
vABS: Towards Verifiable Attribute-Based Search
over Shared Cloud Data
Yang Ji†1, Cheng Xu†2, Jianliang Xu†3, Haibo Hu‡4

†Department of Computer Science, Hong Kong Baptist University, Hong Kong
‡Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong

{1yangji, 2chengxu, 3xujl}@comp.hkbu.edu.hk, 4haibo.hu@polyu.edu.hk

Abstract—With the proliferation of cloud computing and data-
as-a-service (DaaS), more and more organizations and individuals
outsource their data to a third-party service provider. While
enjoying the benefits of cloud-based data outsourcing, the data
owners are at the risk of losing control of data integrity and
access management. In this demonstration, we present a system
called vABS, which enables verifiable Attribute-Based Search
over shared cloud data. The vABS system adopts the common
DaaS architecture, in which the server provides search services
to users on behalf of data owners. By employing a novel zero-
knowledge approach proposed in our prior work [1], vABS
not only provides users with good search experiences, but also
supports authenticated query processing with fine-grained access
control, which is crucial to many high-security applications.

I. INTRODUCTION

Driven by the low cost and high availability of cloud
computing technologies, recent years are witnessing the pro-
liferation of cloud-based data outsourcing. With the benefits
of cost effectiveness and high performance, the cloud data
engines, acting as a service provider (SP), can facilitate
data storage and information search services for data owners
(DOs). For example, Microsoft HealthVault [2] has developed
a cloud-based platform that allows health data to be shared
and exchanged among users.

Despite the benefits of cloud-based data outsourcing, it
raises security issues which are deeply concerned by the
public. First, from the perspective of data integrity, the cor-
rectness of search results cannot be guaranteed if the SP
tampers with the data records deliberately. Second, due to
the increasingly stringent data compliance requirement, any
information leakage to unauthorized parties may lead to
devastating consequences. Query authentication and access
control have been studied by a large body of literature [3]–[6].
However, prior works only consider either one of them. There
is a pressing need for enterprise cloud database systems to
achieve both data integrity and access control. Below are two
examples.

Example 1: Small and medium enterprises may prefer to
outsource their database to a cloud service provider, and
authorize it to provide search services for customers. However,
when the customers search information from the server, they
may have the following questions. Is there any record tampered
with or omitted in the search results? How to verify whether
all records not returned are either inaccessible to them or
non-results?

Example 2: To prepare a cancer rehabilitation plan for a
patient, Dr. Bob needs to retrieve detailed medical records of
this patient that are related to this cancer disease, including
historical diagnosis and lab test results. Bob can search all
information that he is authorized to access. However, he may
be curious about other medical records of this patient that
he is not authorized to access, such as the HIV test result.
Furthermore, he may also be curious about the roles he lacks
to access such records.

Motivated by these application scenarios, we adopt a novel
access-policy-preserving (APP) signature developed in our
prior study [1] as authenticated data structure (ADS), which
supports verifiable attribute-based search with fine-grained
access control in zero-knowledge. The APP signature reveals
nothing beyond accessible records. For example, if no record is
returned for a given search key, the user cannot infer whether
it is because there does not exist a matching record or because
the matching record is inaccessible to her. To further improve
the search performance, a grid-index-based tree structure is
implemented to aggregate the APP signatures. It is our purpose
in this demonstration to show the usability and feasibility of
our proposed verifiable search techniques. To this end, we
develop a vABS prototype system, which can ensure data
search integrity and flexible access control simultaneously.
Specifically, we design and implement a query processing
module embedded with a verification object (VO) construction
engine on the server side, and an application client for query
submission, result presentation and verification. The vABS
system also provides an interactive search experience to users.

The rest of the demonstration proposal is organized as
follows. Section 2 elaborates the techniques that enable veri-
fiable attribute-based search over shared cloud data. Section 3
overviews the vABS prototype system. The interface of vABS
and demonstration details are presented in Section 4.

II. TECHNICAL BACKGROUND

We start with a brief introduction to the building blocks
of vABS. A tuple 〈oi, vi,Υi〉 denotes a record in a relational
database D, where oi is the search key, vi is the record content,
and Υi is the access policy: {0, 1}n → {0, 1}. Access policies
control the results of a search with respect to the roles of the
user. For example, if Υ is defined as (RoleA∧RoleC)∨RoleB ,
then Υ(RoleA) = false and Υ(RoleA, RoleC) = true.



