the block headers with the blockchain network.
Thus, the user always verifies the result with respect to the
latest block header. Now suppose there is a missing result ox.
During the verification, the user will check the SWA index (for
both boolean keyword queries and range queries) and a series
of verifiable set operations (for boolean keyword queries). A
missing result means that the adversary is able to forge an
incorrect Merkle proof or an incorrect set operation proof. Since
the user checks against the hash root of the SWA index stored
in the block header, a forged Merkle proof implies a collision to
the underlying cryptographic hash function. Similarly, a forged
set operation proof contradicts with the security property of
the underlying cryptographic set accumulator scheme [9]. Both
of them lead to a contradiction.

VIII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
vChain+ system. Two datasets are used in the experiments.

• Foursquare (4SQ) [5]: The 4SQ dataset includes 1M user
check-in records with timestamps. We pack the records
within every 30s as a block and each record is repre-
sented in the form ⟨timestamp, [longitude, latitude],
{check-in place’s keywords}⟩.

• Ethereum (ETH) [2]: The ETH dataset is extracted from
the Ethereum blockchain from Dec 17, 2018 to Dec 26,

TABLE II: Miner’s ADS Construction Cost

Dataset
ETH 4SQ

T S T S

vChain-acc1 0.26 125.6 0.39 28.1
vChain-acc2 0.04 126.1 0.04 29.3

vChain+ 0.11 451.5 0.25 1209.1

T: ADS construction time (s/block)
S: ADS size (KB/block)

2018. It contains around 58,100 blocks with around 3.27M
transaction records and the time intervals of the blocks
are roughly 15s. Each record can be represented in the
form of ⟨timestamp, [amount], {addresses}⟩, where
amount is the transfer amount and {addresses} are the
addresses of senders and receivers.

We run experiments on a machine with dual Intel Xeon
E5-2620 v3 2.4GHz CPUs, running CentOS 8. We limit query
users to use only 4 threads during the verification, whereas the
miner and the SP use all available CPU cores. The vChain+
system is implemented in Rust programming language and
the following dependencies are used: Arkworks2 for bilinear
pairing over the BN254 curve to implement the set accumulator,
Blake2b3 for 256-bit hash operations, and Rayon4 for parallel
computation. The source codes are available at https://github.
com/hkbudb/vchain-plus. The same programming language and
dependencies are also used to implement vChain [4] as the
baseline, including two proposed accumulator constructions
labeled as vChain-acc1 and vChain-acc2.

We use the following metrics to evaluate the performance of
vChain+: (i) the CPU time of the query including SP’s query
processing and user’s result verification, (ii) the size of the VO
transmitted from the SP to the user. For each experiment, we
randomly generate 10 queries and report the average results.
By default, we set the selectivity for numerical range queries
as 10%. For boolean query conditions, we use either an ∨-
connected or ∧-connected boolean function with two keywords.

A. ADS Construction Cost

Table II shows the ADS construction cost on the miner
side, including the ADS construction time and the ADS size.
In vChain, the maximum size of the inter-block index is set
to be 32. For vChain+, we set the sliding window sizes as
{2, 4, 8, 16, 32} and the fanout for the SWA-B+-tree and the
ObjReg index as 4. All optimizations presented in Section VI
are employed for vChain+. It can be observed from Table II
that the index construction time of vChain+ is longer than
vChain-acc2 but shorter than vChain-acc1. Moreover, vChain+
yields a larger ADS compared with vChain. This is expected
since the set accumulator used in vChain+ has a size larger
than the ones used in vChain to support more expressive set
operations. Additionally, as we discussed in Section VI-A, the
design of multiple sliding windows introduces multiple SWA
indexes, which also increases the ADS size in each block. On
the user side, the block header has a constant size of 104 bytes

2https://github.com/arkworks-rs/algebra
3https://github.com/oconnor663/blake2 simd
4https://github.com/rayon-rs/rayon

https://github.com/hkbudb/vchain-plus
https://github.com/hkbudb/vchain-plus
https://github.com/arkworks-rs/algebra
https://github.com/oconnor663/blake2_simd
https://github.com/rayon-rs/rayon

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

10
-1

10
0

10
1

10
2

10
3

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

Fig. 10: ∧-Connected Boolean Query Performance (ETH)

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

10
-1

10
0

10
1

10
2

10
3

10
4

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

Fig. 11: ∨-Connected Boolean Query Performance (ETH)

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

10
-1

10
0

10
1

10
2

10
3

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

Fig. 12: ∧-Connected Boolean Query Performance (4SQ)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

Fig. 13: ∨-Connected Boolean Query Performance (4SQ)

for both vChain and vChain+.

