
ImageProof: Enabling Authentication for
Large-Scale Image Retrieval

Shangwei Guo†, Jianliang Xu†, Ce Zhang†, Cheng Xu†, and Tao Xiang‡

†Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
{csswguo,xujl,cezhang,chengxu}@comp.hkbu.edu.hk

‡College of Computer Science, Chongqing University, Chongqing, China
txiang@cqu.edu.cn

Abstract—With the explosive growth of online images and the
popularity of search engines, a great demand has arisen for
small and medium-sized enterprises to build and outsource large-
scale image retrieval systems to cloud platforms. While reducing
storage and retrieval burdens, enterprises are at risk of facing
untrusted cloud service providers. In this paper, we take the
first step in studying the problem of query authentication for
large-scale image retrieval. Due to the large size of image files,
the main challenges are to (i) design efficient authenticated data
structures (ADSs) and (ii) balance search, communication, and
verification complexities. To address these challenges, we propose
two novel ADSs, the Merkle randomized k-d tree and the Merkle
inverted index with cuckoo filters, to ensure the integrity of
query results in each step of image retrieval. For each ADS,
we develop corresponding search and verification algorithms on
the basis of a series of systemic design strategies. Furthermore,
we put together the ADSs and algorithms to design the final
authentication scheme for image retrieval, which we name
ImageProof. We also propose several optimization techniques to
improve the performance of the proposed ImageProof scheme.
Security analysis and extensive experiments are performed to
show the robustness and efficiency of ImageProof.

I. INTRODUCTION

Content-based image retrieval (CBIR) is a system for
searching for images with similar content from a large image
database [1]. Among the various existing CBIR schemes, scale
invariant feature transform (SIFT) is a widely used method
that detects and extracts an image’s local features, based on
which a nearest-neighbor indexing algorithm is enabled to
identify similar images [2]. SIFT and its variants have been
implemented in many CBIR systems because of their scale
and rotation invariant characteristics [3]–[5].

With the advances in data-as-a-service (DaaS) technology,
a small or medium-sized enterprise can build a cost-efficient,
large-scale SIFT-based image retrieval system on cloud plat-
forms such as Google Similar Images, Amazon Flow, and
Alibaba Image Search [6]. While this allows enterprises to
extricate themselves from heavy storage, computation, and
communication burdens, untrustworthy service providers bring
new security issues.

Existing works on secure image retrieval mainly focus on
the honest-but-curious model [7], [8]. In these systems, it is
assumed that the service provider (SP) is trusted to return gen-
uine search results. However, this assumption may not always
be held due to various reasons, including software/hardware

malfunctions, hack attacks, or even corporate dishonesty [9],
[10]. For example, as reported, in the Search for ExtraTerres-
trial Intelligence at Home (SETI@home) project, 1% of the
users have attempted to forge their contributions in order to
move up on the Web listings of top contributors [11], [12].
The search results cannot be trusted once the listings are
maliciously modified. As such, how to ensure the integrity of
search results for large-scale image retrieval remains a pressing
problem that needs to be addressed.

Query authentication techniques, which guarantee the in-
tegrity of search results for outsourced databases, are promis-
ing solutions to defend against an untrustworthy SP [13]–[19].
The basic idea is that the data owner builds a well-designed
authenticated data structure (ADS) and outsources it to the
SP, together with the original database. Upon receiving a query
request, the SP computes the results, as well as a cryptographic
proof, known as verification object (VO), on the basis of the
ADS. Both the search results and the VO are returned to the
client. Using the VO, the client can verify whether the received
search results are indeed genuine.

Although query authentication has been studied extensively,
no authentication techniques exist for large-scale image re-
trieval. The challenges are twofold. On the one hand, CBIR
is a large, complex system and designing a query authenti-
cation scheme for such a system is a big challenge in itself.
Particularly, a SIFT-based image retrieval method generally
requires two steps when searching for similar images: bag-
of-visual-words (BoVW) encoding and inverted index search.
Specifically, BoVW encoding transforms a query image into
a sparse BoVW vector, while an inverted index is used to
facilitate image search with such vectors. However, existing
query authentication schemes can only be applied to one
step of SIFT-based image retrieval. For example, the scheme
proposed in [15] can only support authenticated searches over
an inverted index. To the best of our knowledge, none of
the existing query authentication schemes can achieve both
authenticated BoVW encoding and inverted index search. On
the other hand, the client usually has only limited storage,
communication, and computation resources. Because of the
large size of image files, the client’s computation and commu-
nication costs would be prohibitively high if we only outsource
the inverted index search step and apply an existing technique
to this step. Outsourcing both steps of image retrieval and
designing a systematic authentication scheme for them would

be more desirable.
To address the above issues, in this paper, we propose a

robust and efficient query authentication scheme, named Im-
ageProof, for large-scale SIFT-based image retrieval with large
or medium-sized codebooks. Specifically, we develop two
novel ADSs for each step of image retrieval. The first ADS,
the Merkle randomized k-d tree, is designed for verifying the
integrity of BoVW encoding by integrating the randomized k-
d tree and the Merkle hash tree. The other one is the Merkle
inverted index with cuckoo filters that is designed to ensure the
integrity of the top-k image search step. To make the proposed
techniques more efficient, we compress the partial VO when
traversing the randomized k-d tree, employ a set membership
test during inverted index search, and carefully design the
image search and verification algorithms. Moreover, several
optimization techniques are proposed to further improve the
performance of our system.

To summarize, our contributions made in this paper are as
follows:
• To the best of our knowledge, this is the first attempt to

study query authentication for large-scale image retrieval.
As an initial exploration, we propose an efficient au-
thentication scheme, ImageProof, for SIFT-based image
retrieval with large or medium-sized codebooks.

• We propose two novel ADSs, the Merkle randomized k-d
tree and the Merkle inverted index with cuckoo filters, for
the proposed ImageProof scheme. We also systematically
design image search and verification algorithms to make
the scheme robust.

• We develop several optimization techniques to further
reduce the costs of both the SP and the client.

• We perform a security analysis and conduct experiments
to evaluate the query authentication performance under
various system settings.

The rest of this paper is organized as follows. Section II
introduces the SIFT-based image retrieval scheme and several
preliminaries. Section III gives a formal definition of the CBIR
authentication problem. Section IV presents the two proposed
ADSs, followed by a description of the overall ImageProof
scheme in Section V and the optimization techniques in
Section VI. Section VII shows the experimental results. The
related works are reviewed in Section VIII. Finally, Section IX
concludes the paper.

II. BACKGROUND AND PRELIMINARIES

In this section, we present some background knowledge and
preliminaries. Table I summarizes the symbols frequently used
in this paper.

A. SIFT-based Image Retrieval

We focus on searching for top-k similar images from an
image database. Generally, the search process of a SIFT-based
image retrieval method consists of two steps: BoVW encoding
and inverted index search [2]. In this paper, we employ a
commonly used technique, approximate k-means (AKM) [20],
for BoVW encoding. In the following, we formally define the
top-k image search problem and provide an overview of the
data structures and index search algorithms.

TABLE I
SUMMARY OF SYMBOLS

Symbol Description

Q Query image
I An image in the database
wci Weight of cluster ci
pci Impact value of the first posting of Merkle inverted list

BQ (BI) BoVW vector of Q (I)
fI,ci Frequency of cluster ci in BI

S(Q, I) Similarity between Q and I
pQ (pI) Impact value vector of Q (I)
{Itopi}ki=1 Top-k similar images

sk Similarity between Q and the k-th similar image

In SIFT-based image retrieval, an image is represented by
a set of feature vectors extracted from the image. A large
number of clusters, also known as codebook or vocabulary, are
pre-trained on the basis of the feature vectors of the images
in the database. Given an image, AKM is used to find the
approximate nearest cluster for each feature vector of the
image. By counting the frequency of these approximate nearest
clusters, a sparse BoVW vector is obtained for the image, in
which the i-th value represents the number of feature vectors
that are approximately nearest to the i-th cluster. Let Q be the
query image, I be an image in the database, and BQ, BI be the
BoVW vectors of Q, I respectively. The similarity between Q
and I is defined by the similarity between their BoVW vectors
BQ, BI .

