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Abstract—Blockchain has emerged as a promising solution for
secure data storage and retrieval for decentralized applications.
To scale blockchain systems, a prevailing approach is to employ a
hybrid storage model, where only small meta-data are stored on-
chain while the raw data are outsourced to an off-chain storage
service provider. The key issue for query processing in such a
system is the design of gas-efficient authenticated data structure
(ADS) to authenticate the query results. In this paper, we study
novel ADS schemes for authenticated keyword search in hybrid-
storage blockchains. We first propose the Suppressed Merkle
inverted (Merkleinv) index, which maintains only a partial ADS
structure on-chain that can be securely updated with a logarithm-
sized cryptographic proof. Moreover, we propose a Chameleon
inverted (Chameleoninv) index that leverages the chameleon
vector commitment to achieve a constant maintenance cost. It
is further optimized with Bloom filters to enhance the query and
verification performance. We prove the security of the proposed
ADS schemes and evaluate their performance using real datasets
on the Ethereum platform. Experimental results show that,
compared to a baseline solution, the proposed Merkleinv and
Chameleoninv indexes reduce the average on-chain maintenance
cost from US$10.39 down to US$2.50 and US$0.24, respectively,
without sacrificing much the query performance.

I. INTRODUCTION
Blockchain is a distributed ledger collectively maintained

by a network of mutually untrusted nodes. With the hash
chain technique and the consensus protocol, the data stored
in a blockchain are ensured to be immutable and tamper-
resistant [1]. As such, blockchain has been considered a
promising solution for secure data storage and retrieval, also
known as e-notarization, in many decentralized applications,
such as IoT, healthcare, supply chain, and legal document
management [2].

Despite of its evident advantages, blockchain is known
to have limited storage scalability since data needs to be
replicated across the entire network. Storing raw data, such as
documents, images, and PDF files, directly into the blockchain
would increase the storage burden, leading to longer transac-
tion delay and lower system throughput [3]. To tackle this
issue, a common approach is combining the blockchain with
off-chain storage to form a hybrid-storage blockchain [4],
[5].1 As shown in Fig. 1, the raw data are sent to an off-
chain storage service provider (SP) for management, while
their cryptographic hashes are stored on-chain to uphold data
integrity. To support integrity-assured data retrieval in such a

†These authors have contributed equally to this work.
1Another advantage is that the data stored off-chain can be easily deleted

when needed, which complies with the “right to be forgotten” under the EU
General Data Protection Regulation (GDPR) [6].
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Fig. 1: Architecture of a Hybrid-Storage Blockchain
hybrid-storage blockchain, authenticated query processing can
be applied. The basic idea is to let both the smart contract
and the off-chain SP maintain an authenticated data structure
(ADS). For each query, the SP computes not only the query
results but also a cryptographic proof known as verification
object (VO) to attest to those results. With the VO from
the SP and the authenticated information retrieved from the
blockchain, the client can verify the result integrity.

Unlike authenticated query processing in traditional out-
sourced databases that mainly focuses on query efficiency [7]–
[11], a key challenge here is that the ADS should be designed
to be update efficient. In other words, the ADS should be
able to be efficiently maintained by the smart contract, in
terms of both computation and storage costs. Ethereum [12],
a pioneering smart contract platform, employs a unique gas
model to measure the smart contract’s execution cost. Table I
shows the gas costs of the major smart contract operations.
As can be seen, the costs incurred for different operations
differ dramatically, with the operation of storing data into the
blockchain state being the most expensive one. In a pioneering
study [13], a gas-efficient ADS named GEM2-tree has been
proposed. However, the GEM2-tree has two limitations. First,
it is developed for range queries and cannot be directly used to
support other more complex queries such as keyword search
and similarity search. Second, as we will elaborate later on,
it still incurs a relatively high gas cost due to storing many
intermediate data in the blockchain state.

Motivated by the popularity of keyword search in data
retrieval, in this paper, we study novel ADS schemes for
authenticated keyword search in hybrid-storage blockchains.
We start by introducing a baseline ADS called Merkle inverted
(Merkleinv) index. The Merkleinv index is an inverted index
in which each keyword corresponds to a Merkle B-tree (MB-
tree) [7] that indexes the corresponding object IDs. With the



index, a keyword search represented by a Boolean expres-
sion in the disjunctive normal form (DNF) (e.g., (“COVID-
19”∧“Vaccine”)∨(“SARS-CoV-2”∧“Vaccine”)) is seen as the
union of the results from each conjunctive component. Each
conjunctive component can then be processed as authenticated
join queries over the query keywords’ MB-trees. However,
maintaining the complete Merkleinv index on-chain by the
smart contract is prohibitively expensive due to the excessive
storage operations.

To address this issue, we first propose the Suppressed
Merkleinv index that can reduce the smart contract mainte-
nance cost without compromising the query efficiency. The
main idea is that the smart contract maintains only the root
digest of each MB-tree in the Merkleinv index. This comes
with the observation that for the on-chain ADS, only the
root digests are used during the authenticated keyword search.
To update the root digests upon arrival of a new object,
however, the SP needs to send an update proof, consisting
of the authenticated information to securely compute the new
root digests, to the smart contract. The maintenance of the
Suppressed Merkleinv index requires constant (costly) stor-
age operations and logarithmic (cheap) memory operations,
achieving an overall lower gas cost.

We are not stopped here. To further reduce the ADS
maintenance cost, we propose the Chameleon inverted
(Chameleoninv) index that leverages the chameleon vector
commitment (CVC) to achieve a constant maintenance cost.
Using the CVC, one can publicly verify the data stored in
a vector. Moreover, the data owner can update the vector
without changing its commitment by using a secret trapdoor.
With these properties, a Chameleon tree can be built with
an invariant root commitment. In the Chameleoninv index,
each keyword corresponds to a Chameleon tree. The smart
contract maintains the root commitments with some auxiliary
data of the Chameleoninv index and the SP maintains the
complete index for efficient query processing. In addition, to
enhance the query and verification performance, we propose an
optimized Chameleoninv∗ index, in which the smart contract
maintains an additional Bloom filter for every group of objects
in each Chameleon tree. The Bloom filters help to facilitate
the testing of non-existing objects, thus achieving better query
and verification performance. On the other hand, due to the ad-
ditional maintenance of the Bloom filters, the Chameleoninv∗

index has a slightly higher maintenance cost. Table II summa-
rizes the performance comparison of the aforementioned ADS
schemes. Clearly, our proposed ADS schemes obtain a lower
maintenance cost while retaining the same level of query and
verification performance.

To summarize, this paper’s contributions are as follows:
• For the first time in the literature, we study the problem

of authenticated keyword search in scalable hybrid-storage
blockchains.

• We propose the Suppressed Merkleinv index that can
significantly reduce the ADS maintenance cost in terms
of the smart contract’s gas consumption.