B. Query Performance

Figures 10 to 17 compare the query performance of vChain
and vChain+ by varying the query time window from 100
to 8,100 blocks. Five types of query conditions, including ∨-
and ∧-connected boolean keyword queries, range-only queries,
and ∨- and ∧-connected boolean range queries, are examined.
Thanks to the tree-based index searching and accumulator-
based sliding window design, vChain+ can handle varied types
of queries efficiently. Overall, vChain+ improves the query
performance by up to 913× against vChain-acc2 and up to
1098× against vChain-acc1. Note that the VO size of vChain+
is larger than that of vChain in most cases. This is because
the size of the set operation proofs generated by vChain+ is
relatively larger than that in vChain. However, the total time for
VO transmission and query processing of vChain+ is still better
than vChain, considering a global-median 29.06 Mbps mobile
network speed [12]. For example, as shown in Fig. 16, when
the query time window is 8,100, the VO size and the query
time of vChain+ are 623KB and 0.05s, respectively, and those
of vChain-acc2 are 68KB and 1.59s, respectively. The total
time for VO transmission and query processing of vChain+

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

10
-1

10
0

10
1

10
2

10
3

10
4

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

Fig. 14: Range Query Performance (ETH)

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

10
-1

10
0

10
1

10
2

10
3

10
4

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

Fig. 15: Range Query Performance (4SQ)

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

10
-1

10
0

10
1

10
2

10
3

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

Fig. 16: ∧-connected Boolean Range Query Performance (ETH)

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

10
-1

10
0

10
1

10
2

10
3

10
4

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

vChain-acc1
vChain-acc2

vChain+

Fig. 17: ∨-connected Boolean Range Query Performance (ETH)

under the median mobile network speed is 0.221s, which still
improves the performance of vChain by 7.3×.

When processing ∨-connected boolean range queries on
ETH, we observe that vChain-acc2 slightly outperforms
vChain+ when the time window length is 100 blocks (Fig. 17).
This is because the set operation proof generation dominates the
query time in vChain+. As the ∨-connection boolean condition
involves union operations, it results in enlarged input sets for
ACC.Prove, which leads to heavier cryptographic operations.

C. Impact of Optimizations and Selectivities

We now evaluate the influence of three different optimization
techniques on the query performance and the VO size. We test
∧-connected boolean range queries on the ETH dataset. We
enable all optimizations as the baseline (denoted as all) then
disable each of them to investigate their impact. Specifically,
we run the experiment with (i) no multi-sliding windows (no
multi-win), (ii) not optimizing query plans (no qp), and (iii)
not pruning empty sets (no prune). Figure 18 shows the query
performance of different optimizations by varying the query
time window from 100 to 8,100 blocks. As can be seen, pruning
empty sets and optimizing query plans work for most of the
queries and bring the biggest performance improvement. In

10
−2

10
−1

10
0

10
1

100 300 900 2700 8100

C
P

U
 T

im
e
 (

s
)

Time Window (Blocks)

all
no qp

no multi−win
no prune

10
0

10
1

10
2

10
3

10
4

100 300 900 2700 8100

V
O

 S
iz

e
 (

K
B

)

Time Window (Blocks)

all
no qp

no multi−win
no prune

Fig. 18: Query Performance vs. Optimization (ETH)

 0

 0.005

 0.01

 0.015

 0.02

0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

C
P

U
 T

im
e
 (

s
)

V
O

 S
iz

e
 (

K
B

)
Selectivity

CPU Time VO Size

Fig. 19: Impact of Selectivity (ETH)

 0

 0.02

 0.04

 0.06

 0.08

1 3 5 7 9
 0

 200

 400

 600

C
P

U
 T

im
e
 (

s
)

V
O

 S
iz

e
 (

K
B

)

Size of ∧-connected Boolean Function

CPU Time VO Size

 0

 0.02

 0.04

 0.06

1 3 5 7 9
 0

 200

 400

 600

C
P

U
 T

im
e
 (

s
)

V
O

 S
iz

e
 (

K
B

)

Size of ∨-connected Boolean Function

CPU Time VO Size

Fig. 20: Impact of Boolean Function Size (ETH)

contrast, the performance improvement of utilizing multiple
sliding windows is relatively smaller.