Similarity Measure. Before formally defining the similarity
measure, we first present some notations:
• wci , the weight of a pre-trained cluster ci;
• nC , the number of clusters in the database;
• nD, the number of images in the database;
• nD,ci , the number of images that have at least one feature

vector approximating to cluster ci;
• fI,ci , the frequency of cluster ci in BI ;
• pI,ci , the impact of ci on I;

and we define
wci = ln

nD
nD,ci

,

pI,ci =
wci · fI,ci
||BI ||

,
(1)

where ||BI || is the L2-norm of BI [21].
The similarity between Q and I , S(Q, I), is defined on the

basis of the cosine distance, i.e.,

S(Q, I) =

nC∑
i=1

pQ,ci · pI,ci . (2)

Because the BoVW vector is sparse, most impact values of
pQ,ci would be zero. As such, the similarity between Q and
I can be simplified as

S(Q, I) =
∑

pQ,ci 6=0

pQ,ci · pI,ci . (3)

Definition 1. (Top-k Image Search) Given a query image Q,
find k most similar images {Itopi}ki=1 such that, for ∀i ∈ [1, k]
and each image I /∈ {Itopi}ki=1 in the database,

S(Q, Itopi) ≥ S(Q, I). (4)

Approximate k-Means. Approximate k-means (AKM), a

computationally efficient variation of the original k-means
algorithm, is used for efficient BoVW encoding in SIFT-based
image retrieval [20]. Given a feature vector, instead of finding
the exact nearest cluster among a huge number of pre-trained
clusters, AKM uses the randomized k-d trees to obtain an
approximate nearest cluster.

More specifically, a set of randomized k-d trees are first con-
structed over the pre-trained clusters. In contrast to a regular
k-d tree, at each level of the index tree, a randomized k-d tree
chooses the split dimension randomly from the dimensions
with the largest variances. When processing a given feature
vector, all the trees are traversed until leaf nodes are reached,
on the basis of a global priority queue that maintains the
distances of the feature vector to each indexed subspace.
The search is terminated after a pre-defined number of tree
traversals is reached, and the nearest cluster obtained so far is
returned as the result.

Inverted Index. The inverted index in SIFT-based image
retrieval is used for efficient similarity evaluation over BoVW
vectors [21]. It consists of two major components: clusters and
their corresponding inverted lists. An inverted list contains all
the images that have at least one feature vector with this cluster
ci as the nearest cluster. It is represented by a sequence of
〈I, value〉 postings, where I is an image identifier and value
is the corresponding weight. In this paper, we focus on the
widely used impact-ordered inverted index [15], [22], in which
the weight is the impact value pI,ci of the corresponding image
and the postings are sorted in descending order.

B. Cryptographic Primitives and Preliminaries
Digital Signature. A digital signature scheme is designed

for verifying the authenticity and integrity of messages. It
typically consists of three algorithms: (i) a key generation
algorithm that outputs the private key and a corresponding
public key, (ii) a signing algorithm that, given a message
and a private key, computes a signature, and (iii) a verifying
algorithm that takes the message, signature, and public key as
input and outputs either acceptance or rejection.

Merkle Hash Tree. A cryptographic hash function, denoted
by h(·), takes an arbitrary-length string as input and outputs
a fixed-length bit string. It is a one-way function that is
collision resistant (i.e., finding two messages which have the
same hash value is computationally hard). A Merkle hash
tree (MH-tree) is an authenticated binary tree, enabling users
to verify individual data objects without retrieving the entire
database [23]. A simple example of an MH-tree is shown in
Fig. 1. Each leaf node in the MHtree stores the digest of an
object, computed using a cryptographic hash function h(·).
Each internal node stores a digest computed on the concate-
nation of the digests of its children, e.g., hN2 = h(hN4 |hN5)
and hN7

= h(h(o7)|h(o8)). The root hash is signed for
verification. To authenticate the integrity of object o6, one
only needs to verify the root hash reconstructed from o6, its
sibling’s hash h(o5), and the adjacent hashes hN7

, hN2
on the

leaf-to-root path.
Cuckoo Filter. A cuckoo filter is a data structure sup-

porting approximate set membership tests [24]. Specifically,
a cuckoo filter is a compact variant of a cuckoo hash table
that uses a small f -bit fingerprint to represent data. The filter

N1

N2 N3

N4 N5 N6 N7

o1 o2 o3 o4 o5 o6 o7 o8

= h(h()|h())hN7
o7 o8

= h(|)hN2
hN4

hN5

= h(|)hN1
hN2

hN3

si = sign(sk,)gmht hN1

Fig. 1. An example of a Merkle hash tree.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Fig. 2. A cuckoo filter, two hash values per item and four slots per bucket.

is implemented as an array of buckets associated with two
hash functions, h1(·) and h2(·), which determine two alternate
buckets of an input item. Fig. 2 illustrates an example of
inserting x into a hash table of 7 buckets, where the hashes
of x are 2 and 6. If either of these two buckets is free, x’s
fingerprint fpx is inserted into that bucket. Otherwise, the filter
would recursively kick existing data to their alternate buckets
until space is found or attempts are exhausted. A bucket can
have multiple slots. Fig. 2 also shows a cuckoo hash table
of 7 buckets, where each bucket has 4 slots. To look up an
item, we check both buckets to see whether either contains
the fingerprint of the item. If no matching fingerprint is found,
the item is definitely not in the filter. If a matching fingerprint
is found, the item might be in the filter. False positives occur
when a matching fingerprint of another item is stored in either
of the two buckets.

Compared with traditional Bloom filters, cuckoo filters have
three major advantages [24]: (1) supporting dynamic deletions;
(2) achieving a better lookup performance; and (3) consuming
less space when the target false positive rate (FPR) is less
than 3%.

III. PROBLEM DEFINITION

System Overview. As illustrated in Fig. 3, our system
consists of three parties: (i) image owner, (ii) service provider
(SP), and (iii) client. During system setup, the image owner
first extracts the feature vectors from the images using an
existing feature extraction method and builds an authenticated
data structure (ADS). Then, the image owner outsources the
image dataset and its ADS to the SP. Later, when receiving
a query request containing a set of feature vectors extracted
from the query image, the SP executes BoVW encoding and
searches the top-k similar images according to Definition 1.
Furthermore, the SP constructs a verification object (VO) for
the search results on the basis of the ADS and returns both
the results and the VO to the client.

Threat Model. We now define the potential threats of
the outsourced image database. In this paper, we assume a
malicious threat model in which the SP could return incorrect
search results (e.g., faked or low-ranked images). To protect
the client from receiving wrong image results, the client can
use the VO returned by the SP to verify the integrity of

Image Owner Client

Service Provider

Similar images & VO

Database

ADS

Fig. 3. Architecture of the proposed authenticated image retrieval system.

the results. More specifically, the results should satisfy the
following security properties:
• Soundness: The results must be the images which are

outsourced from the image owner and have not been
tampered with.

• Completeness: The results include the k most similar
images, i.e., the similarity values of the other images are
smaller than those of the returned images.

Thus, the problem here is how to design the ADS so
that efficient query processing and result verification can be
supported. In what follows, we will propose two novel ADSs,
together with the corresponding index search and verification
algorithms. Note that the accuracy of our authenticated SIFT-
based image search algorithms is the same as that of the
original algorithms. In addition, our proposed ADSs and
algorithms can be extended to work with other SIFT-based
methods that improve the accuracy of image search, such
as [25].

IV. AUTHENTICATED RANDOMIZED K-D TREE AND
INVERTED INDEX WITH CUCKOO FILTERS

In this section, we propose two ADSs, namely the Merkle
randomized k-d tree and the Merkle inverted index with
cuckoo filters. They are used to achieve authenticated BoVW
encoding and inverted index search, respectively.

A. Merkle Randomized k-d Tree

1) Data Structure: The first step of SIFT-based image
retrieval is BoVW encoding, which is done by the AKM
algorithm, as discussed in Section II. In order to authenticate
this step, we propose the Merkle randomized k-d tree (MRKD-
tree), which is an integration of the MH-tree [23] and the
randomized k-d tree built on top of the pre-trained feature
clusters.

The MRKD-tree consists of two types of nodes, internal
nodes and leaf nodes. An internal node has three components,
i.e., the splitting hyperplane, the pointers pointing to its child
nodes, and a digest. The first two components are the same as
in the randomized k-d tree. The digest is defined as follows.

Definition 2. (Digest of Internal Node) Let lNi be the
splitting hyperplane of an internal node Ni of the MRKD-
tree, and ‘|’ be the string concatenation operator. The digest
of Ni is defined as

hNi = h(lNi |hN li |hNri), (5)
where hN li (hNri) is the digest of the left (right) child of Ni.

l1

l2 l3

l4 l5 l6 l7

o1 o2 o3 o4 o5 o6 o7 o8

c3

c4

c2
c1 c5

c6

c7

c8

l1

l2

l5

l3

l4 l6

l7

q1

q2

= { , }, = h(|)o8 c8 hΓc8
ho8 c8 hΓc8

[, [[,],]]l1 h2 l3 l6 hΓc5
hΓc6

h7

= h(| |)h1 l1 h2 h3

= h(| |)h7 l7 ho7 ho8

The V for , :OC q1 q2Fig. 4. An example of the MRKD-tree and VO generation for query q1, q2.