A. ADS Generation
In order to authenticate attribute-based search with fine-

grained access control, a naive solution is to use the Merkle
hash tree [7] for result verification and to use the ciphertext-
policy attribute-based encryption (CP-ABE) [8] for access con-
trol. However, this solution has the following shortcomings.
First, a mass quantity of inaccessible data need to be returned
to the user for completeness checking, which incurs high
communication and computation overheads. Second, although
inaccessible records cannot be decrypted due to CP-ABE, it
reveals the existence of such records, which violates the zero-
knowledge confidentiality requirement.

A novel APP signature based on a variant of the attribute-
based signature (ABS) [9] is proposed in our prior study [1]
to address the above issues. To prevent information leakage
caused by the non-existent records, we introduce a global
pseudo access role Role∅, which is not possessed by any user.
We treat each non-existent record as a pseudo record that is
associated with this access policy Role∅. As such, for any
equality search, there is always one matching record with one
of the two possible outcomes: accessible or inaccessible. To
authenticate accessible records, the APP signature is defined
as follows.

Definition 1 (APP Signature): Consider a record 〈oi, vi,
Υi〉. Let skDO be the signing key of the DO, hash(·) a cryp-
tographic hash function, and ‘|’ denote string concatenation.
The APP signature for this record is generated as:

σi = ABS.Sign(skDO, hash(oi)|hash(vi),Υi)

As for non-existent records, we assign a random value to vi
and Role∅ to Υi.

The APP signature has the following important properties.
First, as a proof of data integrity, it captures all components
of a record including search key oi, record content vi, and
access policy Υi. Second, the APP signature can be tailored to
support the proof of inaccessibility with the zero-knowledge
confidentiality. If the APP signature is used directly as the
VO for an inaccessible record, it would reveal the access
policy. To cope with this problem, a super access policy Υ̂A
is introduced. It is the weakest condition in which the user
cannot access the record. For example, in Figure 1, if the
access role universe A is {Role∅, RoleA, RoleB , RoleC},
then Υ̂{RoleC} = Role∅∨RoleA∨RoleB for user u2. Based on
this, we introduce the following access-policy-stripped (APS)
signature to authenticate inaccessible records.

Definition 2 (APS Signature): Consider a record 〈oi, vi,
Υi〉. A and A denote the global access role set and the query
user’s role set, respectively. Let skDO be the signing key of the
DO, hash(·) a cryptographic hash function, and ‘|’ the string
concatenation. The APS signature for this record and the user
with access role set A is defined as:

σ̂i,A = ABS.Sign(skDO, hash(oi)|hash(vi), Υ̂A),

where Υ̂A = a1 ∨ a2 ∨ · · · ∨ an, ai ∈ A\A.
It is worth noting that one can derive the APS signature

from the corresponding APP signature without secret keys by

RoleA,RoleB

u1

RoleC

u2
APS signature

σ̂2,Au2

APP signature
σ2

⟨o2,v2, ϒ2⟩
ϒ2 = RoleA ∧ RoleB

⟨hash(v2), σ̂2,Au2
⟩

⟨v2,σ2, ϒ2⟩

ABS.Relax

ABS.Sign

Data Owner (DO) Service Provider (SP) Users

Fig. 1: Equality Query Authentication

invoking the ABS.Relax(·) function. More technical details
can be found in [1].

B. Verifiable Equality Search

In an equality search, the user specifies a search key o as
well as her access role set A. If the access is granted, the SP
simply returns the matching record with the APP signature
directly. The user can verify the integrity of the search result
by the returned APP signature. On the other hand, if the user
cannot access the queried data record, an APS signature under
the super access policy is computed as VO. Thanks to the
super access policy and the perfect privacy-preserving prop-
erty of the underlying cryptographic primitives, the user can
verify that the queried data record is indeed inaccessible, but
cannot deduce any additional information. Figure 1 presents
an example of two different users issuing an equality search
with key o2. User u1 is allowed to access the record o2, so it is
straightforward to return the APP signature σ2 produced by the
DO as VO. For user u2, the record o2 is inaccessible. As such,
the SP will derive an APS signature from the APP signature
and send back 〈hash(v2), σ̂2,Au2

= ABS.Relax(σ2,A\Au2)〉
for verification of inaccessibility.

To further prevent impersonation attacks, the SP employs
the CP-ABE to encrypt a session key with the access policy
a1 ∧ a2 ∧ · · · ∧ an (ai ∈ A), which is then used to encrypt
the search result using a standard symmetric cipher AES. In
this way, only those users who possess all essential roles can
decrypt the search result.