Next, we evaluate the impact of range condition selectivity
and boolean function size. Figure 19 shows the range query
performance with range selectivity varied from 10% to 50%
when the query time window length is fixed at 900 blocks.
It can be observed that the CPU time and the VO size rise
with the increasing selectivity. This is expected because the SP
needs to query more objects from the SWA-B+-Tree and return
larger proofs as the selectivity increases. Figure 20 shows the
boolean query performance by varying the boolean function
size from 1 to 9 when the query time window length is fixed
at 2,700 blocks. As expected, the CPU time and the VO size
of boolean queries increase with the boolean function size.

We have evaluated the impact of multiple sliding windows
on the index construction and query costs. In the interest of
space, we include these results in our technical report [13].

IX. RELATED WORK

In this section, we briefly review several related studies on
blockchain technology and verifiable query processing.

A. Blockchain Technology

Blockchain technology has gained much attention from both
academia and industries. Several studies have investigated
the blockchain execution model for improving the system
scalability [14]–[16]. Sharding techniques have also been
studied to scale the blockchain system horizontally [17], [18].
Moreover, some works have focused on reducing the peers’
storage overhead by utilizing distributed data storage [19],
[20] or moving the on-chain states to off-chain with a

stateless design [21], [22]. Along the same direction, Li et al.
investigated the cost-effective data feeds to blockchains via
workload-adaptive data replication [23].

There are also several works studying verifiable query pro-
cessing over blockchain databases. Hu et al. studied applying
searchable encryption in blockchain smart contracts to achieve
verifiability, which however may incur high execution costs [24].
Xu et al. proposed the vChain framework to support verifiable
boolean range queries over the blockchain databases [4]. Zhang
et al. proposed a gas-efficient ADS for range and keyword
queries in hybrid-storage blockchains [25], [26]. Moreover,
FalconDB also targeted verifiable blockchain databases but
proposed to delegate the result verification to a payment
contract, which both reduces the user’s cost and incentives the
SP to perform honestly under an incentive model [27] .

B. Verifiable Query Processing

Verifiable query processing has been extensively studied in
the context of outsourced databases to ensure the result integrity
even if the SP is untrusted [7], [8], [28]–[35]. Generally, there
are two approaches. The first one is to transform a general
verifiable query to a Boolean or arithmetic circuit for computing
a proof attesting to the execution integrity [28], [29]. However,
this approach suffers from high even impractical time for
computing the proof. The second category is to design an
ADS for specific queries. MHT and its variants [7], [8], [30],
[31], mentioned in Section III, are widely used to build ADSs
for different queries. It often has efficient proof generation
thanks to its hierarchical structure and fast cryptographic hash
function. On the other hand, [32], [33] considered using the
cryptographic set accumulator for more complex set-valued
queries and nested queries. However, the set accumulators used
by these works cannot be incrementally updated. Recently, [34],
[35] leveraged secure hardware (e.g., Intel SGX) to facilitate
verifiable queries. Although the secure hardware provides
efficient proof generation, it brings extra deployment costs
and may also be prone to side-channel attacks [36], [37].

X. CONCLUSION

In this paper, we have proposed a new searchable blockchain
system, vChain+, that supports verifiable boolean range queries.
We have proposed an SWA index design to achieve efficient
query performance with integrity assurance. Moreover, an
ObjReg index has been designed to enable practical public key
management. We have also developed SWA-Trie and SWA-
B+Tree to efficiently support a rich variety of queries. Security
analysis has been conducted to show the robustness of the
proposed methods. Empirical results demonstrate that vChain+
substantially improves the query performance of vChain. As
for future work, we plan to extend our SWA index design to
support more complex queries such as aggregation queries and
join queries.

