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Abstract—Blockchain technology has attracted much attention
due to the great success of the cryptocurrencies. Owing to its
immutability property and consensus protocol, blockchain offers
a new solution for trusted storage and computation services.
To scale up the services, prior research has suggested a hybrid
storage architecture, where only small meta-data are stored on-
chain and the raw data are outsourced to off-chain storage. To
protect data integrity, a cryptographic proof can be constructed
online for queries over the data stored in the system. However, the
previous schemes only support simple key-value queries. In this
paper, we take the first step toward studying authenticated range
queries in the hybrid-storage blockchain. The key challenge lies
in how to design an authenticated data structure (ADS) that can
be efficiently maintained by the blockchain, in which a unique
gas cost model is employed. By analyzing the performance of the
existing techniques, we propose a novel ADS, called GEM2-tree,
which is not only gas-efficient but also effective in supporting
authenticated queries. To further reduce the ADS maintenance
cost without sacrificing much the query performance, we also
propose an optimized structure, GEM2∗-tree, by designing a
two-level index structure. Theoretical analysis and empirical
evaluation validate the performance of the proposed ADSs.

I. INTRODUCTION

Blockchain technology has been receiving unprecedented
attention thanks to its wide applications in various fields, such
as finance, healthcare, IoT, and supply chain management [1],
[2]. The blockchain is a secure data structure which can be
maintained by untrusted peers in a decentralized P2P network.
The integrity of the data stored in the blockchain is upheld
through two security designs: the hash-chain technique and
the consensus protocol [3]. They together ensure that the data
stored in the blockchain are immutable and that each peer in
the network stores the same replicas of the data.

The blockchain was originally invented to serve as a trans-
action ledger for the cryptocurrency Bitcoin [4]. More recently,
with the emergence of the second-generation blockchain repre-
sented by Ethereum [5], the technology has also been adopted
as a trusted storage solution for more general data, such as
text, documents, and images [6]. Since such general data
are usually large, storing raw data directly on-chain is not
scalable. To tackle this issue, a common approach is to employ
a hybrid storage architecture [7], [8]. As shown in Fig. 1,
the data owners (e.g., IoT devices) continuously send the data
to the blockchain for secure storage. The raw data is stored
off-chain on a dedicated storage server (e.g., Amazon S3 or
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Fig. 1. Authenticated Query Framework in Hybrid-Storage Blockchain

Google Cloud Storage). At the same time, a cryptographic
hash of each data object is kept on-chain as notarization of
the raw data. To ensure data integrity, on-chain hashes are
used to authenticate the data retrieved from the off-chain
storage. While this scheme works well for simple key-value
queries, range queries, another widely used query type, are not
supported.

In this paper, we take the first step toward studying authenti-
cated range queries in the hybrid-storage blockchain. Inspired
by authenticated query processing in outsourced databases [9],
an intuitive approach is to leverage the smart contract1 to
construct an authenticated data structure (ADS, e.g., Merkle
hash tree [10]) on top of the search keys in the blockchain.
Meanwhile, a similar ADS is maintained by the cloud service
provider. Based on the ADS, a verification object (VO) can be
generated for each query and returned along with the result.
Using the VO, the client is able to verify whether or not
the query result is both sound and complete. Here soundness
means that all of the answers satisfy the query condition and
truly originate from the data owners, and completeness means
that no valid answer is missing.

The major challenge of the above approach comes from
data updates. To keep track of the updates, the ADS needs
to be dynamically maintained by the smart contract. In a
smart contract-enabled blockchain like Ethereum, users need
to pay gas for storage and computation as the smart contract
execution costs miner’s resources. The amount of gas to pay
for different operations differs. Notably, the gas charged for a
smart contract write operation is several orders of magnitude

1The smart contract is a trusted program running on the top of the
blockchain, whose execution integrity is ensured by the consensus protocol
of the blockchain.



higher than that for a read operation (e.g., 20,000 vs. 200 in
Ethereum). Thus, if we simply maintain a full Merkle tree as
the ADS, the update cost would be prohibitively high. The
reason is threefold: (i) an insertion may incur a series of
updates in the leaf node to preserve the order of the data; (ii) an
insertion entails updating the hashes of all ancestor nodes;
(iii) an insertion may lead to recursive node splits, which
consume lots of storage and computation for the creation of
new nodes and redistribution of index keys. As such, we need
to design novel ADSs that allow efficient updates in terms of
the gas cost.

To this end, we propose a new ADS, called Gas-Efficient
Merkle Merge Tree (GEM2-tree), that can be efficiently main-
tained in the blockchain while being effective in supporting
authenticated range queries. The main idea of the GEM2-tree
is to trade writes for reads and computations. On the one
hand, we do not maintain a single full-tree structure in the
blockchain, but multiple partial trees that can be gracefully
merged with more objects inserted. This helps to reduce the
update costs, although more reads will be incurred for query
authentication. On the other hand, some internal nodes of the
GEM2-tree are suppressed and computed on the fly to maintain
the root hashes, which are needed for result verification. In
this way, update costs are reduced at the expense of more
computations. To further reduce the ADS maintenance cost, we
propose an optimized ADS, called GEM2∗-tree. This extends
the GEM2-tree with an upper-level index that splits the search
key domain into several non-overlapping subspaces.

To summarize, this paper’s contributions are as follows:
• For the first time in the literature, we study the prob-

lem of authenticated range queries in the hybrid-storage
blockchain.

• We propose a gas-efficient ADS, called GEM2-tree, that
can significantly reduce the storage and computation costs
of the smart contract.

• We develop an optimized ADS, GEM2∗-tree, which can
further reduce the maintenance cost without sacrificing
much the query performance.

• We conduct theoretical analysis and empirical evalua-
tion to validate the performance of the proposed ADSs.
Experimental results show that our proposed ADSs, in
comparison with the traditional methods, can reduce the
gas cost by a factor of up to 4 with little penalty on the
query performance.

The rest of the paper is organized as follows. Section II
introduces some preliminaries, followed by the problem for-
mulation in Section III. Section IV discusses the baseline
solutions. Our solution is presented in Section V, which is
then further optimized in Section VI. Section VII presents
the experimental results. Finally, Section VIII reviews related
studies, and the paper is concluded in Section IX.

II. PRELIMINARIES

In this section, we give some preliminaries that will be used
in the subsequent sections.
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Fig. 2. Merkle Hash Tree

A. Cryptography Primitives

Cryptographic Hash Function: A cryptographic hash
function h(·) maps an arbitrary-length message m to a fixed-
length message digest h(m). It has two important properties:
one-way and collision resistance. The one-way property indi-
cates that given a digest h(m), a PPT adversary can find the
original message m with a negligible probability. On the other
hand, collision resistance means that it is computationally
infeasible for a PPT adversary to find two different messages
m1 and m2 such that h(m1) = h(m2).