C. Verifiable Range Search

To support efficient range search, the Access-Policy-
Preserving Grid-Tree (AP2G-Tree) is proposed, which is an
authenticated index tree for the DO to construct and sign.
Figure 2 shows a multi-layer grid-tree on a 2D data space,
which partitions the search key space recursively into multiple
levels of grid cells until each cell contains only one record.

Each grid cell in Figure 2a has a corresponding tree node Ni

in the AP2G-Tree shown in Figure 2b. Each tree node consists
of three components: the grid cell’s bounding box (denoted by
gbi), the access policy (denoted by pi), and the APP signature
(denoted by sigi). The latter two components can be computed
from its C child entries, c1, . . . , cC . For a non-leaf node, its
access policy is pi = pc1∨pc2∨· · ·∨pcC and its corresponding
APP signature sigi = ABS.Sign(skDO, gbi, pi), where skDO
is the signing key of the DO. For a leaf node, its access policy
and APP signature are identical to those of the corresponding
record in the grid cell. For example, in Figure 2b, the access



level 1
N1

N3
N2

N4

level 2

N5
N9

N13
N17

N6
N10

N14
N18

N7
N11

N15
N19

N8
N12

N16
N20

level 2

o1 o2 o3 o4

o5 o6 o7 o8

o9 o10o10 o11o11 o12o12

o13 o14o14 o15o15 o16o16

(a) Data and Grid Partition
N0

N1 N2 N3 N4N4

N5 N6 N9 N10

o1 o2 o5 o6

N7 N8 N11 N12

o3 o4 o7 o8

N13 N14N14 N17 N18N18

o9 o10 o13 o14

N15 N16 N19 N20

o11 o12 o15 o16

дb0 ϒ0 siд0

(b) Index

Fig. 2: Access-Policy-Preserving Grid-Tree (AP2G-Tree)

policy for N1 is computed as pN1
= pN5

∨ pN6
∨ pN9

∨ pN10
,

and its APP signature is sigN1
= ABS.Sign(skDO, gbN1

,
pN1

); and for leaf node N5, its policy and signature are Υo1

and σo1 , respectively.
Being a space-partitioning index, the AP2G-Tree prevents

information leakage through the tree structure. However, the
grid-tree is not the most efficient index structure, especially
for sparse multi-dimensional datasets. Thus, to optimize search
performance, an alternative data-partitioning AP2kd-Tree has
also been proposed in [1], by which the zero-knowledge
confidentiality requirement is relaxed.

Regardless of the authenticated index structure employed,
the query processing algorithm is executed in a top-down
fashion. It performs a tree search starting from the root node.
If the search range partially overlaps with the indexing space
of the current tree node, the SP will branch the subtrees
recursively. Otherwise, if a tree node is fully covered by the
search range, the SP will check whether the user can access
the node. If the access is denied, the SP will compute the APS
signature for this node and add the derived signature to the
VO. If the access is granted, the SP will further explore the
subtrees until reaching the leaf nodes. For leaf nodes, the SP
will return accessible records as search result, along with their
corresponding APP signatures.

The user can verify the correctness of the search result by
checking two conditions: (i) soundness: whether or not all
signatures in the VO are valid; (ii) completeness: whether or
not the indexing spaces of all entries in the VO together cover
the whole search range.

III. VABS SYSTEM OVERVIEW

The vABS prototype system provides verifiable attribute-
based search services over shared health record data, and
ensures the integrity of search results. As depicted in Figure 3,
vABS adopts a typical DaaS architecture that consists of client,
server, and data owner. Specifically, the client side provides
users with an attribute-based query interface, a verification
module, and a result presentation module. The server side
consists of two modules, namely, query processing and VO
construction. In what follows, we elaborate the workflow and
modules of vABS.

Data
Owner

Query
Processing 

& 
VO

Construction 

Client Side Server Side

Verification
Module

Result
Presentation 

Query 

Result

AttributeBased
Querying

   
   

   
U

se
r I

nt
er

fa
ce

VO 

Database 

Authenticated 
Index Structure

Fig. 3: System Architecture of vABS

A. Client Side

For the purpose of identity authentication, vABS requires
user login. There is a user role set corresponding to each
account in vABS. The main interface enables users to submit
equality or range search requests by typing in a patient ID and
a scope of his/her check-up numbers. All the search requests
are transmitted to the server in the HTTP post method.

Once receiving the search result from the server, the client
will present it to the user. Meanwhile, the verification module
is invoked to verify the integrity of the search result using
the VO. There can be two possible outcomes. One is that the
search result passes the verification and is proved to be correct.
The other is that the search result is incomplete or has been
tampered with, thereby failing the verification.