Acknowledgement This work is supported by Hong Kong
RGC Projects C2004-21GF, 12201520, 12200819 & 12201018
and CCF-AFSG Research Fund RF20210014. Pei’s research is

supported in part by the NSERC Discovery Grant program and
a grant of the National Research Council Canada (NRC) New
Beginnings Initiative. All opinions, findings, conclusions and
recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

REFERENCES

[1] S. Nakamoto. “Bitcoin: A peer-to-peer electronic
cash system.” (2008), [Online]. Available: https://
bitcoin.org/bitcoin.pdf.

[2] G. Wood. “Ethereum: A secure decentralised gener-
alised transaction ledger.” (2014), [Online]. Avail-
able: https://ethereum.github.io/yellowpaper/paper.
pdf.

[3] J. M. Graglia and C. Mellon, “Blockchain and
property in 2018: At the end of the beginning,”
Innovations: Technology, Governance, Globalization,
2018.

[4] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling
verifiable boolean range queries over blockchain
databases,” in ACM SIGMOD, 2019, pp. 141–158.

[5] D. Yang, D. Zhang, and B. Qu, “Participatory
cultural mapping based on collective behavior data in
location-based social networks,” ACM TIST, pp. 1–23,
2016.

[6] R. C. Merkle, “A certified digital signature,” in Proc.
CRYPTO, 1990, pp. 218–238.

[7] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin,
“Dynamic authenticated index structures for out-
sourced databases,” in ACM SIGMOD, 2006, pp. 121–
132.

[8] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kol-
lios, “Authenticated indexing for outsourced spatial
databases,” The VLDB Journal, pp. 631–648, 2009.

[9] Y. Zhang, J. Katz, and C. Papamanthou, “An ex-
pressive (zero-knowledge) set accumulator,” in IEEE
EuroS&P, 2017, pp. 158–173.

[10] R. Joshi, G. Nelson, and K. Randall, “Denali: A goal-
directed superoptimizer,” ACM SIGPLAN Notices,
pp. 304–314, 2002.

[11] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z.
Tatlock, and P. Panchekha, “Egg: Fast and extensible
equality saturation,” Proceedings of the ACM on
Programming Languages, pp. 1–29, 2021.

[12] “Global median speeds october 2021,” Speedtest
Global Index. (2021), [Online]. Available: https://
www.speedtest.net/global-index.

[13] H. Wang, C. Xu, C. Zhang, J. Xu, Z. Peng, and J. Pei.
“vChain+: Optimizing verifiable blockchain boolean
range queries (technical report).” (2021), [Online].
Available: https : / /www.comp.hkbu.edu.hk/∼db/
vchain plus.pdf.

[14] P. Ruan, T. T. A. Dinh, D. Loghin, M. Zhang,
G. Chen, Q. Lin, and B. C. Ooi, “Blockchains vs.
distributed databases: Dichotomy and fusion,” in
ACM SIGMOD, 2021, pp. 1504–1517.

[15] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and
B. C. Ooi, “A transactional perspective on execute-
order-validate blockchains,” in ACM SIGMOD, 2020,
pp. 543–557.

[16] A. Sharma, F. M. Schuhknecht, D. Agrawal, and
J. Dittrich, “Blurring the lines between blockchains
and database systems: The case of hyperledger fabric,”
in ACM SIGMOD, 2019, pp. 105–122.

[17] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Sharper:
Sharding permissioned blockchains over network
clusters,” in ACM SIGMOD, 2021, pp. 76–88.

[18] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang,
Q. Lin, and B. C. Ooi, “Towards scaling blockchain
systems via sharding,” in ACM SIGMOD, 2019,
pp. 123–140.

[19] Z. Xu, S. Han, and L. Chen, “Cub, a consensus
unit-based storage scheme for blockchain system,”
in IEEE ICDE, 2018.

[20] X. Qi, Z. Zhang, C. Jin, and A. Zhou, “BFT-Store:
Storage partition for permissioned blockchain via
erasure coding,” in IEEE ICDE, 2020.