Merkle Hash Tree [10]: A Merkle Hash Tree (MHT) is a
data structure that can be used to authenticate a set of data
objects with logarithmic time complexity. It is widely used
in authenticated queries and also in the blockchain structure.
Fig. 2 shows an example of an MHT with eight data objects.
Generally, the MHT is a binary tree constructed bottom-up.
Each leaf node contains the hashes of the indexed objects.2

Each internal node contains a hash which is computed using
its two child nodes (e.g., h5 = h(h1||h2), where “||” denotes
string concatenation). Owing to the collision resistance prop-
erty of the hash function, the root hash (i.e., h7 in Fig. 2)
can be used to authenticate the data objects stored in the leaf
nodes. For example, if a range query Q = [10, 20] is asked, the
result is {13, 16}, and one can construct a proof consisting of
{4, 24, h6} (shaded part in Fig. 2). A verifier can reconstruct
the root hash using the result and proof, and further compare
it with the signed root hash, which is publicly available. If
they match, it means the result has not been tampered with.
Furthermore, the boundary objects 4 and 24 guarantee the
completeness of the result.

The MHT concept has been extended to various database
indexes to suit different query applications. The Merkle B-tree
(or MB-tree) [9] is one of such examples, which combines B-
tree and MHT to support authenticated queries for outsourced
relational databases. While the structure of MB-tree is based
on the traditional B-tree, like MHT, each index entry of MB-
tree is augmented with a corresponding hash. MB-tree can be
seen as a generalized MHT in which the fanout of the tree is
increased from binary to m-ary.

B. Blockchain and Smart Contract

A blockchain consists of a series of blocks chained by
cryptographic hash pointers (see Fig. 3). Each block stores
a list of transaction records and an MHT is built on top of

2In Fig. 2, for clarity, we simply use the search key value to denote the
hash of an object.
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TABLE I
ETHEREUM GAS COST (A FULL LIST IS AVAILABLE IN [5])

Operation Gas Used Explanation

Csload 200 load a word from storage
Csstore 20,000 store a word to storage
Csupdate 5,000 update a word to storage
Cmem 3 access a word in memory
Chash 30 + 6 · |words| hash an arbitrary-length data

the transaction records. The header of a block contains a
cryptographic hash of the previous block hprev , a timestamp
ts, an MHT root hash hroot, and a consensus-proof nonce that
is found by consensus peers (known as miners). To append a
new block to the blockchain, a miner needs to find a qualified
nonce and broadcast it to the entire network. In the Proof
of Work (PoW) consensus protocol [4], nonce should satisfy
h(ts|hprev|hroot|nonce) < D, where D is a small value used
to control the difficulty level of the mining process. Upon
receiving a new block, other miners verify the hashes and the
nonce and, once verified, add the new block to the blockchain.
The blockchain protocol ensures that each peer keeps the same
replicas of the data and the stored data are immutable.

A smart contract is a trusted program that allows users to
process data in the blockchain. The program is executed by
the miners and its correctness is guaranteed by the blockchain
consensus protocol. A deployed contract can be triggered by
the transactions recorded in the blockchain. During execution,
a transaction fee, denominated in gas, is charged as the
miners spend computational resources. Table I shows the fees
for some major storage and computation operations in the
Ethereum platform [5]. As can be seen, the operation of storing
data to the blockchain is more expensive than that of updating
data, which is itself more costly than reading data from the
blockchain and the in-memory operations. Furthermore, to
prevent a smart contract from wasting too many computation
resources of the miners, a gasLimit (e.g., 8,000,000 in [5]) is
introduced. If the total gas consumption exceeds the gasLimit,
the execution will be aborted. As such, it is of the utmost
importance to minimize the gas consumption.

III. PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, our system consists of four parties:
data owners (DO), a blockchain with smart contract function-
ality, a cloud service provider (SP), and query clients. The
blockchain itself and the SP are components of the hybrid-
storage blockchain. Each data object is modeled as a tuple
oi = 〈ki, vi〉, where ki is the value of the search key and
vi denotes the rest of the data object. During data insertions

or updates, the DO sends oi = 〈ki, vi〉 to the SP and sends
〈ki,h(vi)〉 to the blockchain. Note that as the blockchain is
used for query authentication, the hash value h(vi), rather than
vi itself, is stored in the blockchain. This can help reduce the
storage cost without compromising the guarantee of integrity.

To facilitate authenticated query processing and result verifi-
cation, an authenticated data structure (ADS) should be main-
tained by both the SP and the smart contract of the blockchain.
Upon receiving a data insertion or data update, the smart
contract is triggered to update the ADS in the blockchain.
Meanwhile, the ADS in the SP is updated accordingly. The
digest of the ADS becomes authenticated information that is
shared by both the SP and the smart contract.

In this paper, we mainly focus on range queries. The query
processing procedure is as follows. The client sends a query to
the SP, which uses the ADS to compute the query result as well
as a verification object (V Osp) that contains the information
for the client to verify the result. Both the query result and the
VO are returned to the client. During result verification, the
client first retrieves the authenticated digest (hereafter denoted
V Ochain) from the blockchain. Then, by combining the V Osp

from the SP and the V Ochain from the blockchain, the client
can verify the correctness of the returned result.

B. Threat Model

In our model, the DO, the blockchain, and the query client
are assumed to be trusted parties. The third-party SP is seen
as an untrusted party since it may modify, add, or delete
data intentionally or unintentionally [11]. Therefore, the SP
is required to prove the soundness and completeness of the
query result:
• Soundness. All of the answers in the result satisfy the

query criteria and are originated from the DO;
• Completeness. No valid answer is missing from the query

result.
The security notions will be formalized when we perform
security analysis in Section V-E.

With the above system model and threat model, the problem
we are going to study in this paper is how to design an ADS
that can be efficiently maintained by the smart contract, in
terms of the gas cost, while effectively supporting authenti-
cated range queries. In the following sections, we first present
two baseline solutions and then propose a novel gas-efficient
ADS.

IV. BASELINE SOLUTIONS

In this section, we present two baselines solutions, namely
Merkle B-tree (MB-tree) and Suppressed Merkle B-tree
(SMB-tree). The general idea is that the SP and the blockchain
both maintain a version of MB-tree to support authenticated
queries over the hybrid-storage blockchain.

A. Merkle B-tree (MB-tree)

As introduced in Section II, the MB-tree can be used to
authenticate range queries. Thus, intuitively, two identical MB-
trees can be constructed and maintained as ADS by the SP and



the smart contract of the blockchain, respectively, except that
the actual data objects are not stored in the blockchain. On
the SP side, whenever there is a query from the client, the SP
can traverse the MB-tree to construct a V Osp. For example in
Fig. 2, given a query Q = [10, 20], V Osp = {4, 24, h6}. For
result verification, the client first retrieves the authenticated
digest V Ochain = h7 from the blockchain. Then the MB-
tree root is reconstructed locally using the result {13, 16} and
V Osp. Since the MB-trees maintained by the blockchain and
the SP are identical, the client can establish the soundness of
the result by checking the reconstructed root hash against the
one retrieved from the blockchain (i.e., V Ochain).