In contrast, a leaf node records a certain number of feature
clusters, the digests of the clusters’ inverted lists (detailed in
the next section), and a digest about the leaf node itself.

Definition 3. (Digest of Leaf Node) Let τ be the number of
feature clusters in a leaf node Nf . Each cluster ci is associated
with a digest of the corresponding Merkle inverted list hΓci
(to be detailed in Section IV-B). The digest of Nf is defined
as

hNf = h(c1|hΓc1
| · · · |cτ |hΓcτ

). (6)

Note that the digests of Merkle inverted lists are included in
leaf nodes in order to connect the MRKD-tree with the ADS
proposed for authenticated inverted index search.

MRKD-tree Example. Fig. 4 shows an example of an
MRKD-tree. The tree first chooses l1 to divide the plane into
two subspaces. Then, the tree repeats the splitting operation
until each leaf node contains only one cluster. After that,
we can build the MRKD-tree through the following steps: (i)
generate the digests of leaf nodes, e.g., ho8 = h(c8|hΓc8

); (ii)
compute the digests of internal nodes in a bottom-up fashion,
e.g., h7 is computed as h(l7|ho7 |ho8).

2) Authenticated Query Processing: The query of
the MRKD-tree takes a set of feature vectors Q =
{q1, q2, · · · , qnQ} and their corresponding thresholds T
= {t1, t2, · · · , tnQ}. For each feature vector qi, we want to
find the leaf nodes whose (minimum) distances to qi are
shorter than ti and output the feature clusters in those leaf
nodes.

Query Processing and VO Generation. We propose a
new algorithm, called MRKDSearch, for authenticated query
processing over the MRKD-tree. The main principle is that we
generate a single VO for all feature vectors by maximizing the
use of shared tree nodes.

Algorithm 1 describes the query processing and VO gener-
ation process. It takes the feature vectors Q, the thresholds T ,
and the root node as input. C and V OC are initialized as ∅. The
algorithm recursively traverses the MRKD-tree for all feature
vectors in one go. If an internal node has a distance longer than
ti for some qi, the subtree is opened for further exploration
Otherwise, if there exists no qi whose distance is longer than
ti, the subtree can be pruned and the node’s digest is inserted
into V OC . Fig. 4 shows an example of MRKDSearch with
two feature vectors q1 and q2. Suppose that the query results
are c5, c6 for q1 and c6 for q2. The VO contains the digests
of all traversed nodes (marked in grey). Note that the digests
of h1 and h7 are shared for the queries of q1 and q2.

Verification. After receiving C and V OC , the client needs
to run the following two subtasks to verify the integrity of
the search results: (i) reconstruct and verify the correctness of
the digest of root node, (ii) check whether all valid clusters

Algorithm 1: MRKDSearch: Searching clusters and gener-
ating verification object.

Input : Feature vectors Q, thresholds T , node N
Output: C, V OC

1 if q = ∅ then
2 Append hN to V OC ;
3 return
4 if N is a leaf node then
5 Add the clusters in N to C;
6 Append the clusters’ digests {hΓci

} to V OC ;
7 return
8 Append lN to V OC ;
9 Initialize ql, qr, tl, tr as ∅;

10 foreach qi in q do
11 if dist(qi, N) ≤ ti then
12 Add qi, ti to ql, tl if dist(qi, N l) ≤ ti;
13 Add qi, ti to qr , tr if dist(qi, Nr) ≤ ti;
14 // N l, Nr, left and right children of N

15 MRKDSearch(ql, tl, N l);
16 MRKDSearch(qr, tr, Nr);
17 return

are contained in C. Again, take Fig. 4 as an example. The
client can reconstruct the digest of the root node h1 from the
VO for q1, q2. After verifying the correctness of the digest
of the MRKD-tree, the client can check whether the distances
between q1 (resp. q2) and leaf nodes o5, o6 (resp. o6) are
shorter than the given thresholds while the distances between
q1, q2 and the internal nodes denoted by l7 and l2 are longer.

3) Complexity Analysis: For a query image with nQ fea-
ture vectors, the VO size of the proposed MRKDSearch is
O (nQ(log nC − log nQ)) in the worst case and log nC in the
best case (all feature vectors have the same result). Without
sharing nodes, the total VO size would be O(nQ log nC) in
both the worst and best cases. Obviously, the VO size of the
proposed MRKDSearch is smaller than the scheme without
sharing nodes and the benefit will increase with nQ.

The verification process consists of verifying the soundness
and completeness of the randomized k-d tree search. The time
complexity of the verification is O(nQ log nC). Compared
with the scheme without sharing nodes, the space complexity
of the proposed scheme is reduced from O(nQ log nc) to
O (nQ(log nc − log nQ)).

B. Merkle Inverted Index with Cuckoo Filters

1) Data Structure: The second step of SIFT-based image
retrieval is inverted index search, and we use the impact-
ordered inverted index as the basic data structure. To guarantee
the query integrity of this step, we propose the Merkle inverted
index with cuckoo filters.

Each Merkle inverted list Γci in the proposed Merkle
inverted index consists of five components, i.e., associated
cluster ci, cluster weight wci , posting list Pci , cuckoo filter
Θci , and digest hΓci

. Each posting in Pci is a tuple of image
id, impact value, and its digest. The first two elements are the
same as in the postings of the original impact-ordered inverted
index. The digest of a posting is defined as follows.

Definition 4. (Digest of Posting) Let posci,j be a posting
in Pci . The first two elements of posci,j are I and pI,ci . The

digest of posci,j is defined as
hposci,j = h(I|pI,ci |hposci,j+1

), (7)
where hposci,j+1 is the digest of the next posting.

The cuckoo filter of Γci is initialized by inserting all the
image ids contained in Pci . The usage of the cuckoo filter
will be introduced later in this section. After the cuckoo filer
is built, we define the digest of Γci as follows.

Definition 5. (Digest of Inverted List) Let hposci,1 be the
digest of the first posting, wci be the weight of ci, and Θci be
the initialized cuckoo filter. The digest of Γci is defined as:

hΓci
= h(wci |h(Θci)|hposc1,1). (8)

Note that, as discussed earlier in Section IV-A, this digest
will be embedded in the MRKD-tree.

Example. Table II shows an example of the Merkle posting
lists Γc5 and Γc6 . The weights of c5 and c6 are 2

√
2 and

√
2,

respectively. The digest of each posting is computed according
to Definition 4, e.g., hpos5,1 = h(0.1|0.35|hpos5,2).

2) Authenticated Query Processing: The inverted index
search takes BoVW vector BQ and parameter k as input, and
finds the top-k most similar images. We are interested in the
posting lists where pQ,ci 6= 0, as similar images can only be
found from those lists.

Let ΓQ = {Γci}pQ,ci 6=0, PQ = {Pci}pQ,ci 6=0, and sk be
the similarity score between Q and the k-th most similar
image Itopk . To achieve authenticated inverted index search,
the SP should prove to the client that except for {Itopi}ki=1,
all other images in PQ have similarity scores smaller than
sk. Instead of returning all postings in PQ, Pang et al. [15]
developed a search algorithm that pops and returns part of
the postings to prove the integrity of query results. With the
help of cuckoo filters, we here propose an improved algorithm,
called InvSearch, which aims to ensure the integrity of top-k
search with fewer postings.

We start by defining some notations:

• P ci : the list of postings that have been popped;
• P̃ci : the list of remaining postings, Pci = P ci + P̃ci ;
• P I : the set of popped posting lists where I appears;
• SL(Q, I) (resp. SU (Q, I)): lower (resp. upper) bound of

similarity between Q and I;
• π: maximal similarity score of the images in {P̃ci};
• πU : upper bound of π.

To ensure the correctness of inverted index search, the
similarity scores should satisfy the following termination con-
ditions:

1. sLk ≥ πU , where sLk is the lower bound of sk;
2. sLk ≥ SU (Q, I), for each I ∈ {P ci} but /∈ {Itopi}ki=1.

The termination conditions mean that the similarities between
Q and {Itopi}ki=1 should be higher than those of the images
not yet popped (Condition 1) or popped (Condition 2).