• We develop the Chameleoninv index to further reduce

TABLE I: Ethereum Gas Cost (A full list is available in [12])
Operation Gas Used Cost in US$2 Explanation

Csload 200 6.87× 10−4 load a word from storage
Csstore 20,000 6.87× 10−2 save a word to storage
Csupdate 5,000 1.72× 10−2 update a word to storage
Cmem 3 1.03× 10−5 access a word in memory
Chash 30 + 6 · x (1.03 + 0.21 · x)× 10−4 hash a x-word message
Ctx 21, 000 7.21× 10−2 execute a transaction

Ctxdata 68 2.34× 10−4 transact a byte of data

TABLE II: Performance Comparison of ADS Schemes
ADS Maintenance Gas Cost Authenticated Keyword Search Cost

Query Process Result Verification
Merkleinv O(L · C1 log n) O(k log n) O(k log n)

Suppressed Merkleinv O(L · C1 + L · C2 log n) O(k log n) O(k log n)
Chameleoninv O(L · C1) O(k log n) O(k log n)
Chameleoninv∗ O(L · C1) O(k′ log n) O(k′ log n)

Note: L is the maximum number of keywords of an object; n is the total
number of objects; C1 and C2 denote the costs of storage operations
(e.g., Csload, Csstore, Csupdate) and memory operations (e.g., Cmem,
Chash, Ctxdata), respectively, and C1 > C2; k denotes the total
number of matching and boundary objects for the authenticated join
processing, k′ is the optimized number of k with the help of Bloom
filters, and k′ < k.
the ADS maintenance cost to a constant level while still
supporting efficient queries. To enhance the query and ver-
ification performance, an optimized Chameleoninv∗ index
is also proposed.

• We conduct theoretical analysis and empirical evaluation
to validate the proposed ADS schemes. The experiments
using real datasets on the Ethereum platform show that,
without sacrificing much the query performance, the pro-
posed ADS schemes reduce up to 76% and 98% of the
gas cost as compared to a baseline solution.

The rest of the paper is organized as follows. Section II
gives the blockchain background and the problem formulation,
which is followed by some preliminaries in Section III. Sec-
tion IV and Section V present our Suppressed Merkleinv index
and Chameleoninv index, respectively. Section VI analyzes
the security of the proposed schemes. Section VII reports the
experimental results. Section VIII surveys the related works.
Finally, we conclude our paper in Section IX.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we first provide some basic knowledge
about blockchain technology. Then, we present the problem
formulation in three aspects: system model, threat model, and
problem statement.

A. Blockchain and Smart Contract
Blockchain is an append-only data structure consisting of

a series of blocks. To ensure its immutability and tamper-
resistance, each block is chained by a cryptographic hash
pointer (as shown in Fig. 2). Furthermore, there is a consensus
proof embedded in each block to ensure that the entire network
keeps the same copy of the blocks. For example, in the Proof
of Work (PoW) consensus [1], a nonce computed by solving
some cryptographic hash puzzle is used as the consensus
proof. While first-generation blockchains (e.g., Bitcoin [1]) are
designed specifically for cryptocurrencies, second-generation
blockchains (e.g., Ethereum [12]) introduce the concept of

2The cost in US$ is calculated based on an average gas price of 15 Gwei
and the Ether price of US$229 at of June 15, 2020.
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Fig. 2: Blockchain Header Structure
smart contract. A smart contract is a user-defined Turing-
complete program executed by the blockchain virtual ma-
chines. The program can interact with the data stored in
the blockchain with integrity assurance, which is guaranteed
by the blockchain consensus protocol. Users can deploy and
execute a smart contract by sending a transaction to the
blockchain network. Since the blockchain network needs to
spend computation and storage resources for the smart contract
deployment and execution, a transaction fee, denominated in
gas, is charged for each deployment and execution. As shown
in Table I, in general, the storage operations are a multitude
more expensive than the in-memory data access and computa-
tion operations. In order to prevent computation-intensive and
non-stop smart contracts, a gasLimit (e.g., 8,000,000 in [12])
is set. The deployment or execution of a smart contract will be
terminated if the total gas consumption exceeds the gasLimit.
B. System Model

As shown in Fig. 1, our system involves four parties: a data
owner (DO), a blockchain with smart contract functionality,
an off-chain storage service provider (SP), and query clients.
The blockchain itself and the SP are components of the hybrid-
storage blockchain. Each data object is modeled as a tuple oi =
〈id, {wj}, v〉, where id denotes the object’s ID, {wj} (1 ≤
j ≤ m) denotes a set of keywords associated with the object,
and v is the content of the object. We assume that the data
objects are appended to the blockchain in a streaming way.
As such, the total number of objects is unbounded. Moreover,
once stored in the system, the objects are immutable. Upon
arrival of a new object oi, the DO sends oi to the SP but only
the meta-data 〈id, {wj},h(oi)〉 to the blockchain, where h(·)
is a cryptographic hash function. In this way, we reduce the
on-chain storage cost while ensuring the data integrity.

In order to support authenticated query processing under
the hybrid-storage blockchain, an authenticated data structure
(ADS) is maintained by both the smart contract and the SP.
During the ADS maintenance, the DO invokes the smart
contract to update the on-chain ADS. Meanwhile, the ADS
in the SP is updated synchronously with the latest confirmed
one on the blockchain. The digests of the ADS become the
authenticated information that is shared by both the smart
contract and the SP.

In this paper, we focus on keyword search queries. The
query input is a monotone Boolean expression over the queried
keywords. For simplicity, we assume that it is expressed in
the disjunctive normal form (DNF) as Q = q1 ∨ q2 ∨ · · · ∨ qn,
where qi = w1 ∧ w2 ∧ · · · ∧ wl. The client wants to retrieve
every data object oi that satisfies the query condition, i.e.,
R = {oi = 〈id, {wj}, v〉 | Q({wj}) = true}.

The authenticated query processing works as follows. The
client sends a keyword search request to the SP, which uses
the ADS to compute the results as well as a verification object
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Fig. 3: Merkle Hash Tree
(V Osp) that can be used by the client to verify the results.
Both the results and V Osp are returned to the client. During
the result verification, the client first retrieves the authenticated
digests (V Ochain) from the blockchain. Then, the client can
verify the correctness of the results by combining V Ochain
and V Osp.
C. Threat Model

In our system, the off-chain SP is not fully trusted and can
behave arbitrarily. It may add, delete, or modify the query
results intentionally or unintentionally. To ensure the integrity
of the query results, the client needs to check the following
two security criteria:
• Soundness: All of the returned results satisfy the query

condition and are originated from the DO;
• Completeness: No valid result is missing.
Regarding the blockchain, we assume that the adversary

cannot gain any advantage in attacking the consensus protocol
and that the execution integrity of the smart contract is
guaranteed.

D. Problem Statement
With the above system model and threat model, the problem

we study in this paper is how to design the ADS that can be
efficiently maintained by the on-chain smart contract, in terms
of the gas cost, while effectively supporting authenticated key-
word search in hybrid-storage blockchains. In the following,
we provide some preliminaries in Section III and then present a
baseline solution, followed by two gas-efficient ADS schemes
in Section IV and Section V.

III. PRELIMINARIES
In this section, we introduce some cryptographic primitives

and the authenticated query processing method on which our
proposed ADS schemes build.

A. Cryptographic Primitives
Cryptographic Hash Function: A cryptographic hash

function maps an arbitrary-length message m to a fixed-sized
digest h(m). It has two important properties: (i) collision
resistance, i.e., it is hard to find two different messages m1 and
m2 such that h(m1) = h(m2); (ii) irreversibility, i.e., given a
digest h, it is hard to find a message m such that h(m) = h.

Merkle Hash Tree (MHT): An MHT is a data structure
for data authentication and verification [14]. Fig. 3 shows an
example of MHT with eight data objects. Each leaf node
stores the digest of the indexed object. Each internal node
stores a hash that is derived from its two child nodes, e.g.,
h5 = h(h1||h2), where ‘||’ denotes the concatenation oper-
ation. The root hash is signed by the data owner and made
public. The MHT can be used to authenticate any subset of the
data objects stored in the leaf nodes in logarithmic complexity.
For example, to authenticate the object whose value is 14, a



Merkle proof consisting of {h(25), h1, h6} (shaded in Fig. 3)
is returned for verification. A verifier can use the Merkle proof
and the object’s value 14 to reconstruct the root hash and
compare it with the public signed root hash. If they match, it
is proved that the object exists in the MHT and has not been
tampered with.