We next analyze the maintenance cost of the MB-tree in
the blockchain. For the sake of simplicity, we consider the
case of inserting a single object. To optimize the gas cost,
we assume that the MB-tree’s node capacity is the same as
the granularity of blockchain data access. Suppose that the
fanout of the MB-tree is F and the current database size is
N . First, an object insertion requires finding the leaf node to
store the object, which consumes logF N · Csload gas. The
inserted object costs an additional Csstore gas. Second, an
object insertion demands hash updating of logF N ancestor
nodes, each one requiring F ·Csload +Chash +Csupdate gas.
Furthermore, in the worst case, an object insertion could result
in O(logF N) node splits to maintain balanced tree structure.
In each node split, a new node will be created along with the
key redistribution and the updating of the nodes’ hash values.
A node creation consumes 2Csstore gas for storage of the
node’s content and hash, whereas the rest of the operations
contribute to F ·Csload +Csupdate gas consumption. In total,
a single object will yield the following gas cost in the worst
case:

C insert
MB-tree = logF N

(
2Csstore + 2Csupdate

+ (2F + 1)Csload + Chash

)
+ Csstore

It can be observed that the cost increases logarithmically
with the database size N . It is also worth noting that among
all smart contract operations, Csstore and Csupdate are more
expensive than the others (see Table I).

B. Suppressed Merkle B-tree (SMB-tree)

The maintenance of the MB-tree in the blockchain would
incur a large amount of gas consumption due to the extensive
write operations (i.e., sstore and supdate). At the same
time, it can be observed that only the root hash V Ochain is
used during the query processing. Therefore, an alternative
solution is to suppress all nodes of the MB-tree and only
materialize the root node in the blockchain. We call this
structure the Suppressed Merkle B-tree (SMB-tree). During
each object insertion, the smart contract will compute all nodes
of the SMB-tree on the fly and only update the root hash to
the blockchain storage. Note that the MB-tree in the SP is
maintained in the same way but not suppressed.

Similar to the MB-tree, we analyze the gas cost for a

single object insertion. The first step of the smart contract
is to load all data into the memory from the blockchain
storage. This step incurs N ·Csload gas consumption. Next, the
loaded objects are sorted, which requires N logN ·Cmem gas.
Once the objects are sorted, the smart contract can compute
all the MB-tree hashes on the fly with N/F · Chash gas.
Finally, the inserted object and the updated root hash are
written into the blockchain storage, which incurs an additional
Csstore + Csupdate cost. In total, the SMB-tree involves the
following gas cost for each object insertion:

C insert
SMB-tree =N

(
Csload + logN · Cmem +

1

F
Chash

)
+ Csstore + Csupdate

Compared with the normal MB-tree, the SMB-tree yields
a gas cost in the complexity of O(N logN) with respect to
the database size. Nevertheless, because the read operation
(i.e., sload) and the in-memory operations (e.g., mem and
hash) are several orders of magnitude cheaper than the write
operations, the SMB-tree has the potential to reduce gas
consumption for a small to medium N . On the other hand,
CSMB-tree will surpass CMB-tree with a sufficiently large N .

C. ADS Design Principles

Based on the cost analysis of the baseline solutions, we
consider the following principles to design an optimized ADS
which is efficient in both maintenance and query authentica-
tion.
• Avoid maintaining long sorted lists. The insertion of an
N -length sorted list costs N/2 · Csupdate gas on average.
The high update cost will weaken the performance when
database size increases.

• Use more reads instead of writes. The write cost in the
blockchain is much higher than the read cost due to the
consensus protocol. Thus, for intermediate variables, we
may compute them in the memory and maintain only the
final computation result in the blockchain to reduce the
storage cost.

• Be adaptable to databases of different sizes. The database
size has an impact on the maintenance performance of an
ADS. An ideal ADS should be able to adapt itself to the
database size.

V. GAS-EFFICIENT MERKLE MERGE TREE

Following the above design principles, in this section we
propose a new ADS, called Gas-Efficient Merkle Merge Tree
(GEM2-tree). The GEM2-tree not only can be maintained by
the smart contract with optimized gas performance, but is also
capable to support authenticated queries efficiently.

A. GEM2-tree Structure

As discussed in Section IV, the MB-tree and SMB-tree are
efficient for large databases and small databases, respectively.
Thus, in the GEM2-tree, we maintain multiple separate struc-
tures: a large fully-structured MB-tree as the major index and a
series of small structure-suppressed SMB-trees to index newly
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Fig. 4. Overall Structure of GEM2-tree with Hybrid Storage

inserted objects. The benefit is twofold. On the one hand, a
new object can always be inserted into the smaller SMB-trees,
which is more gas-efficient. On the other hand, the objects
indexed by the SMB-trees can be merged into the MB-tree
in batch to optimize the update cost. The MB-tree structure
is the same as that introduced in Section IV-A except that it
is maintained by batched updates via merge operations (to be
detailed in Section V-B).

Regarding the structure-suppressed SMB-trees, recall that
the internal structure of an SMB-tree needs to be re-built for
each object insertion, in order to update the root hash. Thus,
to reduce the update cost, we organize the storage space into
a set of exponentially-sized partitions. For each partition, up
to two SMB-trees are maintained and they can be gracefully
merged with more insertions. Note that the partitions are
logical in the sense that they will dynamically change along
with merges. This design has several advantages. First, as
new object insertions can be directed to the smallest partition,
less data need to be read and computed during the root hash
update. Second, there is no need to physically re-arrange the
objects after they are written into the storage, which is critical
to save the gas cost. Third, this also significantly saves the
maintenance cost on the SP side as it does not need to re-
build the tree structure over the entire dataset for each object
insertion. Forth, this ensures that the total number of partitions
is O(logN), which will benefit the query processing.

Fig. 4 shows an example of the GEM2-tree, where the fully-
structured MB-tree is omitted for clarity. Besides key storage
and value storage,3 it consists of the following components:
(i) a set of SMB-trees, one or two for each partition; (ii) an
auxiliary partition index table (denoted as part table); and
(iii) a mapping between search key and storage location
(denoted as key map). The first two components are shared be-
tween the blockchain and the SP, while the last one is present
only in the blockchain. It is worth noting that the search keys
in the blockchain remain unsorted to reduce the gas cost; they
are essentially stored in the order of insertions. Also, while
the SMB-tree structures are suppressed in the blockchain,
they are fully materialized on the SP side to support efficient

3As explained in Section III, only the search keys and hashes of the objects
are stored in the blockchain. We do not distinguish objects and object hashes,
when the context is clear.

query processing. The purpose of the part table is to track
how the storage space is partitioned. For each partition, we
can maintain up to two SMB-trees (denoted as Tl and Tr,
respectively). The part table keeps the following information
for each SMB-tree in each partition: (i) the storage location
range (Loc) and (ii) the root hash (h). For example, in Fig. 4,
Tl in P1 corresponds to the objects stored in locations [1-8],
Tr in P1 is empty; in P3, Tl and Tr correspond to the objects
stored in locations [13-14] and [15-16], respectively. Here, the
root hash is slightly different from the normal MB-tree as we
also encode the key boundaries into it. For example, in Fig. 4,
the root hash for tree Tl in P1 is h7 = h(13||91||h(h5||h6)).
The extra boundary information can help the SP to prune the
entire tree during the query processing, and thus improve the
query performance. Finally, the key map maintains an index
of the storage location for each search key. It will be used
during the update, to be explained in the next section.