It is easy to compute a lower bound of S(Q, I) by aggre-
gating all similarity scores from P I , i.e.,

SL(Q, I) =
∑
ci∈P I

pQ,ci · pI,ci . (9)

TABLE II
AN EXAMPLE OF THE MERKLE INVERTED INDEX AND THE PROCEDURE OF PostingSearch FOR A TOP-2 SEARCH.

ci hΓci
wci Θi Posting Lists

c5 h(2
√

2|h(Θc5)|hpos5,1) 2
√

2 Θc5 7→ 〈1, 0.34, hpos5,1〉 〈3, 0.26, hpos5,2〉 〈4, 0.25, hpos5,3〉 〈10, 0.17, hpos5,4〉 〈7, 0.11, hpos5,5〉 〈2, 0.09, hpos5,6〉 ...
c6 h(

√
2|h(Θc6)|hpos6,1)

√
2 Θc6 7→ 〈5, 0.41, hpos6,1〉 〈8, 0.32, hpos6,2〉 〈3, 0.28, hpos6,3〉 〈6, 0.25, hpos6,4〉 〈4, 0.10, hpos6,5〉 〈9, 0.07, hpos6,6〉 ...

Step Popped Postings Description
1 〈1, 0.34, hpos5,1〉 〈3, 0.26, hpos5,2〉 top-2 images

〈5, 0.41, hpos6,1〉 〈8, 0.32, hpos6,2〉 〈3, 0.28, hpos6,3〉
2 〈4, 0.25, hpos5,3〉 Condition 1
3 〈6, 0.25, hpos6,4〉 〈4, 0.1, hpos6,5〉 Condition 2

A simple way to obtain SU and πU is to use their maximal
upper bounds, i.e.,
Smax(Q, I) =

∑
ci∈PQ

max(pQ,ci · pci , pQ,ci · pI,ci),

πmax =
∑
ci∈PQ

pQ,ci · pci ,
(10)

where pci is the highest impact value of the postings in P̃ci
and pI,ci = 0 if I does not appear in Pci .

The algorithm developed in [15] used the above maximal
bounds to terminate a search. However, because Smax and
πmax are maximal, the SP has to examine a huge number
of postings to meet the termination conditions. It remains a
challenge to tighten the upper bounds of S(Q, I) and π.

The implicit assumption of Equation (10) is that every
posting list in PQ contains I . However, the probability that
a posting list contains I is small because of the sparseness
of BoVW vectors. Actually, determining whether I is in a
posting list is a set membership problem. On the basis of this
observation, we propose to use cuckoo filters to obtain tighter
upper bounds of S(Q, I) and π .

Taking advantage of the cuckoo filter, we can estimate
whether an image I is in a posting list with a high probability.
Thus, it is easy to obtain the set of posting lists {P̃ci} that
contains I with a high probability. Denote this set as P̃I . Then,
the upper bound of S(Q, I) can be estimated as follows:

SU (Q, I) =
∑
ci∈P̃I

max(pQ,ci · pci , pQ,ci · pI,ci). (11)

Let γ be an upper bound of the frequency of the most
frequent image in {P̃ci}. Further denote by P̃maxγ the set
of top-γ posting lists that have the largest values of pQ,ci ·pci .
The upper bound of π can be estimated as follows:

πU =
∑

ci∈P̃maxγ

pQ,ci · pci . (12)

Given a set of cuckoo filters {Θ}, γ can be computed by
scanning the buckets of all filters. As detailed in Algorithm 2,
the algorithm goes through every bucket of all the filters
and keeps track of the highest frequency of the fingerprints,
maxfp. Finally, the algorithm returns the double of maxfp,
since each image has two alternate buckets.

Lemma 1. Let π be the maximum similarity score of the
images not yet popped and πU be the value computed using
Equation (12). We must have π ≤ πU .

Proof Sketch. We first prove that γ is an upper bound of the
frequency of the most frequent image in {P̃ci}. Let If be the

Algorithm 2: MaxCount: Computing an upper bound of the
frequency of the most frequent image in P̃ .

Input : Filter set {Θci}
1 maxfp ← 0 for each bucket i do
2 max′fp ←the count of most frequent fingerprint in the

i-th buckets of all cuckoo filters in {Θci};
3 if maxfp < max′fp then
4 maxfp ← max′fp
5 γ ←2·maxfp;
6 return γ

most frequent image with fingerprint fp. The fingerprint and
hash buckets of I are the same for all the cuckoo filters. As
such, the frequency of If is equal to or less than the frequency
of fp in the two alternate buckets of all cuckoo filters and
further bounded by γ.

Let I ′ be the image with the similarity score π. Then
π =

∑
ci∈PQ

pQ,ci · pI′,ci ≤
∑

ci∈P̃max|I′|

pQ,ci · pci (13)

where |I ′| is the frequency of I ′ in {P̃ci}. Since max|I′| ≤
max|If | ≤ γ, we have

π ≤
∑

ci∈P̃max|I′|

pQ,ci · pci ≤
∑

ci∈P̃maxγ

pQ,ci · pci = πU . (14)

Query Processing and VO Generation. Algorithm 3
outlines the algorithm to search the postings to meet the
termination conditions. Theoretically, to prove the integrity
of query results, the SP has to examine enough postings
containing the top-k images {Itopi}ki=1. On the basis of this
observation, we first pop up all postings containing {Itopi}ki=1

and their preceding postings (Line 1). The search algorithm
then proceeds to pop up the relevant postings until the termi-
nation conditions are met.

Example. Table II illustrates the top-2 search procedure for
the query Q = {q1, q2} in Fig. 4. The BoVW vector of
Q is (0,0,0,0,1,1,0,0) and pQ,c5 = 2, pQ,c6 = 1. The top-2
most similar images are 1 and 3. The PostingSearch algorithm
executes as follows: (1) pop up the postings containing 1 and 3
and their preceding postings; (2) check Condition 1, compute
γ (assuming γ = 2), and pop up pos5,3 so that Condition 1 is
met; (3) check Condition 2 and pop up pos6,4 and pos6,5 to
make sure that image 4 has a similarity score smaller than 1
and 3. Assume that we know from the cuckoo filter Θc5 that
images 5, 8, and 6 do not appear in Γc5 . Thus, it is guaranteed
that they have a lower similarity, even without popping up
additional postings.

Algorithm 3: PostingSearch: Searching through impact-
ordered inverted index.

Input : BoVW vector BQ, posting lists P
1 Examine the posting lists and pop up the postings containing

the top-k images;
2 UpdateBounds;
3 while Condition 1 fails do
4 Pop up the postings until Condition 1 is met;
5 UpdateBounds;
6 while Condition 2 fails do
7 for each image I∗ whose SU (Q, I∗) > sk do
8 Pop up the postings until the ones containing I∗;
9 UpdateBounds;

10 return {Itopi}ki=1, {P ci};
11 Function UpdateBounds is
12 Delete the popped images from their cuckoo filters;
13 foreach popped image I do
14 calculate or update SL(Q, I) and SU (Q, I);
15 γ ← MaxCount({Θci}pci 6=0);
16 π ←

∑
ci∈Pmaxγ

pQ,ci · pci ;

Algorithm 4: InvSearch: Searching and generating VO
through impact-ordered inverted index.

Input : BoVW vector BQ, Merkle posting lists ΓQ

1 {Itopi}ki=1, {P ci} ← PostingSearch(BQ, P);
2 foreach Γci ∈ ΓQ do
3 Add wci to V Oinv;
4 foreach P ci ∈ {P ci} do
5 foreach pos ∈ P ci do
6 Add pos.I , pos.pi,ci to V Oinv

7 if P̃ci is empty then
8 Add hΘci

to V Oinv;
9 else

10 Add the digest of the first posting in P̃ci to V Oinv;
11 Add Θci to V Oinv;
12 return {Itopi}ki=1 and V Oinv

With the PostingSearch algorithm and the Merkle inverted
index, we now present the InvSearch algorithm to perform a
top-k search and generate the VO. Algorithm 4 describes the
proposed algorithm. The SP first runs Algorithm 3 and obtains
{Itopi}ki=1 and P ci (Line 1). Then, the information needed to
reconstruct the digest of each posting list is added to the VO
(Lines 3-6). If all postings in a posting list are popped, the
SP would return the digest of the cuckoo filter; otherwise the
SP returns the cuckoo filter as part of the VO (Line 7-11).
Note that, to prove the integrity of posting search, the SP also
fetches the digest of the next posting of each posting list and
adds it to the VO (Line 10). Finally, the SP returns {Itopi}ki=1

and V Oinv to the client.
In the above example, the V Oinv of Q includes wc5 , wc6 ,

filters Θc5 ,Θc6 , image ids 4, 5, 8, and 6 and their impact
values, and the digests of the postings pos5,4, pos6,6.