[21] C. Xu, C. Zhang, J. Xu, and J. Pei, “SlimChain:
Scaling blockchain transactions through off-chain
storage and parallel processing,” Proceedings of the
VLDB Endowment, pp. 2314–2326, 2021.

[22] A. Chepurnoy, C. Papamanthou, S. Srinivasan, and
Y. Zhang, “Edrax: A cryptocurrency with stateless
transaction validation,” Cryptology ePrint Archive,
2018.

[23] K. Li, Y. Tang, J. Chen, Z. Yuan, C. Xu, and J.
Xu, “Cost-effective data feeds to blockchains via
workload-adaptive data replication,” in Proceedings
of the 21st International Middleware Conference,
2020, pp. 371–385.

[24] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and
K. Ren, “Searching an encrypted cloud meets
blockchain: A decentralized, reliable and fair real-
ization,” in IEEE INFOCOM, 2018.

[25] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “Gemˆ
2-tree: A gas-efficient structure for authenticated
range queries in blockchain,” in IEEE ICDE, 2019,
pp. 842–853.

[26] C. Zhang, C. Xu, H. Wang, J. Xu, and B. Choi,
“Authenticated keyword search in scalable hybrid-
storage blockchains,” in IEEE ICDE, 2021, pp. 996–
1007.

[27] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song,
“FalconDB: Blockchain-based collaborative database,”
in ACM SIGMOD, 2020, pp. 637–652.

[28] B. Parno, J. Howell, C. Gentry, and M. Raykova,
“Pinocchio: Nearly practical verifiable computation,”
in IEEE S&P, 2013, pp. 238–252.

[29] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos,
and C. Papamanthou, “vSQL: Verifying arbitrary sql
queries over dynamic outsourced databases,” in IEEE
S&P, 2017, pp. 863–880.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index
https://www.comp.hkbu.edu.hk/~db/vchain_plus.pdf
https://www.comp.hkbu.edu.hk/~db/vchain_plus.pdf

[30] Q. Chen, H. Hu, and J. Xu, “Authenticated online
data integration services,” in ACM SIGMOD, 2015,
pp. 167–181.

[31] C. Xu, J. Xu, H. Hu, and M. H. Au, “When query
authentication meets fine-grained access control: A
zero-knowledge approach,” in ACM SIGMOD, 2018,
pp. 147–162.

[32] C. Xu, Q. Chen, H. Hu, J. Xu, and X. Hei, “Authen-
ticating aggregate queries over set-valued data with
confidentiality,” IEEE TKDE, pp. 630–644, 2018.

[33] Y. Zhang, J. Katz, and C. Papamanthou, “IntegriDB:
Verifiable sql for outsourced databases,” in ACM
CCS, 2015, pp. 1480–1491.

[34] W. Zhou, Y. Cai, Y. Peng, S. Wang, K. Ma, and F. Li,
“VeriDB: An sgx-based verifiable database,” in ACM
SIGMOD, 2021, pp. 2182–2194.

[35] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P.
Meng, V. Pandey, and R. Ramamurthy, “Concerto:
A high concurrency key-value store with integrity,”
in ACM SIGMOD, 2017, pp. 251–266.

[36] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks:
Exploiting speculative execution,” in IEEE S&P,
2019.

[37] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“RIDL: Rogue in-flight data load,” in IEEE S&P,
2019.

	I Introduction
	I-A vChain and Its Limitations
	I-B Our Contributions

	II Problem Formulation
	III Preliminaries
	IV Verifiable Boolean Query Processing
	IV-A Object Registration
	IV-B Maintenance of SWA-Trie
	IV-C Verifiable Query Processing
	IV-C1 Query Dividing
	IV-C2 Sub-query Processing
	IV-C3 Result Merging

	IV-D Query Result Verification

	V Extension to Other Query Types
	VI Optimizations
	VI-A Utilizing Multiple Sliding Windows
	VI-B Optimizing Query Plans
	VI-C Pruning Empty Sets

	VII Security Analysis
	VIII Experimental Evaluation
	VIII-A ADS Construction Cost
	VIII-B Query Performance
	VIII-C Impact of Optimizations and Selectivities

	IX Related Work
	IX-A Blockchain Technology
	IX-B Verifiable Query Processing

	X Conclusion