B. GEM2-tree Maintenance

There are three maintenance operations for the GEM2-tree:
(i) insertion; (ii) updating; (iii) deletion. The deletion operation
can be seen as updating the data object with a dummy one.
Therefore, we focus on the insertion and updating operations
only. For ease of illustration, we denote the partition for the
fully-structured MB-tree as P0 and the rest of partitions as
P1, P2, · · · , Pmax. Let M be the maximum size of the smallest
SMB-tree, i.e., the one in Pmax. The size of each partition is
thus b1 ·2max−1 ·M, · · · , bmax−2 ·4M, bmax−1 ·2M, bmax ·M ,
where bi is 1 or 2 depending on the number of SMB-trees
existing in Pi.

Insertion. Algorithm 1 describes the insertion procedure.
Whenever a new object arrives, it will be directed to the
partition Pmax. If the partition is not full (i.e., its size is
less than 2M ), the object will be simply inserted into the
current SMB-tree (lines 1–11). Otherwise, if the partition
is full, a new SMB-tree is created with the object and a
merge process is invoked to merge the two existing SMB-
trees into a bigger SMB-tree of size 2M , which will then
be assigned to the preceding partition Pmax−1 (lines 13–17).
If max − 1 is less than one, it means the corresponding
partition does not exist yet. Thus, we need to increment max
and create a new partition (line 14). The merge process is



Algorithm 1 GEM2-Tree Insert(key, value)
Input Search key key, Data value value

1: loc← key storage.length+ 1;
2: key map[key]← loc;
3: key storage[loc]← key;
4: value storage[key]← h(value);
5: if Pmax = null then
6: Pmax.LocTl ← [1,M ];
7: Pmax.LocTr ← [M + 1, 2M ];
8: if loc ∈ Pmax.LocTl then
9: Pmax.Tl ← BuildSMBTree(Pmax.LocTl);

10: else if loc ∈ Pmax.LocTr then
11: Pmax.Tr ← BuildSMBTree(Pmax.LocTr );
12: else
13: ret← Merge(Pmax);
14: if ret = true then max← max+ 1;
15: Pmax.LocTl ← [loc, loc+M − 1];
16: Pmax.LocTr ← [loc+M, loc+ 2M − 1];
17: Pmax.Tl ← BuildSMBTree(Pmax.LocTl);

Algorithm 2 GEM2-Tree Merge(Pi)
Input Partition Pi

Output Whether to increment max flag ret
1: if i = 1 then
2: if P1.length < Smax then
3: P1.LocTl ← P1.LocTl ∪ P1.LocTr ;
4: P1.Tl ← BuildSMBTree(P1.LocTl);
5: Empty P1.Tr; ret← true;
6: else
7: Bulk insert the data in P1 to P0;
8: Empty P1; ret← false;
9: else if Pi−1.Tr = null then

10: Pi−1.LocTr ← Pi.LocTl ∪ Pi.LocTr ;
11: Pi−1.Tr ← BuildSMBTree(Pi−1.LocTr );
12: Empty Pi; ret← false;
13: else
14: ret← Merge(i− 1);
15: if ret = true then
16: Pi.LocTl ← Pi.LocTl ∪ Pi.LocTr ;
17: Pi.Tl ← BuildSMBTree(Pi.LocTl);
18: Empty Pi.Tr; ret← true;
19: else
20: Pi−1.LocTl ← Pi.LocTl ∪ Pi.LocTr ;
21: Pi−1.Tl ← BuildSMBTree(Pi−1.LocTl);
22: Empty Pi; ret← false;
23: return ret;

detailed in Algorithm 2. It may take place recursively if the
current partition is full and needs to make room for the newly
merged SMB-tree. To avoid maintaining too many objects
in a single SMB-tree that incurs high maintenance cost as
discussed in Section IV-B, we set an upper bound, Smax, on
the SMB-tree size. If the size of each SMB-tree to be merged
exceeds Smax/2, instead of merging them, they will be bulk
inserted into the fully-structured MB-tree P0. This insertion
procedure is the same for the smart contract and the SP except
two differences: (i) instead of value, h(value) is stored in
the blockchain; (ii) the construction of the SMB-trees in the
smart contract, with internal nodes suppressed and key values
unsorted, is carried out on the fly.

Updating. In contrast to the insertion operation, the up-
dating operation replaces the value of an existing key with

Algorithm 3 GEM2-Tree Update(key, value)
Input Search key key, Update value value

1: value storage[key]← h(value);
2: loc← key map[key];
3: p← LocatePartition(loc,max);
4: if p = 0 then
5: Update MB-tree P0 using 〈key, value〉;
6: else
7: if loc ∈ Pp.LocTl then
8: Pp.Tl ← BuildSMBTree(Pp.LocTl);
9: else

10: Pp.Tr ← BuildSMBTree(Pp.LocTr );

Algorithm 4 LocatePartition(loc, max)
Input Storage location loc, # partitions max
Output Partition index p

1: p← max;
2: [max start,max end]← Pmax.LocTr ;
3: len← max end; cap← 2M ;
4: while p > 0 do
5: if len mod cap = 0 then . There are two SMB-trees
6: if loc ∈ [len− cap+ 1, len] then return p;
7: len← len− cap;
8: else . There is only one SMB-tree
9: if loc ∈ [len− cap/2 + 1, len] then return p;

10: len← len− cap/2;
11: p← p− 1; cap← 2 · cap;
12: return 0;

a new value. In this scenario, the GEM2-tree structure re-
mains unchanged. We only need to locate the corresponding
partition for the updated object and recompute the root hash
of the corresponding MB-tree or SMB-tree. The procedure
is described in Algorithm 3. Recall that a nice property of
the GEM2-tree is that the storage location of each search
key is fixed once it is stored in the blockchain, while the
(logical) partitions will dynamically change with subsequent
insertions and merges. Thus, we first find the storage location
of the search key by checking the key map (line 2). Then, we
invoke the function, LocatePartition, with the storage location
to identify the partition that contains the search key (line 3).
After that, the corresponding tree is updated (lines 4–10).