Verification. After receiving {Itopi}ki=1 and V Oinv , the
client first reconstructs and verifies the digests of each posting
list. If verified, the client proceeds to check the popped images.
The upper bound πU and the upper and lower bounds of
the similarity score for each image will be computed. After
that, the client checks whether the termination conditions are
satisfied. The top-k images are verified as valid if all the above

procedures are passed.
In our example, the client can reconstruct hΓc5

from wc5 ,
Θc5 , and the corresponding posting information. After deleting
the received images from the corresponding filters, the client
can compute γ and πU . Through computing the upper bounds
of the received images, the client knows that 1 and 3 are indeed
the top-2 similar images.

3) Complexity Analysis: There is no theoretical upper
bound of the communication and computation costs of the
proposed InvSearch algorithm. The proportion of the popped
postings depends on the distribution of the inverted lists and
parameter k. Ideally, the termination conditions are satisfied
once the postings containing the top-k images are popped.
In this case, the VO size is minimal. In the worst case, all
postings in the relevant inverted lists have to be returned to
prove the integrity of search results.

For the verification process, the client only needs to verify
the correctness of the termination conditions via performing a
series of hash operations, including reconstructing the digests
of the relevant posting lists and deleting and looking up images
from the cuckoo filters. Two hash operations are required for
each deletion and lookup operation with the cuckoo filters, and
the total number of these operations depends on the number
of popped images.

V. IMAGEPROOF: AUTHENTICATED IMAGE RETRIEVAL

In this section, we present the overall ImageProof scheme.
It uses the ADSs developed in the last section to support
authenticated large-scale SIFT-based image retrieval.

A. ADS Generation

Given an image database, the image owner first signs each
image with a signature of the image id I and its raw data
imgI . Formally, the signature of an image I is

sigI = sign(sk, h(I|h(imgI))), (15)
where sk is the image owner’s private key. Next, the image
owner invokes the same index building procedures as those
in a normal SIFT-based image retrieval system. During this
step, feature vectors are extracted from raw image data, which
are then used to train the feature clusters. After that, a forest
of randomized k-d trees is built upon the trained clusters to
facilitate BoVW encoding, and the impact-ordered inverted
index is built on the basis of the encoded BoVW vectors,
as discussed in Section II. Finally, the image owner applies
the algorithms proposed in Section IV to generate the ADSs
for the randomized k-d trees and inverted index: (i) for each
posting list in the inverted index, the digests with cuckoo filters
are generated; (ii) the MRKD-trees are constructed on the basis
of the randomized k-d trees; (iii) the hash of the digests of
the root nodes, as the digest of ImageProof, is generated and
signed using the image owner’s private key. With the generated
ADSs, the image owner outsources the image database along
with the indexes and ADSs to the SP. The image owner’s
public key and the database’s signature are published to the
clients. Fig. 5 gives an overview of the ADSs employed in our
ImageProof scheme.

1

c00 c01 c0nc
c10 c11 c1nc

... ...

...

c 0nt
c 1nt

cntnc
...

Γc2
Γc1

Γc3

...
ΓcnC

MRKDtrees

Merkle Inverted Lists

 ... BoVW Vector

2 nt

sign(sk, h(| |⋯ |))hRoot1
hRoot2

hRootnt

Fig. 5. An overview of ADSs for ImageProof.

Algorithm 5: Top-k Image Search: Searching similar im-
ages and generating VO.

Input : Feature vectors Q, search parameter k
1 Search across the randomized k-d trees and compute

threshold ti for each qi;
2 for each MRDK-tree Ti do
3 V OC,i, Ci ← MRKDSearch(Q, ti, RootTi);
4 BQ ← Count the frequency of the approximate nearest

clusters;
5 {Itopi}ki=1, V Oinv ←InvSearch(BQ,ΓQ);
6 Fetch signatures {signi}ki=1 of {Itopi}ki=1;
7 V O ←

{
{V OC,i}nti=1,

⋃nt
i=1 Ci, {sigtopi}ki=1

}
;

8 return {Itopi}ki=1 and V O

B. Authenticated Query Processing

Upon receiving the search parameter k and a set of feature
vectors Q = {q1, q2, · · · , qnQ} from the client, the SP finds
the top-k most similar images and computes the VO using
the indexes and ADSs outsourced by the image owner. More
specifically, the SP first searches the approximate nearest
neighbors and finds the auxiliary threshold for each feature
vector. Then, the SP uses Algorithm 1 to compute {V OC,i}nti=1
for the BoVW encoding, where nt is the number of MRKD-
trees. After that, the SP encodes the BoVW BQ, and next
runs Algorithm 4 to search the top-k images and generate
V Oinv for the inverted index search. Finally, the SP combines
{V OC,i}nti=1,

⋃nt
i=1 Ci, V Oinv , and the corresponding image

signatures as the final VO, and sends it, together with the top-
k results, to the client. The overall query processing algorithm
is summarized in Algorithm 5.

Example. We now present the complete authenticated query
processing for the query Q = q1, q2 in Fig. 4. The SP
first obtains the V OC and cluster candidates c5, c6 by
executing Algorithm 1. The BoVW vector of Q is en-
coded as (0,0,0,0,1,1,0,0). Then, the SP runs Algorithm 4
to search the top-2 similar images 1 and 3 and gener-
ate V Oinv . The final VO of the whole query is V O =
{V OC , {c5, c6}, V Oinv, {sig1, sig3}}, where sig1 and sig3

are the signatures of images 1 and 3, respectively.

C. Result Verification

After receiving the top-k image results and the VO, the
client verifies the integrity of the image retrieval as follows: (i)
check the correctness of the termination conditions and com-
pute the digests of the posting lists; (ii) verify the integrity of

BoVW encoding; (iii) verify the integrity of the MRKD-trees;
(iv) verify the integrity of raw image data. The verification
procedure of Q in the above example is an integration of
the verification procedures in sections IV-A and IV-B. The
client first reconstructs the digests of Γc5 ,Γc6 and the digest
of ImageProof. Then, the client checks whether the digest of
MRKD-trees is valid against the published signature. Finally,
the client also needs to verify the signatures of sig1, sig3.

D. Security Analysis

Theorem 1. Our proposed authenticated image retrieval
scheme, ImageProof, satisfies the security properties defined
in Section III.

Proof Sketch. We classify the possible attacks into three cases:
1) the SP forges a BoVW vector B′Q, which is different

from the genuine BoVW vector BQ;
2) the SP computes BQ honestly but forges a top-k image

set {I ′topi}
k
i=1, which is different from the genuine image

set {Itopi}ki=1;
3) the SP computes BQ, {Itopi}ki=1 honestly, but returns

fake image data.
For case 3), due to the cryptographic digital signature scheme,
the SP (any probabilistic polynomial-time adversary) cannot
forge a legal signature with a non-negligible probability which
satisfies sign(sk, h(I, imgI)) = sign(sk, h(I ′, imgI′)),
where I 6= I ′. Therefore, the case 3) attack cannot succeed.
For case 1), in order to forge a legal B′Q, the SP has to tamper
with some nodes of the MRKD-trees. In this case, due to the
collision resistance property of the hash function, the digest
of the MRKD-trees would be different from the original one.
Thus, this attack would fail when the client verifies the digest
against the signature of the MRKD-trees. For case 2), similar
to case 1), the SP has to tamper with some cuckoo filters or
postings of the Merkle inverted index in order to generate a
legal top-k image set. Thus, the digests of the corresponding
posting lists would deviate from the original ones and, hence,
could not pass the verification.

VI. OPTIMIZATIONS

This section proposes two optimization techniques that
further improve the performance of ImageProof.

A. Compressing Nearest Neighbor Candidates

Recall that in Algorithm 5, a set of clusters are generated
for each feature vector as part of the VO by searching the
MRKD-trees. To verify the integrity of BoVW encoding, the
client needs to check the correctness of the nearest neighbor
among all the candidates.

Inspired by [17], instead of returning each cluster in full
dimensions, we return some partial dimensions of a cluster
which are enough to prove whether the cluster is the nearest
neighbor among all candidates. Let cqi be the nearest cluster
of qi among all candidates. To prove that dist(qi, ci) ≥
dist(qi, cqi) for another candidate ci, the SP only needs to
return part of ci, c′i, such that dist(qi, c′i) ≥ dist(qi, cqi). We
use an MH-tree to guarantee the integrity of c′i and the digest
of the MH-tree is embedded into the MRKD-trees.

In practice, the clusters generated for different feature
vectors may overlap. To further reduce the communication
complexity, we leverage a sharing strategy to generate cluster
candidates. Assume that ci is a nearest cluster candidate for
both qi and qj . The SP returns part of ci, c′i, such that
dist(qi, c

′
i) > dist(qi, cqi), dist(qj , c′i) > dist(qj , cqj).