The MHT is a binary tree. To support authenticated queries
in relational databases, it has been extended to multi-way
Merkle B-tree (MB-tree), which follows the B+-tree structure
and augments each index entry with a corresponding hash [7].

Vector Commitment (VC): A VC maps a vector of mes-
sages (〈m1,m2, · · · ,mq〉) to a fixed-sized commitment, which
can be opened at a specific position (e.g., proving mi is the ith

committed message) [15]. A VC scheme consists of several
polynomial-time algorithms:
• Gen(1λ, q): The key generation function returns the public

parameters pp with the input of the security parameter λ
and the vector size q.

• Compp(〈m1,m2, · · · ,mq〉, r): The commitment function
takes a vector of q messages and a random number r as
input and outputs a commitment c with some auxiliary
information aux.

• Openpp(i,m, aux): The opening function returns a proof
π iff m is the ith message in a vector w.r.t. c.

• Verpp(c, i,m, π): The verification function returns 1 iff
π passes the verification that c is computed based on a
sequence of messages with m at position i.

Chameleon Vector Commitment (CVC): A CVC is a
trapdoor vector commitment scheme [16]. A user who owns
a private trapdoor can update a message in a vector without
changing the vector’s commitment. The key generation func-
tion CGen(1λ, q) is slightly different from the Gen(1λ, q) with
an additional output of trapdoor td. Meanwhile, it supports an
additional collision finding algorithm:
• CColpp(c, i,m,m

′, td, aux): The collision finding algo-
rithm computes a new aux′ such that aux′ corresponds to
a vector of q messages with m′ instead of m at position i
and the commitment remains to be c.

After finding the collision, the user gets the updated aux′,
which can be used as the input of Openpp(i,m

′, aux′) to
compute a proof π′. Then, a verifier can use Verpp(c, i,m

′, π′)
to verify that m′ is the ith message stored in c’s vector.

B. Authenticated Join Processing with the MB-tree
The authenticated join processing aims to join multiple

tables with result integrity assurance. Yang et al. [8] proposed
a sort-merge-join like algorithm. Consider two tables, each
indexed by an MB-tree, denoted by TR and TS , respectively.3

The join is processed in rounds. We use Fig. 4 as an example to
illustrate the detailed procedure. We start from the tree TR with
its first object r1 as a target. Its matching and boundary objects
in the tree TS are s3 and s4. In the next round, we switch the
roles of TS and TR. The target changes to s4 and the boundary
object r2 is retrieved. The role switching continues until reach-

3For join process with multiple trees, the two trees with the smallest sizes
are joined first; then, the intermediate join results are used as targets to find
the matching and boundary objects from other trees.
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Fig. 4: Authenticated Join Processing of Two MB-trees
ing the target r5 with its left boundary s12, which is the last
leaf node of TS . For result verification, all of the matching and
boundary objects, together with their Merkle proofs (shaded in
Fig. 4), are added to the VO. During the verification, the client
can reconstruct the root hash of the tree TR by computing
h(h(h(r1)||h(r2))||h(h(r3)||h(r4))||h(h(r5)||hr6)) and ver-
ify it against the signed one. This ensures the integrity of TR’s
matching and boundary objects. The verification for the tree
TS is similar. After that, the client checks that each round’s
target is the previous round’s right boundary object and also
resides within its corresponding boundary, which ensures that
no valid result is missing. Specifically, the target r1 in TR is
checked against s3 and s4 in TS , and r1 is found to be one
of the join results. The right boundary s4 is the target for the
next round, which is checked against r2 in TR. The checking
terminates when we reach the left boundary s12 in TS with
the target r5.

IV. SUPPRESSED MERKLEinv INDEX
In this section, we first introduce the baseline solution,

Merkleinv index, and show that it suffers from a high on-
chain maintenance cost. To tackle this issue, we propose a new
ADS, called Suppressed Merkleinv index. It can be efficiently
maintained by the smart contract, while achieving the same
query efficiency as the baseline solution.
A. Baseline Solution

To process keyword search, a commonly used data structure
is the inverted index [17]. It consists of a dictionary of
keywords, each pointing to a list of objects that contain the
keyword. Fig. 5 shows an example of inverted list. In order
to support authenticated keyword search, a baseline solution
is to build an MB-tree for each keyword’s object list. We call
this ADS the Merkle inverted (Merkleinv) index. In detail, the
search key of each MB-tree is the object ID. Without loss of
generality, we assume that the object ID is a monotonically
increment attribute (e.g., using the transaction timestamp as
ID). This ensures that the object list is ordered for optimizing
the insertion and query processing. When a new object oi
is added to the Merkleinv index, its object ID and hashed
value 〈oi.id,h(oi)〉 will be inserted to the MB-tree of each
associated keyword. The Merkleinv index is maintained by
both the on-chain smart contract and the off-chain SP. Recall
that a keyword search query is represented in DNF. The SP can
process each conjunctive component as an authenticated join
query over the keywords’ MB-trees and combine the results of
all conjunctive components. For ease of illustration, we will



Keyword ID Keyword w Object List for w

1 COVID-19 7→ 1, 2, 4, 5, 7, 8, 10, 12, 13, 15, 17, 19

2 Symptom 7→ 4, 6, 9, 11, 24, 26

3 SARS-CoV-2 7→ 1, 3

4 Vaccine 7→ 4, 5, 8

Fig. 5: Inverted Index Example
only focus on how to process a conjunctive component of the
query in the rest of the paper.

We use Fig. 4 and Fig. 5 to give an example of authenticated
keyword search with the Merkleinv index. The MB-trees TS
and TR in Fig. 4 are built upon the object lists of keywords
“COVID-19” and “Symptom” in Fig. 5. Consider a keyword
search query Q = “COVID-19” ∧ “Symptom”. Using the
algorithm discussed in Section III-B, the SP processes it as
an authenticated join query over TS and TR, and obtains the
result r1. It also generates a VO (denoted as V Osp) for result
verification. To verify the query results, the same process in
Section III-B is applied except that the root hashes of TS and
TR (denoted as V Ochain) are retrieved from the blockchain.4

Cost Analysis. To analyze the on-chain maintenance cost of
the Merkleinv index, we first consider the cost of adding a
new object to a single keyword’s MB-tree. We assume that
the MB-tree’s node capacity is the same as the granularity of
blockchain data access. Suppose that the MB-tree has a fan-out
of F and the current number of objects is n. An insertion to
the MB-tree requires fetching the corresponding leaf node and
storing the inserted object, which consume O(logF n·Csload+
Csstore) gas. Then, the hashes of the logF n ancestor nodes are
updated, each requiring O(F ·Csload+Chash+Csupdate) gas.
Furthermore, in the worst case, there could be up to logF n
node splits during the insertion. For each node split, a new
node will be created, followed by the key distribution and
the update of the corresponding hash values. The creation of
a new node costs 2Csstore to store the node content and its
hash value. The rest of the operations consumes O(F ·Csload+
Csupdate) gas. In total, the worst-case maintenance cost for a
single keyword’s MB-tree is as follows:

C insert
MI (n) = logF n×

(
2Csstore + 2Csupdate

+ (2F + 1)Csload + Chash
)

+ Csstore

For a new object with L keywords, the total cost is L ·
C insert

MI (n). Apparently, the gas cost is logarithmic with respect
to the number of the objects. Moreover, the coefficient of the
logarithmic term contains the expensive storage operations,
i.e., Csstore, Csupdate, and Csload. As such, maintaining the
complete Merkleinv index on-chain is inefficient in terms of
the gas cost.