To implement the function LocatePartition, the simplest way
is to check the part table since it records the location range
of each partition. However, this method is gas-inefficient as
the whole table may need to be accessed in the worst case.
To reduce the gas cost, we propose a more efficient algorithm
that only needs to access the partition Pmax. As detailed in
Algorithm 4, after retrieving the location range of Pmax, we
search the partition from Pmax to P1 with respect to the
maximum capacity of each partition. Since not all partitions
contain two SMB-trees, we employ a mod operation to check
whether or not the current partition contains two SMB-trees.
If so, the mod result must be zero. For example, in Fig. 4,
suppose we want to identify the partition for location 9. The
initial space length is 16 and the maximum capacity of P3

is 4, by checking 16 mod 4 = 0, we know that P3 has two
SMB-trees and hence spans from location 13 to 16. So location
9 is not in P3. Next, the space length is reduced to 12 and
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Fig. 5. GEM2-tree in the SP after Insertion

Algorithm 5 Authenticated Query with GEM2-tree (by SP)
Input Query range Q, GEM2-tree T
Output Query result R, Verification object V Osp

1: (r0, vo0)←MBTreeRangeQuery(Q,P0.T );
2: Append r0 to R and vo0 to V Osp;
3: for each Pi in T .part table do
4: (ri.l, voi.l)←MBTreeRangeQuery(Q,Pi.Tl);
5: (ri.r, voi.r)←MBTreeRangeQuery(Q,Pi.Tr);
6: Append 〈ri.l, ri.r〉 to R, 〈voi.l, voi.r〉 to V Osp;
7: return 〈R, V Osp〉;

we proceed to check P2, whose maximum capacity is 8. By
checking 12 mod 8 6= 0, P2 has only a single SMB-tree and
thus spans from location 9 to 12. Hence, we can know that
location 9 is in P2. If the location is not found in any SMB-
tree partition, then we can conclude that it resides in the fully-
structured MB-tree P0.

Example. We use Fig. 4 and Fig. 5 as an example to
illustrate the maintenance of GEM2-tree. Suppose we want to
insert two new keys 10 and 89 into the GEM2-tree shown in
Fig. 4. First, for the key 10, we find that the smallest partition
P3 is full. Therefore, we create a new SMB-tree containing
the key 10. Meanwhile, we merge the two existing SMB-trees
of P3 into the preceding partition P2. Since P2’s right SMB-
tree Tr is empty, the merged tree will be put there and P2’s
location range is extended. Next, for the key 89, it will be
simply inserted into the SMB-tree in the new P3 since is not
full. As for data updates, suppose if the value of the key 26
is updated, we check the key map and invoke the function
LocatePartition to locate its partition P2. After that, the value
is updated and the corresponding root hash is updated by
reconstructing the SMB-tree with the updated value.

C. Authenticated Query Processing

In this section, we discuss how to process authenticated
queries over the hybrid-storage blockchain with our proposed
GEM2-tree. In the range query scenario, the client submits a
query range Q = [lb, ub]. In turn, the SP returns all the objects
lying in the range [lb, ub], together with the proof V Osp.
Since the GEM2-tree consists of one normal MB-tree and
multiple SMB-trees, with each of them perhaps contributing
to the query result, the SP is required to traverse all these
trees and process the range query on them individually. After
that, the SP combines the result objects and VO for each of
these trees to generate the final query result and V Osp. The

Algorithm 6 Result Verification with GEM2-tree (by Client)
Input Query range Q, Query result R, V Osp from the SP, V Ochain

form the blockchain
Output Whether the verification is passed

1: Verify V Ochain w.r.t. the blockchain;
2: for 〈ri, voi〉 in Q,R do
3: Ti ← MB-tree root from V Ochain w.r.t. 〈ri, voi〉;
4: stat← MBTreeVerify(ri, voi, Ti);
5: if stat = false then return false;
6: return true;

overall query processing procedure on the SP side is presented
in Algorithm 5. First, MBTreeRangeQuery is invoked for the
fully-structured MB-tree corresponding to the P0 partition
(lines 1–2). Then, it is invoked for both the left and right
SMB-trees of each remaining partition (lines 3–6).

The MBTreeRangeQuery procedure is similar to that of
the normal MB-tree range query. Here, we give a detailed
description of the process. First, the SP checks whether or not
the query range overlaps with the boundaries of the current tree
root. If there is no overlap, it means that the current tree does
not contribute to the query result. In this case, the tree root
hash, which encodes the boundary information, can be used
directly as the VO and the procedure is terminated. Otherwise
if they overlap, the range query can be executed as a breadth-
first search. Starting from the root node, if a non-leaf node
intersects the query range, it will be branched with its subtree
further explored; if a non-leaf node has no intersection with the
query range, its hash will be added as part of the VO. When a
leaf node is reached, the SP will check each underlying object.
The objects which fall inside the query range will be added
to the query result, while the hashes of the other objects will
be appended to the VO. Note that the boundary search keys
r−lb and r+ub, which are immediately outside the query range,
should also be included in the VO to prove the completeness.

On the client side, the verification process is composed of
two steps, namely retrieving V Ochain and result verification.
During the V Ochain retrieval, the client retrieves from the
blockchain the Merkle roots of all the trees in the GEM2-tree.
V Ochain can be verified by the client using the blockchain
consensus protocol with respect to the latest block. With the
verified V Ochain, the client can then execute MBTreeVerify
for each tree in the GEM2-tree to establish the soundness and
completeness of the query result. The procedure is similar to
that of the MB-tree. The client checks the V Osp for each tree
in two aspects:
• Soundness Check. The client reconstructs the tree’s root

hash using the query result R and the hashes of the sibling
leaf nodes and adjacent non-leaf nodes in V Osp. The check
is passed if the reconstructed root hash is identical to the
corresponding root hash obtained from V Pchain.

• Completeness Check. There are two cases. If the current
tree range does not intersect with the query range, the
client can ensure that there is no missing result by checking
the boundary information with respect to the query range.
Otherwise, the client can establish the completeness by
checking the boundary search keys r−lb and r+ub.



The algorithm for result verification is summarized in Algo-
rithm 6.

Example. Fig. 5 gives an example of authenticated query
processing with the GEM2-tree. Consider a range query
Q = [10, 15]. The SP traverses all the MB-tree and SMB-
trees. For partition P1, there is only one SMB-tree and
its key boundaries [13, 91] overlap the query range. The
result contains the object with key 13 and vo1.l consists of
{17, [13, 91], h2, h6}. For partition P2, the key boundaries of
the left tree Tl (i.e., [18, 43]) do not overlap the query range.
Therefore, the SP computes h(h8||h9), and vo2.l consists of
{[18, 43],h(h8||h9)}. The right tree Tr in P2 is traversed as the
key boundaries [4, 75] overlap the query range, which gener-
ates vo2.r = {4, 16, [4, 75], h12}. Finally for partition P3, the
object with key 10 will be returned as the result and {89} is
constructed as vo3.l. Combining everything together, the query
result R = {10, 13} and V Osp = {vo1.l, vo2.l, vo2, r, vo3.l}
are sent to the client. During the result verification, the client
first obtains the verified V Ochain = {h7, h10, h13, h14} from
the blockchain. Next, each tree root is reconstructed as the
following: h∗7 = h(13||91||h(h(h(13||17)||h2)||h6)), h∗10 =
h(18||43||h(h8||h9)), h∗13 = h(4||75||h(h(4||16)||h′12)), and
h∗14 = h(10||89||h(10||89)). With each of them verified
against V Ochain and boundary search keys checked against
the query range, both the soundness and completeness of the
query result can be established.