With this optimization, because the SP has to find c′ and
the client needs to reconstruct the digest of the MH-tree,
the computational cost would increase. There is a trade-off
between the computation and communication costs.

B. Frequency-Grouped Inverted Index
Instead of using an ordinary impact-ordered inverted index,

the second optimization proposes to use a frequency-grouped
inverted index as the underlying structure to improve the per-
formance of ImageProof. Here, the frequency-grouped inverted
index is a special kind of impacted-ordered inverted index,
which groups the images with the same frequency count into
one posting. The new posting consists of two components,
i.e., the frequency count and a list of image ids with the
L2-norm values of their corresponding BoVW vectors. The
list is ordered in ascending order of the L2-norm values.
The impact value of the posting is set to that of the first
image, which is also the largest impact value of all images
in the list. The frequency-grouped inverted list is sorted in
descending order of the impact values of the postings. The
usage of frequency-grouped inverted index is motivated by the
following observations. First, in a typical inverted list, most
frequency counts are small [26] and images with the same
frequency count can be combined into a prefix component.
Second, the L2-norm value of an image’s BoVW vector are
constant, which means they can be shared in multiple posting
lists.

Data Structure. Taking advantage of the frequency-
grouped inverted index introduced above, we propose a new
ADS, the frequency-grouped Merkle inverted index with
cuckoo filters.

Similar to the impact-ordered Merkle inverted index, each
frequency-grouped Merkle inverted list Γfci in the proposed
data structure consists of five components, i.e., associated
cluster ci, cluster weight wci , cuckoo filter Θci , posting list
P fci , and digest hΓfci

. Each posting in P fci is a tuple of
frequency, a list of image ids with the L2-norm values of their
corresponding BoVW vectors, and its digest. The digest of a
posting is defined as follows.

Definition 6. (Digest of Posting) Let lBIi be the L2-norm
value of the BoVW vector of Ii, pos

f
ci,j

be a posting in P fci ,
and (I1, lBI1 ; · · · ; Ing , lBIng) be the list of images and their

corresponding L2-norm values. The digest of posfci,j is defined
as:

hposfci,j
= h(I1|lBI1 | · · · |Ing |lBIng |hposfci,j+1

). (16)

Each Merkle inverted list Γfci is also associated with a
cuckoo filter, Θci , which is initialized with all image ids in P fci .
With the cuckoo filer, we define the digest of Γfci as follows.

Definition 7. (Digest of Inverted List) Let hposfci,1
be the

digest of the first posting in P fci , wci be the weight of ci, and

TABLE III
AN EXAMPLE OF THE POSTING LIST OF A FREQUENCY-GROUPED MERKLE

INVERTED INDEX.

Component Value

ci c5
h

Γ
f
ci

h(2
√

2|h(Θc5)|hf
pos5,1)

wci 2
√

2
Θci Θc5

Posting List

〈4, (1, 33.3; 10, 66.6), h
pos

f
5,1
〉

〈5, (3, 54.4), h
pos

f
5,2
〉

〈3, (4, 33.9; 7, 77.1; 2, 94.3), h
pos

f
5,3
〉

· · ·

Θci be the initialized cuckoo filter. The digest of Γfci is defined
as

hΓfci
= h(wci |h(Θci)|hposfci,1

). (17)

Example. Table III shows an example of the frequency-
grouped version Γfc5 of Γc5 in Table II. Γfc5 consists of
c5, wc5 , Θc5 , hΓfc5

, and the posting list, among which c5,
wc5 , and Θc5 are the same as in Γc5 . We show the first
three postings, and they are sorted in descending order of
their impact values. For example, posf5,1 stores (i) frequency
4 count, (ii) image ids 1 and 10 and their respective L2-
norm values 33.3 and 66.6, and (iii) the digest of posf5,1,
hfpos5,1 = h(4|1|33.3|10|66.6|hposf5,2).

The communication cost can be further reduced by using
the compaction and compression techniques, such as compact
representation of frequency counts and d-gaps [26], [27]. The
compact representation of frequency counts is mainly based
on the observation that the counts are usually small and can
be more efficiently encoded [26]. In Γfci , d-gaps can sort the
images in each posting (expect the first image) in document-
order and take the differences between consecutive values for
compression.

VII. EXPERIMENTS

In this section, we experimentally evaluate the performance
of the proposed ADSs and query processing techniques.

A. Experimental Setup

For performance evaluation, we use the MirFlickr1M
dataset [28], which consists of one million images collected
from Flickr. Two feature descriptors are involved, i.e., SIFT
and speeded up robust features (SURF) [3]. A SIFT (resp.
SURF) feature vector is a 128 (resp. 64) -dimensional vector,
and about 800 (resp. 700) million feature vectors are extracted
from the dataset, from which feature clusters are trained.

In the experiments, we use the recommended parameters
for AKM [29]. The number of randomized k-d trees, nt, is
8, and each leaf node has two clusters at most. The AKM
search stops after exploring 32 leaf nodes. Following [24],
the capacity of the cuckoo filters is set to 60% of the maximal
length of the posting lists and the fingerprint size is 8 bits. The
experimental results are obtained on the basis of an average
of 10 randomly selected query images. Because the number of
feature vectors varies with different images, we generate query
feature vectors by choosing the first certain number of feature
vectors extracted from the query image. The default settings

400 600 800 1000
Feature Vectors

0.00

0.25

0.50

0.75

1.00

1.25
S

P
 C

P
U

 T
im

e
(s

)
Without Sharing
MRKDSearch
Optimized

400 600 800 1000
Feature Vectors

0

2

4

6

C
lie
nt
 C
P
U
 T
im
e
(s
) Without Sharing

MRKDSearch
Optimized

400 600 800 1000
Feature Vectors

0

5

10

15

V
O
 S
iz
e
(M

B
)

Without Sharing
MRKDSearch
Optimized

Fig. 6. BoVW performance as the number of SIFT feature vectors in a query
increases.

400 600 800 1000
Feature Vectors

0.00

0.25

0.50

0.75

1.00

1.25

S
P

 C
P

U
 T

im
e

(s
)

Without Sharing
MRKDSearch
Optimized

400 600 800 1000
Feature Vectors

0

2

4

6

C
lie
nt
 C
P
U
 T
im
e
(s
) Without Sharing

MRKDSearch
Optimized

400 600 800 1000
Feature Vectors

0

2

4

6

8

10

V
O

 S
iz

e
(M

B
)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

Without Sharing
MRKDSearch
Optimized
Ratio

Fig. 7. BoVW performance as the number of SURF feature vectors in a query
increases.

in the experiments are 10 (k), 1 million (codebook size), 0.5
million (dataset size), and 500 (the number of feature vectors
in a query). We run our experiments on CentOS with Xeon
2.2 GHz E5-2630 v4 CPU and 256 GB RAM. Further, we
choose SHA3-256 as the cryptographic hash function.

Three query authentication schemes are tested in our exper-
iments.
• Baseline: The scheme that just combines the proposed

MRKDSearch without sharing nodes and the scheme
in [15]. Instead of checking the termination conditions for
each popped posting, we execute the checking operations
after popping up a certain number of postings to improve
the efficiency of [15].

• ImageProof: The scheme proposed in Section V.
• Optimized: The ImageProof scheme optimized with the

techniques presented in Section VI.

B. BoVW Encoding Evaluation

In this set of experiments, we focus on the BoVW encoding
step and evaluate the performance of the three schemes by
varying the number of feature vectors in a query and the size
of the codebook (i.e., trained clusters).

1) Varying # Feature Vectors: Figs. 6 and 7 show the
performance of the three schemes as the number of feature
vectors in a query increases. In general, the two proposed
schemes, MRKDSearch and its optimization, perform better
than the baseline scheme. The performance gap increases as
the number of feature vectors increases.

While MRKDSearch achieves the best performance in terms
of computation cost for both the SP and the client, its opti-
mization has the best performance in terms of communication
cost. The reason is that in the optimization, both the SP
and the client need to do more computation in order to
obtain a smaller sized feature vector. It is a trade-off between
the communication and computation cost. Because SIFT and
SURF exhibit similar performance trends, we use the SURF
descriptor in the following experiments.

2) Varying Codebook Size: Fig. 8 shows the results of
BoVW encoding as the codebook size increases. With an
increase in the codebook size from 0.25 to 1 million, the height
of the MRKD-trees only increases by one or two. Thus, the
query and verification costs are almost the same, while the

0.4 0.6 0.8 1.0
Codebook Size (Million)

0.0

0.2

0.4

0.6

0.8

1.0

S
P
 C
P
U
 T
im
e
(s
)

Without Sharing
MRKDSearch
Optimized

0.4 0.6 0.8 1.0
Codebook Size (Million)

0

1

2

3

4

5

C
lie

nt
 C
P
U
 T
im
e
(s
)

Without Sharing
MRKDSearch
Optimized

0.4 0.6 0.8 1.0
Codebook Size (Million)

0

2

4

6

8

V
O
 S
iz
e
(M

B
)

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

Ratio

Without Sharing
MRKDSearch
Optimized

Fig. 8. BoVW performance as the codebook size increases.