B. Overview of the Suppressed Merkleinv Index
As shown in the previous section, only the on-chain

root hashes are needed during the authenticated keyword
search. It is redundant to maintain the complete MB-trees on-
chain. Therefore, in this section, we propose the Suppressed
Merkleinv index to reduce the smart contract maintenance
cost.

4For non-existing keywords, their digests are empty in V Ochain and can
be checked by the client for ensuring result completeness.
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The general idea of the Suppressed Merkleinv index is to

fully suppress the on-chain MB-trees. That is, we store only
the root hashes of the MB-trees to minimize the maintenance
cost. The SP, on the other hand, still maintains the com-
plete structures of the MB-trees to support efficient query
processing. This idea is inspired by the GEM2-tree proposed
in [13], which maintains a series of suppressed MB-trees that
are gracefully merged into a materialized MB-tree. However,
as the materialized MB-tree is large and still needs to be
maintained by the smart contract, the cost saving of GEM2-
tree is limited as shown in Fig. 6.5 In contrast, by maintaining
only the root hash on-chain, the suppressed MB-tree saves
more maintenance costs and is thus applied to the Suppressed
Merkleinv index.

A key issue is how the smart contract can maintain the
root hash of each MB-tree without knowing the complete
structure. Our idea is to ask the off-chain SP to construct
an update proof, denoted as UpdV O, during a new object’s
insertion. Consisting of enough authenticated information, the
UpdV O is then sent to the smart contract to securely update
the root hashes. In the following, we give the details on how
to construct the UpdV O (by the SP) and how to use it to
update the MB-trees’ root hashes (by the smart contract).
C. Details of the Suppressed Merkleinv Index

Without loss of generality, we consider the insertion oper-
ation on a single MB-tree in the inverted index. As the SP
is not fully trusted, the UpdV O should include the Merkle
proof corresponding to the tree path of the leaf node to be
updated. Since the object IDs are monotonically increment,
the new insertion will always go to the right-most leaf node.
Thus, the UpdV O consists of the right-most branch of the
MB-tree. Algorithm 1 describes the procedure of constructing
the UpdV O by the SP. It traverses the tree in a top-down
fashion starting from the root node. For each internal node,
the child hashes except the right-most one are appended to
the UpdV O (lines 2-7). Finally, when we reach the leaf node,
the hashes of all existing objects and the new object are added
to the UpdV O (lines 8-13).

Example. Consider Fig. 4 as an example. Suppose a new
object s13 with id = 23 is going to be added to the MB-
tree TS . The object will be inserted into the leaf node F .
By invoking Algorithm 1, the UpdV O computed by the SP
consists of: (i) 〈hG〉; (ii) 〈hD, hE〉; (iii) 〈hs11 , hs12〉; (iv) hs13 .

Upon receiving the UpdV O from the SP, the smart contract
first verifies the hash of the new object with respect to the
one sent by the DO. Next, the smart contract checks the other

5The gas costs plotted in Fig. 6 were measured on the Ethereum platform
under the default experiment settings specified in Section VII.



Algorithm 1 GenUpdVO(MB-tree T , o) by SP
Input Keyword’s MB-tree T , new object o
Output Update proof UpdV O

1: curnode← T .root;
2: while curnode is not a leaf do
3: UpdV O.append(“〈”);
4: for i in [0, curnode.fanout− 2] do
5: UpdV O.append(hcurnode.child[i]);
6: UpdV O.append(“〉”); curnode← curnode.child.last;
7: if curnode is a leaf then
8: UpdV O.append(“〈”);
9: for each ho in curnode do

10: UpdV O.append(ho);
11: UpdV O.append(“〉”); UpdV O.append(h(o));
12: return UpdV O

update information sent by the SP. More specifically, a root
hash is reconstructed from the hashes in the UpdV O in a
bottom-up manner and compared with the one stored on-chain.
If they match, the integrity of the UpdV O is proved.

After the verification of the UpdV O, the smart contract uses
it to update the root hash of the MB-tree using Algorithm 2.
Similar to the MB-tree’s insertion, the leaf node’s hash is
firstly recomputed (lines 5-10), followed by recomputing the
hashes of all the nodes in the Merkle path level by level up
to the root (lines 11-23). Note that a node may be split due to
overflow during the insertion. We use the in-memory variable
h′ to record the updated hash value and h′1, h′2 to record the
two split nodes’ hash values. If the current node is not split
(lines 5-6 and lines 13-17), the updated node hash is stored in
h′. Otherwise, the two split nodes’ hashes are computed and
stored in h′1 and h′2, respectively (lines 7-10 and lines 18-21).
Finally, the updated root hash is stored on-chain by the smart
contract. Once successful, the smart contract emits an event to
indicate the completion of the update operation (lines 23-24).
After receiving the event, the SP can use the updated ADS for
future query processing.

Example. We continue the example above to illustrate
the UpdV O verification and the root hash update dur-
ing the insertion. The smart contract first verifies the
integrity of the UpdV O by recomputing the root hash
h(hG||h(hD||hE ||h(hs11 ||hs12))) and comparing it with the
one stored on-chain. Also, hs13 is verified against the hash
of s13 sent by the DO. Then, the smart contract proceeds
to update the root hash for the new object s13. We assume
that the fan-out is 4. Since the current leaf node F is
not full, it is not split. The node F ’s hash is updated to
h′F = h(hs11 ||hs12 ||hs13) after the insertion of s13. For the
node H , its hash is updated to h′H = h(hD||hE ||h′F ). Finally,
the root hash is updated to h(hG||h′H). Fig. 7 shows the
updated MB-tree after the insertion of s13, where the shaded
parts indicate the updated hashes.

Cost Analysis. We now estimate the smart contract main-
tenance cost of the Suppressed Merkleinv index. We first
consider the maintenance cost of updating the MB-tree for
a single keyword. Assume that the keyword’s MB-tree con-
tains n objects and the fan-out is F . For the UpdV O,

Algorithm 2 Insert(UpdV O) by Smart Contract
Input Update proof UpdV O

1: Verify UpdV O;
2: if verification failed then Event(“Invalid UpdV O”); Abort;
3: valueh← UpdV O[0]; l← len(valueh);
4: split← false;
5: if l < fanout− 1 then
6: h′ ← h(valueh[0, l]|| h(o));
7: else
8: split← true; half ← d(fanout+ 1)/2e;
9: h′

1 ← h(valueh[0, half ]);
10: h′

2 ← h(valueh[half + 1, l]|| h(o));
11: for i in [1, len(UpdV O)-1] do
12: childh← UpdV O[i]; l← len(childh);
13: if split = false then
14: h′ ← h(childh[0, l − 1]||h′);
15: else
16: if l < fanout then
17: split← false; h′ ← h(chidlh[0, l − 1]||h′

1||h′
2);

18: else
19: split← true; half ← d(fanout+ 1)/2e+ 1;
20: h′

1 ← h(childh[0, half ]);
21: h′

2 ← h(childh[half + 1, l − 1]||h′
1||h′

2);
22: if split = false then SC.w.hroot ← h′;
23: else SC.w.hroot ← h(h′

1||h′
2);

24: Event(“Successful update for UpdV O. h(o)”);