D. Comparing with Log-Structured Merge-tree

The Log-Structured Merge-tree (LSM-tree) is a data struc-
ture proposed to optimize the I/O cost in the write-dominant
environments [12]. Its modern variations [13] usually imple-
ment a multilevel structure, which also partitions the data
space in an exponential fashion. In this section, we highlight
the differences between our proposed GEM2-tree and the
LSM-tree and discuss why the LSM-tree would fail in our
problem.
• LSM-tree requires to maintain long sorted lists. The LSM-

tree requires the lists sorted at all levels, using a merge-sort
like algorithm. During its merge process, a newly sorted
list is created while the old lists are discarded. This would
be highly inefficient in the case of the smart contract as too
many writes will be incurred. In comparison, our GEM2-
tree avoids maintaining sorted lists. The data remains
unsorted in the blockchain storage, while the tree structures
are computed on the fly.

• LSM-tree nodes are materialized. As analyzed in Sec-
tion IV, materializing the tree nodes would incur high
overhead during updates.

• There is no upper bound of the number of levels in the
LSM-tree. With the size of the level enlarged exponentially,
the cost of merging two trees is increased proportionally.
This is undesirable since a merge operation in the LSM-
tree requires building a new fully sorted list and its
corresponding tree structure, which yields a complexity
of O(N). In contrast, our GEM2-tree will fall back to
a normal MB-tree with batched updates in O(logN)

complexity when the size of the largest partition exceeds
a certain threshold.

• The update operations of the LSM-tree and the GEM2-
tree are different. The update operation of the LSM-tree is
done by appending a new record with a duplicate key. The
outdated records are discarded only when the compaction
process is invoked. In contrast, the GEM2-tree employs
in-place update by locating the partition of the index and
updating the corresponding record directly, which is more
efficient.

E. Security Analysis
In this section, we perform a security analysis on our

proposed GEM2-tree and its associated query authentication
algorithm. We start by presenting a formal definition of our
security notion.

Definition 1 (Secure). The query authentication algorithm is
sound and complete if for all PPT adversaries, the probability
is negligible in the following experiment:
• an adversary A selects a dataset D;
• the authentication algorithm constructs the ADS and its

corresponding V Ochain based on D and sends them to A;
• A outputs a tuple of range query Q, result R, and V Osp.

The adversary A succeeds if V Osp passes the verification
with respect to V Ochain and satisfies the condition: {ri|ri 6∈
Q(D) ∧ ri ∈ R} 6= ∅ ∨ {rj |rj ∈ Q(D) ∧ rj /∈ R} 6= ∅.

The above definition states that a malicious SP could
convince the user of an incorrect or incomplete answer with at
most a negligible probability. We now show that our proposed
query authentication algorithm indeed satisfies the desired
security requirement.

Theorem 1. Our proposed authenticated query algorithm
based on the GEM2-tree is secure if the underlying hash
function is collision resistant.

Proof. We prove this theorem by contradiction.
Case 1: {ri|ri 6∈ Q(D) ∧ ri ∈ R} 6= ∅. This means that

there is an object in R which is not originated from D. Since
the client will reconstruct the hash root of the MB-tree/SMB-
tree in which ri lies and compare it against the hash root in
V Ochain, such a tampered result means that there exist two
MB-trees/SMB-trees with different objects but the same hash
root. This implies a successful collision of the underlying hash
function, which leads to a contradiction to our assumption.

Case 2: {rj |rj ∈ Q(D) ∧ rj /∈ R} 6= ∅. This means that
there is a valid answer missing from R. Since the client will
verify the completeness with the boundary information of the
entire tree or the boundary search keys which are adjacent
to the query range for each subtree of the GEM2-tree. A
missing answer will inevitably lead to a hash collision for
some MB-tree/SMB-tree. Then we arrive at a contradiction to
the assumption.

F. Cost Analysis
In this section, we perform a cost analysis for both the

GEM2-tree maintenance and authenticated query processing.



We assume that the database size N is larger than 2Smax.
This means that the fully-structured MB-tree always exists in
P0. It is also trivial to see that Smax = 2maxM in this case.

ADS Maintenance Cost. First, we analyze the GEM2-tree
insertion cost. Let PMerge(i) be the probability of invoking the
merge operation over the partition Pi. We have PMerge(max) =
1/(2M) and PMerge(i) = PMerge(i + 1)/2. Further, we can
derive that PMerge(1), the probability of the largest SMB-tree
partition P1 being inserted to the fully-structured MB-tree, is
1/(2maxM). Applying the cost analysis of the MB-tree/SMB-
tree in Section IV, we can obtain the average cost of the
GEM2-tree insertion operation is:

C insert
GEM2-tree =C insert

SMB-tree(M) + PMerge(1)
(
C insert

MB-tree(N − 2Smax)Smax

−Cbshare(Smax)
)
+

max∑
i=2

PMerge(i) · C insert
SMB-tree(2

max−i+1M)

≈C1 logF (N − 2max+1M) + C2 ·max2

+ C3 ·max+ C4

where C1 = 2Csstore + 2Csupdate + (2F + 1)Cssload + Chash

C2 = log 2 · Cmem/2 C3 = Cssload + Chash/F

C4 = 2Csstore +MCssload + (1− 2 logF 2maxM)Cupdate

Here, the Cbshare is the cost saved by the bulk insertion of the
largest SMB-trees, which can be approximated by logF Smax.
It can be observed that the insertion complexity C insert

GEM2-tree
is

O(logN) with respect to the database size. Compared with the
normal MB-tree, our GEM2-tree is able to trade some portion
of the overhead of the MB-tree maintenance with that of the
SMB-tree, which leads to a better performance.

Next, we analyze the cost of the update operation. Let
PUpdate(i) be the probability of updating an object lying in
partition Pi. Assuming that data updates take place uniformly
throughout the whole space, we can get PUpdate(i) = 2iM/N
for i ∈ [1,max] and PUpdate(0) = (N−2Smax)/N . Moreover,
it is easy to see that the update cost of the MB-tree and SMB-
tree is as follows:

Cupdate
MB-tree = logF N(Csupdate + (F + 1)Csload + Chash) + Csupdate

Cupdate
SMB-tree =N

(
Csload + logN · Cmem +

1

F
Chash

)
+ Csupdate

Thus, the average cost of the GEM2-tree update operation is:

Cupdate
GEM2-tree

=PUpdate(0) · Cupdate
MB-tree(N − 2Smax)

+

max∑
i=1

PUpdate(i) · Cupdate
SMB-tree(2

iM)

≈ 1

N

(
C5 logF (N − 2max+1M)(N − 2max+1M)

+ Csupdate(N − 2max+1M) + C62
2max+2max

+ C72
2max+2 + C82

max+1
)

where C5 = Csupdate + (F + 1)Cssload + Chash

C6 = log 2·M2Cmem/3

C7 = M2(Cssload + Chash/F )/3 C8 = MCsupdate
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Fig. 6. Overall Structure of the GEM2∗-tree

Similar to the insertion, the update cost is in the complexity
of O(logN).