400 600 800 1000
Feature Vectors

0

200

400

600

S
P
 C
P
U
 T
im
e
(s
)

Pang, et al. [15]
InvSearch
Optimized

400 600 800 1000
Feature Vectors

0.0

2.5

5.0

7.5

10.0

12.5

C
lie

nt
 C

P
U

 T
im

e
(s

) Pang, et al. [15]
InvSearch
Optimized

400 600 800 1000
Feature Vectors

50

60

70

80

90

100

P
er
ce
nt
ag

e
(%

)

Pang, et al. [15]
InvSearch
Optimized

Fig. 9. Inverted index performance as the number of feature vectors increases.

VO size increases slightly. The performance of the proposed
schemes is insensitive to the codebook size.

3) Ratio of Shared Nodes: In Figs. 7 and 8, we also plot the
average ratio of the shared nodes against all traversed nodes.
From Fig. 7, we can observe that the average ratio decreases
slightly as the number of feature vectors increases. Fig. 8
shows that the average ratio is stable for different codebook
sizes. The results indicate that the average ratio varies between
0.4 to 0.5, which justifies the motivation for sharing MRKD-
tree nodes during BoVW encoding.

C. Inverted Index Evaluation
We now study the performance of the authenticated inverted

index schemes under different settings, including the number
of feature vectors in a query, the codebook size, and the
parameter k. We report the SP CPU time, the client CPU time,
and the percentage of popped postings.

1) Varying # Feature Vectors: Fig. 9 plots the results of the
three authenticated inverted index schemes as the number of
feature vectors in a query increases. The scheme proposed in
[15] takes hundreds of seconds to process a query. Because
of the loose upper bounds, its search cannot stop until almost
all postings are popped up. The proposed InvSearch and its
optimization can stop earlier and take less time in searching
for similar images.

2) Varying Codebook Size: Fig. 10 shows the impact of
codebook size. As the codebook size increases, the number of
posting lists increases and the average length of posting lists
decreases. Thus, the SP CPU time and the client CPU time
of all schemes decrease. While nearly all postings are popped
up in the baseline scheme, the popped postings in InvSearch
and its optimization generally decrease as the codebook size
increases.

3) Varying Parameter k: In Fig. 11, we show the impact of
k on the performance of the three schemes. Two observations
are made. First, as k increases, more postings will be returned
to prove the integrity of the search results. Thus, the percentage
of popped postings increases for both InvSearch and the op-
timized scheme. Second, while the optimized scheme reduces
the VO size and hence the client CPU time, it has a similar
SP CPU time to InvSearch. This is because the optimization
groups the images with the same frequency count in each
posting list of the inverted index, which does not affect the
termination conditions of the image search process.

0.4 0.6 0.8 1.0
Codebook Size (Million)

0

200

400

600
S
P
 C
P
U
 T
im
e
(s
)

Pang, et al. [15]
InvSearch
Optimized

0.4 0.6 0.8 1.0
Codebook Size (Million)

0

5

10

15

20

C
lie
nt
 C
P
U
 T
im
e
(s
) Pang, et al. [15]

InvSearch
Optimized

0.4 0.6 0.8 1.0
Codebook Size (Million)

50

60

70

80

90

100

P
er
ce

nt
ag

e
(%
)

Pang, et al. [15]
InvSearch
Optimized

Fig. 10. Inverted index performance as codebook size increases.

5 10 15 20
k

100

200

300

S
P
 C

P
U
 T
im

e
(s
)

Pang, et al. [15]
InvSearch
Optimized

5 10 15 20
k

0

2

4

6

8

10

C
lie
nt
 C
P
U
 T
im
e
(s
) Pang, et al. [15]

InvSearch
Optimized

5 10 15 20
k

50

60

70

80

90

100

P
er

ce
nt

ag
e

(%
)

Pang, et al. [15]
InvSearch
Optimized

Fig. 11. Inverted index performance as k increases.

D. Overall Evaluation
Finally, we present the overall performance of the complete

authenticated image retrieval schemes. We show the perfor-
mance advantages of each proposed optimization separately.
We denote the ImageProof scheme with the first optimization
of BoVW encoding as Optimized (BoVW), and that with
the second optimization of Merkle inverted index as well as
Optimized (Both).

1) Varying # Feature Vectors: Fig. 12 plots the results with
different numbers of feature vectors in a query. We can observe
that the communication and computation costs of all schemes
increase with the number of feature vectors. As expected,
Optimized (BoVW) reduces the VO size at the expense of the
client CPU time. The client CPU time of Optimized (Both) is
smaller than ImageProof. This is because in Optimized (Both),
the images with the same frequency count are grouped and,
hence, the time needed to reconstructing the digest of each
frequency-grouped posting list is reduced.

2) Varying Codebook Size: The effect of different codebook
sizes is shown in Fig. 13. The communication and computation
costs of all schemes decrease as the codebook size increases.
This is mainly due to the reduced number of images indexed
in each inverted list.

3) Varying Dataset Size: Fig. 14 shows the results as the
dataset size increases from 0.25 to 1 million. It is observed
that, consistent with the previous experiments, while Image-
Proof has an inferior client CPU time, its SP CPU time and
VO size are much lower than those of Baseline. Comparing the
two optimizations of ImageProof, Optimized (Both) achieves
a better performance in terms of both the client CPU time
and the VO size. Because of the compact representation of
frequency-grouped inverted index in Optimized (Both), this
performance advantage increases with the dataset size.

VIII. RELATED WORK

The key to achieving query authentication is to design
ADSs through integrating existing indexes with cryptographic
tools. According to different types of databases, we can clas-
sify existing query authentication schemes into two categories,
i.e., schemes for low-dimensional and schemes for high-
dimensional databases. In the following, we review the most
relevant research in each category.

Schemes for Low-dimensional Databases. Low-
dimensional databases include databases such as spatial

400 600 800 1000
Feature Vectors

0

200

400

600

S
P
 C
P
U
 T
im
e
(s
)

Baseline
ImageProof
Optimized (BoVW)
Optimized (Both)

400 600 800 1000
Feature Vectors

0

5

10

15

C
lie
nt
 C
P
U
 T
im
e
(s
) Baseline

ImageProof
Optimized (BoVW)
Optimized (Both)

400 600 800 1000
Feature Vectors

0

5

10

15

V
O

 S
iz

e
(M

B
)

Baseline
ImageProof
Optimized (BoVW)
Optimized (Both)

Fig. 12. Overall performance as the number of feature vectors increases.

0.4 0.6 0.8 1.0
Codebook Size (Million)

0

200

400

600

S
P
 C
P
U
 T
im
e
(s
)

Baseline
ImageProof
Optimized (BoVW)
Optimized (Both)

0.4 0.6 0.8 1.0
Codebook Size (Million)

0

5

10

15

20

25

C
lie
nt
 C
P
U
 T
im
e
(s
) Baseline

ImageProof
Optimized (BoVW)
Optimized (Both)

0.4 0.6 0.8 1.0
Codebook Size (Million)

0

5

10

15

20

V
O
 S
iz
e
(M

B
)

Baseline
ImageProof
Optimized (BoVW)
Optimized (Both)

Fig. 13. Overall performance as codebook size increases.

databases, key-value databases, and most relational databases.
The indexes for low-dimensional databases are B-tree, R-tree,
k-d tree, and so on. Combining these indexes with the
MH-tree, several authenticated indexes have been designed
for low-dimensional databases, including Merkle B-tree [22],
Merkle R-tree [18], and Merkle kd-tree [14], [30]. Taking the
advantage of the MH-tree, the SP only needs to return part
of the ADS as VO and then the client can verify the integrity
of query results with the VO which is much smaller than the
original index. More recent studies have extended these ADSs
to advanced applications [31], [32]. Because low-dimensional
index structures are inefficient for high-dimensional data, the
above query authentication schemes cannot be applied to
image databases directly.

Schemes for High-dimensional Databases. High-
dimensional databases include databases of documents,
images, etc. The indexes vary according to different search
systems and authentication schemes have been proposed
accordingly.