1 2 4 5 7 8 10 12 13 15 17 19

Roots

A B C D E F
G H

23
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Fig. 7: Updated MB-tree TS after Inserting s13
we include at most F hashes for each level of the tree,
requiring a total size of O(logF n · F · |h|), where |h| is
the size of a hash value. As the UpdV O is sent by the SP
to the smart contract, the corresponding transaction cost is
O(logF n · F · |h| · Ctxdata). The integrity verification of the
UpdV O requires the computation of the hash for each tree
level and the checking of the root hash and the new object’s
hash, which cost O(logF n · (Chash+F ·Cmem)) and 2Csload
gas, respectively. To update the MB-tree’s root hash, the hashes
of logF n intermediate nodes are re-computed, each costing
O(F · Cmem + Chash) gas. Furthermore, up to logF n node
splits may occur during the insertion. Each node split takes
extra Chash + Cmem gas compared with the case without
node splits. Finally, the smart contract needs to update the root
hash on-chain, which costs Csupdate gas. In all, the worse-case
maintenance cost for a single keyword’s MB-tree is:
C insert

SMI (n) = logF n · (F · |h| · Ctxdata + 3Chash + (2F + 1)Cmem)

+ 2Csload + Csupdate

For a new object with L keywords, the total cost is L ·
C insert

SMI (n)+Ctx, where Ctx is the basic cost of the transaction
of sending the UpdV O from the SP to the smart contract. It
is worthwhile to note that the coefficient of the logarithmic
term in the cost function only contains the cheap operations,
i.e., Ctxdata, Chash, Cmem, and that the costly operations like
Csupdate and Csload are with a constant coefficient only.
Therefore, the Suppressed Merkleinv index achieves a lower
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Fig. 8: Example of a Chameleon Tree Node
maintenance cost compared with the Merkleinv index.

V. CHAMELEONinv INDEX
Owing to the MB-tree structure, the Suppressed Merkleinv

index still has a logarithmic maintenance cost with respect
to the memory operations. As shown in Section III-A, the
chameleon vector commitment (CVC) has a nice property that
one can update a vector without changing its digest using
a secret trapdoor. Thus, inspired by the CVC [16], in this
section, we propose a Chameleon inverted (Chameleoninv)
index, which has a constant maintenance cost and supports
efficient authenticated keyword search.

A. Overview of the Chameleoninv Index
To start with, we first present a Chameleon tree for indexing

the objects of a single keyword. A Chameleon tree is a q-
ary tree in which each node corresponds to a data object
o and a node position pos, which is assigned by counting
the nodes with the order of left to right and top to bot-
tom. The root is a special node without a corresponding
object, and it contains a CVC commitment computed by
Compp(〈0, ..., 0︸ ︷︷ ︸

q+1

〉, PRF (sk, w)), where 〈0, ..., 0︸ ︷︷ ︸
q+1

〉 is a constant

vector, PRF (·) is a keyed pseudorandom function, sk is a
private key owned by the DO, and w is the keyword. For each
non-root node at position pos, as shown in Fig. 8, it consists
of four components: {h(o), cpos, πpos, ρpar,j}, where h(o) is
the object hash, cpos is a CVC commitment computed by
Compp(〈0, ..., 0︸ ︷︷ ︸

q+1

〉, PRF (sk, pos||w)), πpos is the CVC proof

proving that h(o) is the first element stored in an updated
vector of cpos, and ρpar,j proves that this node is linked to the
jth child of the parent node at position par (how to generate
πpos and ρpar,j will be discussed in Section V-B). With the
child-parent relationship, the membership of o can be verified
recursively in a bottom-up fashion, which will be elaborated
in Section V-C.

Note that the commitment of each node is pre-determined
by a constant vector, keyword w, and node position pos.
The commitment remains unchanged, while the vector can be
updated using a trapdoor during object insertions. Meanwhile,
a new node with the inserted object is always linked to its
parent node from left to right. With these two properties, given
the total count of objects, cnt, the structure of a Chameleon
tree is decided. The value of cnt needs to be maintained
on-chain, which incurs a constant cost, in order to prevent
an adversary from returning the query results based on an
outdated index.

With the Chameleon tree, we can build the Chameleoninv

index, in which each keyword corresponds to a Chameleon
tree. For each Chameleon tree, the smart contract only needs to
maintain the (invariant) root commitment and the total object
count cnt, both of which act as the authenticated information
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Fig. 9: Example of Two Chameleon Trees

Algorithm 3 Setup(q, w) by DO
1: function SETUP(q, w)
2: Generate PRF key sk ← {0, 1}λ;
3: Compute a key pair of CVC (pp, td)← CGen(1λ, q + 1);
4: Set cnt← 0; Compute r0 ← PRF (sk, 0||w);
5: Compute (c0, aux)← Compp(〈0, ..., 0〉, r0);
6: Send 〈w, c0〉 to the blockchain and the SP;

and are used during authenticated keyword search.
B. Maintenance of the Chameleoninv Index

For ease of illustration, we focus on the operation to add a
new object to the Chameleon tree of a single keyword in the
inverted index.

Algorithm 3 describes the setup procedure, which is run
by the DO to create the initial Chameleon tree. It starts with
generating the necessary keys, including the PRF key sk, the
CVC trapdoor td, and its public parameter pp (lines 2-3). Note
that sk and td need to be kept secret by the DO, otherwise
they may be used by an adversary to tamper with the index.
After the key generation, the commitment of the root node,
c0, is computed (lines 4-5). Finally, the keyword w and the
root commitment c0 are sent to both the blockchain and the
SP (line 6).

The procedure to insert a new object o into the Chameleon
tree is described in Algorithm 4. It consists of two steps:
(i) creating a new node for o, and (ii) linking the new node to
its corresponding parent node. In the first step, a new node’s
position pos is assigned and the pre-determined commitment
cpos is computed (lines 2-3). Then, the DO finds the collision
of cpos using the trapdoor td and updates the vector’s first
element to the object’s hash h(o) (line 4). After that, a proof
πpos is generated (line 5). In the second step, the DO first
locates the parent node npar and the corresponding index j
in the CVC (line 6). Then, npar’s pre-determined commitment
cpar is computed and a collision is found to update its (j+1)th

element to cpos (lines 7-8). Next, a corresponding proof ρpar,j
is computed to attest to that npos is the jth child of npar (line
9). We denote 〈cpos, πpos, ρpar,j〉 as the insertion proof of the
new object o. Finally, the DO sends the insertion proof to the
SP and the updated cnt value to the blockchain (lines 10-11).