Query Processing Cost. The cost of processing a query
over a single MB-tree of size N is Cquery · logF N , where
Cquery is a constant denoting the query cost of a single node.
Since the SP has to traverse all of subtrees inside the GEM2-
tree, whose sizes are N − 2Smax for P0 and 2max−iM for
Pi, i ∈ [1,max]. In the worst case, the SP computation cost
and the size of V Osp both are:

Cquery
GEM2-tree

=Cquery· logF (N−2Smax)+

max∑
i=1

Cquery· logF (2max−iM)

=Cquery

(
logF (N − 2max+1M)

+
logF 2

2
·max2 + (logF M − logF 2

2
) ·max

)
This is again in the complexity of O(logN). As for V Ochain,
its size is linear to the number of partitions (i.e., max).

VI. OPTIMIZED GEM2-TREE

In this section, we present an optimized index called
GEM2∗-tree, which can further reduce the gas consumption
cost without sacrificing much in terms of the query overhead.

A. GEM2∗-tree Structure and Maintenance

The basic structure of the GEM2∗-tree is a two-level index
as shown in Fig. 6. In the upper level, we split the search
key domain into several regions I1, I2, I3, · · · . In order to
achieve the maximum performance, the split is based on the
underlying data distribution so that the keys expected to fall
in each region Ii are the same. In the lower level, a GEM2-
tree is built for each Ii. It is worth noting that there is a
slight difference between the GEM2-tree constructed here and
the standalone one. Instead of maintaining a fully-structured
MB-tree P0 for each GEM2-tree corresponding to each Ii,
there is only one single fully-structured MB-tree for the entire
GEM2∗-tree. With the above design, the following benefits are
expected:
• More Gas Savings. Based on the cost analysis in Sec-

tion V-F, the reduction of the gas consumption of the
GEM2-tree compared with the normal MB-tree comes
from the use of the SMB-trees in the small to medium-
sized partitions. As the GEM2∗-tree maintains more SMB-
trees while avoiding SMB-trees of too large size, thanks



Algorithm 7 Authenticated Query with GEM2∗-tree (by SP)
Input Query range Q = [lb, ub], GEM2∗-tree T ∗
Output Query result R, Verification object V Osp

1: li← T ∗.upper level.BinarySearch(lb);
2: ui← T ∗.upper level.BinarySearch(ub);
3: for i in [li, ui] do
4: 〈ri, voi〉 ← GEM2-tree Query(Q, T ∗.lower level[i]);
5: Append ri to R, voi to V Osp;
6: 〈r0, vo0〉 ← MBTreeRangeQuery(Q, T ∗.P0);
7: Append r0 to R, vo0 to V Osp;

Algorithm 8 Result Verification with GEM2∗-tree (by Client)
Input Query range Q = [lb, ub], Query result R, V Osp from the

SP, V Ochain from the blockchain
Output Whether the verification is passed

1: Verify V Ochain w.r.t. the blockchain;
2: upper level← GEM2∗-tree upper level from V Ochain;
3: li← upper level.BinarySearch(lb);
4: ui← upper level.BinarySearch(ub);
5: for i in [li, ui] do
6: vochain,i ← GEM2-tree root in V Ochain for i-th region;
7: Extract 〈ri, voi〉 from 〈R, V Osp〉 w.r.t. i-th region;
8: stat← GEM2∗-tree Verify(Q, ri, voi, vochain,i);
9: if stat = false then return false;

10: T0 ← MB-tree root from V Ochain w.r.t. P0;
11: Extract 〈r0, vo0〉 from 〈R, V Osp〉 w.r.t. P0;
12: stat← MBTreeVerify(r0, vo0, T0);
13: if stat = false then return false;
14: return true;

to the split search key domain, it can contribute to more
gas savings.

• Efficient Query Processing Retained. Although the
GEM2∗-tree introduces more subtrees, the query perfor-
mance is not much sacrificed. The reason is twofold.
First, due to the space splitting in the upper level, not
all of lower-level index trees need to be visited during the
query processing. Moreover, each region Ii contains only
a portion of the entire dataset, which leads to smaller trees
that can help expedite query processing.

The maintenance of the GEM2∗-tree is straightforward.
During data insertions or updates, we first locate the upper-
level region based on the boundary information. Then, the
corresponding GEM2-tree in the lower level is updated ac-
cordingly using the procedure identical to the one introduced
in Section V-B.

B. Authenticated Query Processing

The query processing and result verification algorithms
with the GEM2∗-tree are similar to those of the GEM2-
tree. Algorithm 7 shows the authenticated query processing
procedure. First, a binary search is used to locate the leftmost
and rightmost upper-level regions which overlap the query
range (lines 1–2). Then, the SP invokes Algorithm 5 for each
low-level GEM2-tree under the corresponding region (lines 3–
5). Finally, the fully-structured MB-tree is searched (lines 6–
7). In a similar manner, the verification procedure is presented
in Algorithm 8. It consists of a binary search of the upper-level
regions (lines 2–4), verifying the result for each GEM∗-tree

(lines 5–9), and verifying the result for the fully-structured
MB-tree (lines 10–13).

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
ADSs, namely GEM2-tree and GEM2∗-tree.

A. Experimental Settings

We use the Yahoo Cloud System Benchmark (YCSB) [14]
to generate synthetic datasets for performance evaluation. All
the generated datasets contain 100M update records, in which
each search key has a size of 4 bytes and each value has a
size of 100 bytes. Two search key distributions, i.e., uniform
distribution and zipfian distribution, are evaluated. In the latter,
the zipfian constant is set to 0.8 to generate skewed datasets.

For our GEM2-tree and GEM2∗-tree, the following settings
are adopted. The maximum size of the smallest SMB-tree, M ,
is set to 8 as the word size in Ethereum is 32 bytes and the
search key has a size of 4 bytes. The fanout of the MB-tree is
set to 4, which is the maximum of f satisfying (f − 1)× ld+
f × lp + lp < 32 bytes, where ld and lp are the sizes of the
delimiters and pointers. The upper bound of the largest SMB-
tree partition, Smax, is set to 2, 048, which is based on the cost
analysis of the MB-tree and SMB-tree given in Section IV.
Moreover, for the upper-level index of the GEM2∗-tree, the
search key domain is split into 100 regions based on the key
distribution.