B. Server Side

The server-side modules are implemented in C++ with
OpenMP to accelerate query processing. In the default setting,
the server employs an AP2G-Tree with APP signatures as
authenticated index structure. Once the server receives a search
request, the query processing engine will perform a breadth-
first search over the AP2G-Tree and check the accessibility
by comparing the user’s role set against the index nodes’
access policies. During the query processing, the server also
constructs the VO for the search result. For accessible data
records, the APP signature of each record produced by the
DO is attached directly. For inaccessible index nodes or data
records, the server will generate new APS signatures as part
of the VO, as discussed in Sections II-B and II-C.

IV. DEMONSTRATION DETAILS

In our demonstration, we use a healthcare dataset from
EMRBots [10], which are artificially generated electronic
health records. The vABS system supports both equality search
and range search over the attributes of patient ID and check-
up number. In vABS, the authenticated index structure is built
on a 2D data space for both attributes, in which each leaf
node corresponds to the medical record of a patient at one
check-up. A user can interact with vABS through the following
scenarios.

Attribute-Based Search with Access Control. After log-
ging in, users can search medical records through the query
interface shown in Panel 1 of Figure 4a. Based on the access



Panel 1

Panel 2

(a) Query Interface

(b) VO Information

Fig. 4: Client Side

policies associated with the data records, different users,
depending on their roles, may obtain different search results
on Panel 2. They can select a particular record and view its
details including the lab test data on a pop-up panel. On the
server side, for demonstration purposes, all records in the
search range will be highlighted with colored background. As
shown in Panel 4 of Figure 5, we mark accessible records
with green color and inaccessible ones with red color. Users
can also check the access policies of these records.

Result Correctness Verification. In our demonstration,
users can verify the search result interactively. A Í mark
in Panel 2 of Figure 4a indicates a successful verification
and a ë mark signifies that the search result is unsound or
incomplete. By clicking the mark, users can view detailed VO
structure and verification time on a pop-up panel (Figure 4b).
Moreover, in Panel 4 of Figure 5, users can click the “Attack”
button and falsify the data records to emulate the case where
the SP tampers with data. In this case, the search result will
be verified as incorrect on the client side.

Panel 3

Panel 4

Fig. 5: Server Side

Understanding Performance Trade-off. Our demonstra-
tion enables users to observe the search performance of
different index structures. By checking a radio button shown in
Panel 3 of Figure 5, users can choose to employ either AP2G-
Tree or AP2kd-Tree as the authenticated index structure. They
can compare the query processing time and result verification
time of both structures, and understand the trade-off between
search performance and degree of privacy preservation.

ACKNOWLEDGEMENTS

This work was partially supported by HK RGC grants
(Grant Nos. 12244916, 12201018, C1008-16G) and National
Natural Science Foundation of China (Grant Nos. 61572413,
U1636205).

REFERENCES

[1] C. Xu, J. Xu, H. Hu, and M. H. Au, “When query authentication
meets fine-grained access control: A zero-knowledge approach,” in Proc.
SIGMOD, 2018, pp. 147–162.

[2] (2018) Microsoft healthvault. [Online]. Available: https://international.
healthvault.com/

[3] F. Li, G. Kollios, and L. Reyzin, “Dynamic authenticated index structures
for outsourced databases,” in Proc. SIGMOD, 2006.

[4] Q. Chen, H. Hu, and J. Xu, “Authenticated online data integration
services,” in Proc. SIGMOD, 2015, pp. 167–181.

[5] C. Xu, Q. Chen, H. Hu, J. Xu, and X. Hei, “Authenticating aggregate
queries over set-valued data with confidentiality,” IEEE Trans. Knowl.
Data Eng., vol. 30, no. 4, pp. 630–644, 2018.

[6] M. I. Sarfraz, M. Nabeel, J. Cao, and E. Bertino, “DBMask: Fine-grained
access control on encrypted relational databases,” in Proc. CODASPY,
2015.

[7] R. C. Merkle, “A Certified Digital Signature,” in CRYPTO, 1989.
[8] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-

Based Encryption,” in Proc. IEEE Symposium on Security and Privacy,
2007.

[9] H. K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-Based Signa-
tures,” in Topics in Cryptology, 2011.

[10] (2018) The emrbots website. [Online]. Available: http://www.emrbots.
org/

https://international.healthvault.com/
https://international.healthvault.com/
http://www.emrbots.org/
http://www.emrbots.org/

	Introduction
	Technical Background
	ADS Generation
	Verifiable Equality Search
	Verifiable Range Search

	vABS System Overview
	Client Side
	Server Side

	Demonstration Details
	References