Example. Fig. 9 shows two Chameleon trees with q = 2
(the object ID is used to denote the object for simplicity). We
give an example of inserting a new object o with id = 23 to the
Chameleon tree TS . The total object count cnt is incremented
from 12 to 13, which is also o’s node position. We create a



Algorithm 4 Insert(sk, td, cnt, w, o) by DO
1: function INSERT(sk, td, cnt, w, o)
2: cnt← cnt+ 1; pos← cnt; rpos ← PRF (sk, pos||w);
3: (cpos, auxpos)← Compp(〈0, ..., 0〉, rpos);
4: aux′pos ← CColpp(cpos, 1, 0, h(o), td, auxpos);
5: πpos ← Openpp(1, h(o), aux′pos);
6: (par, j)← getPar(pos); rpar ← PRF (sk, par||w);
7: (cpar, auxpar)← Compp(〈0, ..., 0〉, rpar);
8: aux′par ← CColpp(cpar, j + 1, 0, cpos, td, auxpar);
9: ρpar,j ← Openpp(j + 1, cpos, aux

′
par);

10: Send 〈cnt, o, h(o), cpos, πpos, ρpar,j〉 to the SP;
11: Send 〈w, cnt〉 to the blockchain;

Algorithm 5 Authenticated Join(TR, TS) by SP
Input Two Chameleon trees TR, TS
Output Verification object V Osp

1: posstart ← 1;
2: loop
3: target← TR[posstart]; V Osp.add(target,ΠR(target));
4: (posl, posu)←getPos(TS , target.id);
5: V Osp.add(TS [posl],ΠS(TS [posl]));
6: if posu 6= +∞ then
7: V Osp.add(TS [posu],ΠS(TS [posu]));
8: posstart ← posu;
9: else V Osp.add(+∞, TS .cnt); break;

10: Switch the roles of TR and TS ;

new node for o. With pos = 13, the node’s commitment cs13 is
computed, the parent node position par = 6 and the element
index j = 1 are determined. Next, the two proofs, πs13 and
ρs6,1, are computed by finding the collisions of cs13 and cs6 .
The insertion proof, consisting of 〈cs13 , πs13 , ρs6,1〉, is then sent
to the SP. The count cnt = 13 is sent to the blockchain as part
of the authenticated information.

Cost Analysis. To analyze the smart contract maintenance
cost of the Chameleoninv index, we first consider the cost of
adding a new object to a single Chameleon tree. While the
root commitment is invariant, the smart contract only needs to
update the object count, which costs Csupdate gas. Therefore,
the maintenance cost of the Chameleon tree is simply:

C insert
Chameleon = Csupdate

For an object with L keywords, the total maintenance cost
is L · C insert

Chameleon. Apparently, this cost is constant.

C. Authenticated Keyword Search with Chameleoninv Index
In this section, we discuss how to process authenticated

keyword search with the Chameleoninv index. Similar to
the one discussed in Section IV, a keyword search query is
transformed to join the query keywords’ Chameleon trees for
each conjunctive component of the query condition.

As a building block, we start by introducing the authenti-
cated membership test on the Chameleon tree. To prove the
existence of an object at position pos in the Chameleon tree,
the SP can generate a membership proof, Π, by including the
insertion proofs of the object at pos and all its ancestor nodes
except the root. For example, in Fig. 9, the membership proof
of s3 in the tree TS consists of the insertion proofs of s3 and
s1, i.e., {cs3 , πs3 , ρs1,1, cs1 , ρs0,1}. The membership verification
is processed recursively in a bottom-up fashion. In the above
example, one can use πs3 to prove that s3 is stored in ns3 and

Algorithm 6 Result Verification(V Ochain, V Osp) by Client

Input V Osp from SP, V Ochain from blockchain
Output Whether the verification is passed

1: Retrieve 〈c0, cnt〉 of the joined trees as V Ochain from the
blockchain;

2: for each round in V Osp do
3: Check the position of this round’s target is 1 or equals the

previous round’s boundary position;
4: Verify two boundary objects with their Π w.r.t. its c0;
5: Verify the target with its Π and add the target as a result when

the target’s ID equals the left boundary’s ID;
6: Verify the target’s ID being in the two boundary IDs;
7: if the round is the last round then
8: Check the termination position ≥ cnt;

ρs1,1 to prove that ns3 is the first child of ns1 . Finally, with ρs0,1
and the root commitment cs0 retrieved from the blockchain,
ns1 is proved that it is indeed the first child of the root and
the verification is completed.

To process authenticated keyword search, without loss of
generality, let us consider the case of joining two Chameleon
trees, which is described in Algorithm 5. The overall procedure
is similar to the MB-trees’ join explained in Section III-B. The
major difference is that the Chameleon tree is indexed by each
object’s node position, rather than the object ID. To facilitate
join processing, the SP builds a hash map locally to keep track
of the mappings between the object IDs and their positions for
each Chameleon tree. Similar to the MB-tree, the join query
is processed in rounds between the two trees. For each round,
the membership proofs of (i) the target and (ii) the matching
and boundary objects are added to the V Osp. The two trees
switch their roles to find the matching objects until one tree’s
end is reached.

Algorithm 6 shows the procedure of the client’s verification
process, which is also similar to that of the MB-tree join.
First of all, the client retrieves the root commitment c0 and
count cnt (denoted as V Ochain) for each relevant Chameleon
tree. Then, the client checks the V Osp for each round of join
processing. Specifically, for each round, the client (i) checks
the position of this round’s target is 1 or equals the previous
round’s boundary position; (ii) verifies the integrity of the two
boundary objects using their membership proofs; (iii) verifies
the integrity of the target object with its membership proof
and adds the object as a result if its ID matches the left
boundary’s ID; (iv) verifies that the target object’s ID is
between the boundary objects’ IDs. For the last round, the
client additionally (v) checks the termination position is no
smaller than the object count cnt. The checking of (ii) and
(iii) ensures the results’ soundness, while that of (i), (iv), and
(v) guarantees the results’ completeness.

Example. We use Fig. 9 to give an example of the authen-
ticated keyword search with the query Q = “COVID-19” ∧
“Symptom”. The Chameleon trees TS and TR correspond to
the keyword “COVID-19” and “Symptom”, respectively. At
first, the first object of TR, r1, with its membership proof
ΠR(r1) is inserted to V Osp. Here, ΠR(r1) consists of the
insertion proof of the node r1. Then, r1 is used as a target
and its matching and boundary objects, s3 and s4, with their



membership proofs are added to V Osp. For the next round, the
roles of TR and TS switch and the target changes to s4, which
is the previous round’s right boundary. The process continues
until we reach the end of TS with the target r5 and its boundary
s13. The components in the membership proofs are shaded in
Fig. 9.

For result verification, after retrieving the root commitments
cr0 , cs0 and their cnt values from the blockchain, the client
verifies r1 with its proof ΠR(r1). Also, the matching and
boundary objects, s3 and s4, are verified with their mem-
bership proofs. After checking r1 with its left boundary s3,
the client knows that r1 is a result. For the next round, s4 is
checked against its boundary object r2. The verification goes
on and finally after checking the termination position 13 is
no smaller than the tree’s cnt value, the whole process is
completed.

D. Chameleoninv∗ Index
One disadvantage of the Chameleoninv index is that the

verification of the commitments (in the membership proofs)
involves heavy cryptographic pairing operations, which are
several orders of magnitude slower than the cryptographic hash
function [16]. As a result, the client’s verification cost is high
when using the Chameleoninv index. To reduce the verification
cost, we propose an optimized Chameleoninv∗ index, in which
a Bloom filter is created for every b objects in each Chameleon
tree and used to efficiently prove the non-existence of objects.
Specifically, during the insertion of a new object, the object’s
ID is inserted to the current Bloom filter if it is not full;
otherwise a new Bloom filter is created. We also set a range
for each filter with the smallest and largest IDs. The Bloom
filters are maintained by the smart contract on-chain to ensure
their integrity. Nevertheless, compared with the Chameleoninv

index, the smart contract cost does not increase too much since
the maintenance of a Bloom filter incurs only a constant cost
of Csupdate + Csstore/b+ Csload. Thus, we have

C insert
Chameleon* = 2Csupdate + Csstore/b+ Csload

The Bloom filters can not only improve the verification
performance, but also the query performance since the un-
matched objects can be efficiently tested in the join algorithm.
As such, the SP also maintains the same set of filters. The
authenticated join of the Chameleon∗ trees is slightly different
from Algorithm 5. When joining for a target object, we use
the corresponding Bloom filter in the second index tree to
test whether a matching object exists. If so, we proceed as
usual. Otherwise, the consecutive object is set as the target to
continue the join process. The verification of the authenticated
join with the Chameleon∗ tree is similar to Algorithm 6 except
that some unmatched objects can be quickly verified with the
Bloom filters retrieved from the blockchain.