In the experiments, a private Ethereum network using Geth4

is deployed. The smart contract is implemented in Solidity.
For each of the SP and the client, a desktop computer with
Intel Core i7-7700K 4.2GHz CPU and 16GM RAM, running
Ubuntu 18.04.1 LTS, is used. The query processing and result
verification programs are written in Java. We choose SHA-3
as the cryptographic hash function in the implementation of
all algorithms.

For comparison, two baseline algorithms, MB-tree [15] and
LSM-tree [13], are also implemented. We measure the follow-
ing metrics to evaluate the algorithms: (i) the blockchain’s gas
cost for ADS maintenance, (ii) the SP’s query processing time,
(iii) the size of the VO (including both VSP and Vchain), and
(iv) the client’s result verification time.

B. Experimental Results

1) Gas Consumption for ADS Maintenance: Fig. 7 shows
the average gas consumption with increasing database size.
Clearly, our proposed GEM2-tree and GEM2∗-tree are more
efficient than the two baselines regardless of the data distri-
bution. In particular, the LSM-tree is only able to support the
database with up to 10, 000 objects. This is mainly because
the merge cost in the LSM-tree grows exponentially with its
level depth increasing, as discussed in Section V-D. As such,
the LSM-tree is impractical to be maintained by the smart
contract. Compared with the MB-tree, our solutions reduce
the gas consumption by a factor of up to 4. The gas reduction
comes from both the efficient SMB-trees and the bulk insertion

4https://github.com/ethereum/go-ethereum
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of objects into the MB-tree. Further, the GEM2∗-tree always
consumes less gas than the GEM2-tree. This is because the
GEM2∗-tree contains more SMB-trees, which can help serve
more objects in an efficient way. Moreover, thanks to the
partitioning of the search key space, the objects bulk inserted
from the SMB-trees into the MB-tree are more likely to be
located in the same range, which makes the bulk insertion
more efficient.

To further evaluate the performance with respect to data
insertions vs. updates, we measure the average gas cost for
the workloads with different update ratios. Starting with an
existing database that contains 10, 000, 000 objects, we send
90, 000, 000 insertion or update requests to the smart contract.
The update ratio is varied from 40% to 5%, which is equivalent
to 36, 000, 000 to 4, 500, 000 update operations. The average
gas cost is plotted in Fig. 8. Since the update cost is lower
than the insertion cost, the less the update operations the more
gas consumed. It can also be observed that in all cases tested,
the GEM2-tree achieves at least 30% gas reduction compared
with the MB-tree. The performance of the GEM2∗-tree is even
better, thanks to its higher capacity for maintaining the SMB-
trees and the search key domain regions. Another interesting
observation is that our solutions save more gas against the
MB-tree when there are more insertion operations. This further
demonstrates the advantages of our proposals.

2) Query Performance: We now investigate the query per-
formance of the different algorithms. The results are shown
in Fig. 9 and Fig. 10. In our experiments, the database size is
fixed to be 100M and we vary the query selectivity from 1%
to 10%. For each experiment, 50 range queries are randomly
generated and the average performance results are reported.
As can been seen, for all algorithms, all metrics increase
monotonically with the query range regardless of the data dis-
tribution. Compared with the MB-tree, the GEM2-tree retains
the query performance in all cases tested, while the GEM2∗-
tree is only slightly worse when the query range is large and/or
the key distribution is skewed, due to the reasons discussed
in Section VI-A. Combining with the previous experiments
on the ADS maintenance, this demonstrates that our solutions
are able to drastically reduce the maintenance cost with little
penalty on the query processing performance.
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Fig. 9. Authenticated Query and Verification Performance (Uniform)
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Fig. 10. Authenticated Query and Verification Performance (Zipfian)

VIII. RELATED WORKS

To the best of our knowledge, no studies exist that inves-
tigate gas-efficient data structures for authenticated queries in
blockchain. In the following, we briefly survey related works
and discuss relevant techniques.

A. Blockchain Technology

Blockchain has been a hot research area in recent years.
Various issues have been studies, such as consensus algo-
rithms [16], [17], storage designs [18], system security [19],
[20], and privacy issues [21]–[24]. A benchmark framework
for analyzing representative private blockchains was presented
in [1]. Hu et al. [25] proposed a searchable encryption scheme
over the blockchain with integrity assurance. But it is limited
to file-level keyword search. Moreover, it does not investigate
the indexing issue as only on-chain data are considered. More
recently, Xu et al. [2] developed a novel vChain framework to
enable verifiable queries over blockchain databases. To support
dynamic data aggregation over arbitrary query attributes, an
accumulator-based ADS scheme was proposed in [2]. In
addition, some startups (e.g., [26], [27]) have proposed to
expose a relational database frontend to the blockchain data
storage. However, all these existing studies fail to consider the
integrity issue when outsourcing query processing to off-chain
storage services, which is the focus of this paper.

B. Authenticated Query Processing

There is a large body of research on authenticated query
processing, verifying the integrity of query results produced
by an untrusted service provider [15], [28]–[32]. There are
two basic techniques for query authentication, namely digital
signature chaining and Merkle Hash Tree (MHT). The for-
mer is a public-key message authentication scheme based on
asymmetric cryptography. A digital signature is produced for
each data object by the data owner using a private key. A
client can verify the authenticity of a query result using the
owner’s public key and the object’s signature. To establish
the completeness of query results, chaining signatures are
generated to capture the correlation of each object with its
neighboring objects [28]. Signature chaining is simple, but it
requires each object to be signed and thus cannot scale up to
large datasets.



MHT [10], as discussed in Section II, solves the scalabil-
ity issue using a hierarchical tree structure. MHT has been
adapted to various index structures. Typical examples include
the Merkle B-tree for relational data [15], the Merkle R-
tree for spatial data [29], [33], [34], and the authenticated
inverted index for text data [35]. It has also been extended to
support authenticated join queries [36], distributed and shared
data [30], [31]. Nevertheless, to the best of our knowledge, no
previous works exist that study authenticated relational queries
for data stored in a hybrid-storage blockchain.

IX. CONCLUSION

In this paper, we have studied the problem of authen-
ticating range queries for databases stored in the hybrid-
storage blockchain. The main challenge lies in how to design
an ADS which can be efficiently maintained by the smart
contract in the blockchain. By analyzing the performance
of the existing solutions, we have proposed a novel gas-
efficient ADS, called GEM2-tree, that can significantly reduce
the storage and computation costs of the smart contract.
We have also developed an optimized ADS, called GEM2∗-
tree. It further saves the maintenance cost by splitting the
data domain and introducing a two-level structure. Analytical
models and empirical results have substantiated the robustness
and efficiency of our proposed solutions.

This paper opens up a new direction for blockchain research.
Specifically, many previous query authentication techniques
require new design under the gas performance model. For
example, it will be interesting to explore how to design gas-
efficient data structures for other authenticated queries, such
as keyword and aggregation queries.
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