Papadopoulos et al. [17] proposed a general scheme for
high-dimensional database authentication on the basis of
a multi-step nearest neighbor framework and the MH-tree.
In [19], Papadopoulos et al. decomposed a d-dimensional
range query into d separate 1-dimensional queries and de-
signed a range query authentication scheme for arbitrary
dimensions. However, the above two schemes are not sufficient
for CBIR. In particular, for the scheme proposed in [17],
the communication cost would increase rapidly as the dataset
size increases; for the scheme developed in [19], the VO size
grows linearly with the number of dimensions, which make
it less impractical for images with hundreds or thousands of
dimensions.

Query authentication schemes have also been proposed for
document databases [15], [16], [33]. For example, Pang et
al. [15] proposed the first authenticated inverted index for
document search. They designed an ADS based on the in-
verted index and MH-tree, and proposed corresponding search
algorithms to reduce the communication complexity between
the SP and the client. Goodrich et al. [33] proposed an
authenticated web crawler for conjunctive keyword search.
Two cryptographic tools, i.e., the MH-tree and set accumulator,
are used to protect the integrity of inverted index search. More
recently, Sun et al. [10] and Wan et al. [16] proposed two
authentication schemes for conjunctive keyword search and

0.4 0.6 0.8 1.0
Dataset Size (Million)

0

100

200

300

400

500
S
P
 C
P
U
 T
im
e
(s
)

Baseline
ImageProof
Optimized (BoVW)
Optimized (Both)

0.4 0.6 0.8 1.0
Dataset Size (Million)

0

5

10

15

20

C
lie
nt
 C
P
U
 T
im
e
(s
) Baseline

ImageProof
Optimized (BoVW)
Optimized (Both)

0.4 0.6 0.8 1.0
Dataset Size (Million)

0

5

10

15

V
O
 S
iz
e
(M

B
)

Baseline
ImageProof
Optimized (BoVW)
Optimized (Both)

Fig. 14. Overall performance as dataset size increases.

top-k search on encrypted document databases, respectively.
However, the above authentication schemes for document

retrieval cannot be applied to SIFT-based image retrieval
for two reasons. First, these authentication schemes are just
for query authentication of inverted index search and cannot
handle authenticated BoVW encoding. Second, these schemes
still suffer from some drawbacks. For example, in [15], the
SP needs to update and check multiple termination conditions
during each step of a posting search. Such operations are
time-consuming and the cost would increase rapidly with
large posting lists. How to achieve query authentication while
maintaining the efficiency for large-scale image retrieval has
not been investigated in the literature.

IX. CONCLUSION

In this paper, we have studied the query authentication
problem for outsourced image databases. We have proposed a
new authenticated scheme, ImageProof, for large-scale SIFT-
based image retrieval with large or medium-sized codebooks.
The proposed scheme consists of two novel ADSs, the Merkle
randomized k-d tree and the Merkle inverted index with
cuckoo filters, to ensure the integrity of search results. We
have also proposed the corresponding search and verification
algorithms along with several optimization techniques to im-
prove the efficiency of query processing. Experimental results
demonstrate that the performance of the proposed ImageProof
outperforms the Baseline scheme. The proposed optimization
techniques are also capable of improving the efficiency of
ImageProof. For future work, we plan to study query authen-
tication problems for other popular image retrieval systems
such as convolutional neural network-based image retrieval.

ACKNOWLEDGEMENT

The authors are grateful to the anonymous reviewers for
their valuable comments and suggestions that improved the
quality of this paper. This work was supported by grants from
the HK-RGC under Project Nos. 12201018, 12244916, and
C1008-16G. Tao Xiang was supported by the National Natural
Science Foundation of China under grant No. 61672118.

REFERENCES

[1] L. Zheng, Y. Yang, and Q. Tian, “SIFT meets CNN: A decade survey
of instance retrieval,” TPAMI, vol. 40, no. 5, pp. 1224–1244, 2018.

[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” CVIU, vol. 110, no. 3, pp. 346–359, 2008.

[4] A. Dutta, R. Arandjelovic, and A. Zissermann, “VGG image search
engine (VISE),” http://www.robots.ox.ac.uk/ṽgg/software/vise/, 2016.

[5] H. Hu, Y. Wang, L. Yang, P. Komlev, L. Huang, J. Huang, Y. Wu,
M. Merchant, and A. Sacheti, “Web-scale responsive visual search at
bing,” in SIGKDD, 2018.

[6] Y. Jing, D. Liu, D. Kislyuk, A. Zhai, J. Xu, J. Donahue, and S. Tavel,
“Visual search at pinterest,” in SIGKDD, 2015, pp. 1889–1898.

[7] M. Li, M. Zhang, Q. Wang, S. S. Chow, M. Du, Y. Chen, and C. Li,
“InstantCryptoGram: Secure image retrieval service,” in INFOCOM,
2018.

[8] L. Weng, L. Amsaleg, A. Morton, and S. Marchand-Maillet, “A privacy-
preserving framework for large-scale content-based information re-
trieval,” TIFS, vol. 10, no. 1, pp. 152–167, 2015.

[9] C. Xu, Q. Chen, H. Hu, J. Xu, and X. Hei, “Authenticating aggregate
queries over set-valued data with confidentiality,” TKDE, vol. 30, no. 4,
pp. 630–644, 2018.

[10] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you lie to
me: Efficient verifiable conjunctive keyword search over large dynamic
encrypted cloud data,” in INFOCOM, 2015, pp. 2110–2118.

[11] L. Kahney, “Cheaters bow to peer pressure,” Wired Magazine, vol. 2,
2001.

[12] B. Zhang, B. Dong, and H. Wang, “Integrity authentication for sql query
evaluation on outsourced databases: A survey,” arXiv preprint, 2018.

[13] C. Xu, J. Xu, H. Hu, and M. H. Au, “When query authentication meets
fine-grained access control: A zero-knowledge approach,” in SIGMOD,
2018, pp. 147–162.

[14] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused streams:
Enabling authentication of sliding window queries on streams,” in VLDB,
2007, pp. 147–158.

[15] H. Pang and K. Mouratidis, “Authenticating the query results of text
search engines,” PVLDB, vol. 1, no. 1, pp. 126–137, 2008.

[16] Z. Wan and R. H. Deng, “VPSearch: Achieving verifiability for privacy-
preserving multi-keyword search over encrypted cloud data,” TDSC,
2017.

[17] S. Papadopoulos, L. Wang, Y. Yang, D. Papadias, and P. Karras,
“Authenticated multistep nearest neighbor search,” TKDE, vol. 23, no. 5,
pp. 641–654, 2011.

[18] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Authenticated
indexing for outsourced spatial databases,” VLDBJ, vol. 18, no. 3, pp.
631–648, 2009.

[19] D. Papadopoulos, S. Papadopoulos, and N. Triandopoulos, “Taking
authenticated range queries to arbitrary dimensions,” in CCS, 2014, pp.
819–830.

[20] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in CVPR,
2007, pp. 1–8.

[21] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in CVPR, vol. 2, 2006, pp. 2161–2168.

[22] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic authen-
ticated index structures for outsourced databases,” in SIGMOD, 2006,
pp. 121–132.

[23] R. C. Merkle, “A certified digital signature,” in CRYPTO, 1989, pp.
218–238.

[24] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in CoNEXT, 2014, pp.
75–88.

[25] L. Zheng, S. Wang, Z. Liu, and Q. Tian, “Fast image retrieval: Query
pruning and early termination,” TMM, vol. 17, no. 5, pp. 648–659, 2015.

[26] J. Zobel and A. Moffat, “Inverted files for text search engines,” CSUR,
vol. 38, no. 2, p. 6, 2006.

[27] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query
processing with optimized document ordering,” in WWW, 2009, pp. 401–
410.

[28] M. J. Huiskes, B. Thomee, and M. S. Lew, “New trends and ideas in
visual concept detection: the mir flickr retrieval evaluation initiative,” in
MIR, 2010, pp. 527–536.

[29] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in VISSAPP, 2009, pp. 331–340.

[30] K. Mouratidis, D. Sacharidis, and H. Pang, “Partially materialized digest
scheme: An efficient verification method for outsourced databases,”
VLDBJ, vol. 18, no. 1, pp. 363–381, 2009.

[31] D. Wu, B. Choi, J. Xu, and C. S. Jensen, “Authentication of moving top-
k spatial keyword queries,” TKDE, vol. 27, no. 4, pp. 922–935, 2015.

[32] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-based
services without compromising location privacy,” in SIGMOD, 2012,
pp. 301–312.

[33] M. T. Goodrich, C. Papamanthou, D. Nguyen, R. Tamassia, C. V. Lopes,
O. Ohrimenko, and N. Triandopoulos, “Efficient verification of web-
content searching through authenticated web crawlers,” PVLDB, vol. 5,
no. 10, pp. 920–931, 2012.