VI. SECURITY ANALYSIS
In this section, we analyze the security of the proposed ADS

algorithms. We start by presenting the formal definitions of our
security notions.
Definition 1 (ADS Maintenance Security). We say an ADS
maintenance algorithm is secure if the success probability of

any polynomial-time adversary is negligible in the following
experiment:
• an adversary A selects two different datasets Dideal and
Dreal;

• the ADS maintenance algorithm constructs ADS and
its corresponding authenticated information V Ochain,ideal
based on Dideal with an honest party acted as the SP;

• the ADS maintenance algorithm constructs ADS and
its corresponding authenticated information V Ochain,real
based on Dreal with the adversary A acted as the SP;

• the adversary succeeds if V Ochain,ideal = V Ochain,real.
This above definition ensures that the chance for a malicious

SP to forge incorrect authenticated information is negligible.
Definition 2 (Authenticated Query Processing Security). We
say an authenticated keyword query algorithm is secure if
the success probability of any polynomial-time adversary is
negligible in the following experiment:
• an adversary A selects a dataset D;
• the ADS maintenance algorithm constructs ADS and its

corresponding authenticated information V Ochain based
on D;

• A outputs a tuple of range query Q, result R, and V Osp;
• the adversary succeeds if V Osp passes the verification

w.r.t. the V Ochain and satisfies the condition: {ri|ri 6∈
Q(D) ∧ ri ∈ R} 6= ∅ ∨ {rj |rj ∈ Q(D) ∧ rj /∈ R} 6= ∅.

The above definition states that the chance for a malicious
SP to convince the user of an incorrect or incomplete answer is
negligible. We now show that our proposed algorithms indeed
satisfy the desired security requirements.
Theorem 1. Our proposed ADS maintenance algorithms are
secure with respect to Definition 1 if the underlying crypto-
graphic primitives and blockchain smart contract executions
are secure.

Proof. This theorem is clearly true for both the Merkleinv

index and the Chameleoninv index, since the adversary does
not participate in the computation for the on-chain authenti-
cated information. Next, we prove that this theorem is also true
for the Suppressed Merkleinv index by contradiction. Recall
that the authenticated information is computed by the smart
contract with the input of the update proof UpdV O. A suc-
cessful attack would mean either the smart contract execution
is not secure or the input is tampered with. The first case is a
direct contradiction to the assumption. For the second case, a
tampered update proof (i.e., UpdV Oideal = UpdV Oreal) that
passes the smart contract check means that (i) there exist two
MB-trees with different objects but the same root hash, or
(ii) there exists another object whose hash is the same as
that of the new object. In either case, it implies a successful
collision of the underlying hash function, which contradicts to
our assumption.
Theorem 2. Our proposed authenticated query algorithms
are secure with respect to Definition 2 if the underlying
cryptographic primitives are secure.

Proof. We omit the proof for the Suppressed Merkleinv index
as its query algorithm is identical to that of the Merkleinv



index. We prove that this theorem is also true for the
Chameleoninv index by contradiction.

Case 1: {ri|ri 6∈ Q(D) ∧ ri ∈ R} 6= ∅. This means that a
tampered ri is returned, which is not in the genuine result
set. For the case where all queried keywords exist, once ri
passes the client verification, it means that the SP can get two
different vectors with the same commitment since the client
needs to verify ri’s membership proof and compare the root
commitment from V Ochain. However, this contradicts to the
assumption that without the trapdoor td, the SP cannot find a
valid collision of a CVC. For the case where the query contains
a non-existing keyword, the genuine result should be empty.
But if ri is returned and passes the verification, this means that
the client can find a digest that corresponds to the non-existing
keyword in V Ochain. This contradicts to the assumption that
the smart contract is trustworthy and would not forge a digest
for the non-existing keyword.

Case 2: {rj |rj ∈ Q(D) ∧ rj /∈ R} 6= ∅. This means that a
valid result rj is missing from R. Since the client successfully
checks these conditions: (i) the soundness of the target and the
boundary objects, (ii) the target’s ID residing the boundary
objects’ IDs, and (iii) the target being the previous round’s
right boundary, the missing rj means that the SP can find the
collision of the target’s or the boundary objects’ commitments
with some other object’s hash. This contradicts to the assump-
tion that the SP cannot find a valid collision of a CVC without
the trapdoor td. Also, note that if the SP uses an out-of-date
cnt as the termination boundary to remove some results, the
client can detect it since it does not match the one from the
V Ochain.

VII. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed

ADS schemes on the Ethereum blockchain platform.

A. Experiment Setup
We use two datasets, namely DBLP6 and Twitter7, for

performance evaluation. The DBLP dataset consists of 5
million paper entries with titles, authors, and affiliations. The
twitter dataset on the other hand contains 1.5 million tweets.
For both datasets, an incremental 32-bit identifier is assigned
for each data object. Moreover, we extract the keywords for
each data object by removing stop words from its content.

For the proposed ADS schemes, the following settings are
adopted. Since the word size in the Ethereum is 32 bytes,
the fan-out of the MB-trees in the Merkleinv index is set to 4,
which is the maximum of F satisfying (F−1)·ld+F ·lp+lp <
32 bytes, where ld and lp are the sizes of a delimiter (4 bytes)
and a pointer (3 bytes), respectively. We choose the same fan-
out for the other ADSs for the sake of fair comparison. For the
Chameleoninv∗ index, we fix the length of a Bloom filter to
256 bits, which is identical to the word size in the Ethereum.
By default, the maximum number of the objects allowed to be
inserted into a Bloom filter, b, is set to 30.

In the experiments, a private Ethereum network is deployed
6https://dblp.uni-trier.de/xml/
7https://www.kaggle.com/kazanova/sentiment140
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Fig. 10: Gas Consumption vs. Dataset Size
TABLE III: Gas Cost Breakdown in US$ (Twitter)

ADS Write Cost Read Cost Others Total(Csstore, Csupdate) (Csload) (Ctxdata, Chash, etc.)

MI 7.44 1.19 1.76 10.39
SMI 0.13 0.01 2.36 2.50
CI 0.13 0.00 0.11 0.24
CI∗ 0.28 0.01 0.21 0.50

using Geth and the block gasLimit is set to 8,000,000.8 The
smart contract is written in the Solidity language. For the SP,
a server equipped with Dual 10-Core Intel Xeon E5-2630 v4
2.2GHz CPU and 256G RAM, running CentOS 7, is used.
For each of the DO and the client, a desktop computer with
Intel Core i7-7700K 4.2GHz CPU and 16 GB RAM is used.
The query processing and the result verification programs are
written in the Rust programming language. We choose SHA-
3 as the cryptographic hash function in all algorithms and
MNT4 298 as the elliptic curve for implementing the CVC.
The cryptographic pairing operations used by the CVC is
implemented using the ZEXE library [18].

We evaluate the performance of four ADS schemes, namely
the baseline Merkleinv index and the proposed Suppressed
Merkleinv , Chameleoninv , and Chameleoninv∗ indexes. For
simplicity, we denote them as MI, SMI, CI, and CI∗, respec-
tively. The following performance metrics are measured and
reported: (i) the smart contract’s gas consumption for ADS
maintenance; (ii) the SP’s query processing time; (iii) the size
of the VO (including both V Osp and V Ochain); (iv) the client
verification time.

B. Experimental Results
1) Gas Consumption for ADS Maintenance: Fig. 10 shows

the average gas consumption9 per object insertion with the
increasing dataset size. Table III also shows the gas cost
breakdown for the full Twitter dataset. Clearly, all of our
proposed schemes (i.e., SMI, CI, and CI∗) outperform the
baseline MI. Moreover, their costs are only slightly increased
when the dataset becomes larger. Specifically, compared to
MI, SMI reduces the average gas consumption from US$10.39
down to US$2.50, achieving a saving of 76%. This is attributed
to the idea of using the update proof to maintain the root
hashes on the smart contract, which avoids the costly main-
tenance of the complete index on-chain. However, SMI still
has a high transaction cost ($2.36 out of $2.50) owing to the
logarithmic update proof. In contrast, the savings obtained by
CI and CI∗ are more significant, as high as 98%, since both
of them require only a constant maintenance cost. In detail,
CI costs only an average of US$0.24 for each object insertion,
which contains very small write cost and no read cost. As for
CI∗, it consumes slightly more gas to maintain the additional

8https://github.com/ethereum/go-ethereum
9The gas consumption is reported with the same cost settings of Table I.
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Fig. 11: Query Processing & Verification Costs (Twitter)
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Fig. 12: Query Processing & Verification Costs (DBLP)
Bloom filters, with an average of US$0.50 for each object
insertion. The observed performance differences conform to
our theoretical cost analysis presented in Sections IV and V.

2) Query Performance: We now evaluate the query perfor-
mance of different ADS schemes for the two datasets. Fig. 11
and Fig. 12 show the results for conjunctive query conditions,
where the number of query keywords is varied from 2 to 10.
Similar performance trends are observed when combined with
disjunctive query conditions, so they are omitted in the interest
of space. The query keywords are selected randomly from the
most frequent 10,000 keywords. For the CI and CI∗ schemes,
we use four threads during the result verification for better
performance. For each experiment, 1,000 queries are generated
and the average performance results are reported. Note that MI
and SMI employ the same algorithms for query processing
and, hence, their performances are exactly the same.

As can be seen from Fig. 11 and Fig. 12, the metrics of all
schemes increase with the number of query keywords. This
is because the more the query keywords, the more the index
trees to be joined and, hence, a longer query time and a larger
VO size are resulted. MI and CI have a similar SP processing
time while CI∗ is more efficient owing to its use of Bloom
filters. The Bloom filters help the SP efficiently determine the
unmatched objects, which expedites the query processing. At
the same time, they contribute to a smaller VO size. However,
due to the costly cryptographic primitives used during the
verification of the CVC, the verification times of CI and CI∗

are longer than that of MI, which relies only on the relatively
fast hash operations. Nevertheless, the Bloom filters in the CI∗

scheme help reduce the verification time to some extent.
Finally, we evaluate the influence of the parameter b, which

is the maximum number of objects allowed in a Bloom filter
in a Chameleon∗ tree. We vary b from 20 to 50 and report
the query performance for the Twitter dataset in Fig. 13. As
we can see, the default setting b = 30 yields the best results
in terms of the SP CPU time, VO size, and client verification
time. This is because when b is set too small, the effectiveness
of using Bloom filters to filter the unmatched objects is not
obvious. However, if b is too large, since we fixed the Bloom
filter’s length, it leads to a high false positive rate, making
its pruning capability less effective. For this reason, we chose
b = 30 as the default parameter in the previous experiments.
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Fig. 13: Chameleoninv∗ Performance vs. b (Twitter)
VIII. RELATED WORK

To the best of our knowledge, no studies exist for authen-
ticated keyword search in hybrid-storage blockchains. In the
following, we briefly review the related works on blockchain
data management and authenticated query processing.

A. Blockchain Data Management

Blockchain data management has recently received increas-
ing attention from the database research community. To in-
crease the system scalability, several studies proposed a variety
of improvements over the blockchain transaction execution and
commitment model [19]–[22]. Moreover, sharding techniques
were investigated to scale the system horizontally [23], [24].
To reduce the storage overhead among peers, [25] and [26]
explored distributed data storage schemes.

There are also some existing works that studied the key-
word search upon the blockchain. Hu et al. [27] proposed
a searchable encryption scheme on blockchain. Jiang et al.
[28] proposed a verifiable keyword search framework for
outsourced encrypted data based on blockchain. The multi-
keyword search problem for encrypted data on blockchain
was investigated in [29]. However, all of these prior works
utilize smart contracts to process the queries directly. As such,
they fail to consider the storage and computation costs of the
blockchain. Moreover, they suffer from poor scalability and
high query costs. In comparison, our proposed schemes not
only achieve a low on-chain maintenance cost and but also
support efficient authenticated keyword search.

B. Authenticated Query Processing

Authenticated query processing has been extensively studied
in the outsourced database scenario to ensure result integrity
[7]–[11]. They are two fundamental approaches. On the one
hand, the computation task can be viewed to be run on a
verifiable general Turing machine. By presenting the task as
a Boolean or arithmetic circuit, one can achieve integrity
assured-computations for arbitrary queries [30]. However, such
an approach often yields high and sometimes impractical
overhead. On the other hand, one can design an authenticated
query processing scheme specifically based on the queries.
This is often achieved by letting the DO sign a well-designed
ADS. One of the most commonly used ADSs is the MHT [14]
introduced in Section III. The MHT technique has been
adapted to many indexes to cater for different applications,
such as range queries [7], join queries [8], and text search
engines [31]. It has also been applied to read query verification
in the Byzantine learner problem [32].

Another closely related topic is on verifiable data stream-
ing [16], [33], [34], in which a resource-limited client out-



sources a stream of data to an untrusted server. These data
can later be retrieved with integrity ensured in a publicly
verifiable fashion. In [16], a CVC scheme was proposed to
achieve constant data appending cost and constant public key
maintenance for the data owner. However, it is limited to basic
data retrieval and not able to support authenticated keyword
search.

In the prior work [35], we proposed an accumulator-based
authentication structure for verifiable queries over the data
stored on blockchain, where the off-chain storage is not
considered. A gas-efficient structure called GEM2-tree was
designed for hybrid-storage blockchains in [13]. However,
it supports only range queries. Moreover, as discussed in
Section IV-B, because the on-chain structure is only partially
suppressed in the GEM2-tree, its index maintenance cost re-
mains relatively high. In contrast, our proposed ADS schemes
fully suppress the on-chain tree structures and achieve a lower
maintenance cost.

IX. CONCLUSION

In this paper, we have studied the problem of authenticated
keyword search over the data stored in a hybrid-storage
blockchain system. To reduce the on-chain maintenance cost,
we have proposed the Suppressed Merkleinv index that incurs
a logarithmic maintenance cost while supporting efficient
query processing and result verification. Furthermore, with the
inspiration of the CVC, we have designed the Chameleoninv

index and its optimized version Chameleoninv∗ to further
reduce the on-chain maintenance cost to a constant level.
Authenticated query algorithms over the proposed indexes
have also been developed. Theoretical analysis and empirical
results have validated the robustness and performance of the
proposed techniques.

Our proposed Suppressed Merkleinv index can be easily
extended to other indexes such as B-tree and R-tree to support
various queries. For future work, we plan to extend the idea of
the Chameleon tree to more general indexes where the keys
of newly inserted objects are not monotonically increment.
This poses new challenges since the objects can no longer
be appended by the order of node positions. Besides, we are
interested to explore learned indexes for authenticated queries
in blockchain systems.
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