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In this paper, we tackle the challenging problem of Shapley value computation in data markets in a novel

setting of data assemblage tasks with binary utility functions among data owners. By modeling these scenarios

as cooperative simple games, we leverage pivotal probabilities to transform the computation into a problem of

counting beneficiaries. Moreover, we make an insightful observation that the Shapley values can be computed

using subsets of minimal syntheses within the inclusion-exclusion framework in combinatorics. Based on this

insight, we develop a game decomposition approach and utilize techniques in Boolean function decomposition

into disjunctive normal form. One interesting property of our method is that the time complexity depends

only on the data owners participating in those minimal syntheses, rather than all the data owners. Extensive

experiments with real data sets demonstrate a significant efficiency improvement for computing the Shapley

values in data assemblage tasks modeled as simple games.
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1 INTRODUCTION
The power of big data largely stems from its many secondary uses, such as enabling machine

learning and AI models [33, 38, 42], recommender systems [3, 65], causal inference [34, 60, 61], and

data-driven decision-making applications [63]. However, a significant challenge lies in incentivizing

and facilitating large-scale data sharing and collaboration. Data markets [15, 27, 39, 59, 67] are

emerging as a promising solution to enable and facilitate data sharing among potential data owners

and consumers.

Essentially, a data market serves as an online platform where parties with data demands can

acquire data sets or data services, while data owners can exchange their data and services for

revenue or compensation in various ways. Numerous active data markets already exist, such as AWS
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Data Exchange, Windows Azure Marketplace, Dawex, Datarade, dmi.io, WorldQuant, Xignite, and

BlueTalon [39]. Due to diverse needs in business models, vertical domains, government regulations,

and industry applications, there are different types of data markets.

At the core of every data market lies a data valuation module. In a data market, a group of data

owners collaborate to complete a specific task requested by a buyer, such as assembling a data

set for data analytics or machine learning. In this paper, we focus on data assemblage tasks [45],
which involve using multiple data sets from various data owners to create a desired data set.

Data assemblage tasks are at the core of data integration [10, 16, 24, 40, 53, 64]. In this context,

data valuation, in essence, assigns a score to a data owner, reflecting their contribution to a data

assemblage task. Formally, given a task, a set of data owners and their corresponding data sets

O = {𝑜1, . . . , 𝑜𝑛}, a data valuation (function)𝜓 : O → [0, 1] is defined such that

∑𝑛
𝑖=1𝜓 (𝑜𝑖 ) = 1.

Data valuation plays a crucial role in ensuring fairness, effectiveness, and efficiency in data

markets. Different data markets may have different requirements for data valuation [62], such

as truthfulness [2], revenue maximization, fairness [2, 71], arbitrage-freeness [43], privacy-

preservation [1, 4, 5, 21, 28, 30, 35, 57, 58, 72], and computational efficiency [2, 6, 32].

In this paper, we explore one type of fundamental data valuation scenarios in data assemblage

tasks within data markets, where the utility of a coalition among data owners is limited to binary

values of 0 or 1. In this setting, if a coalition successfully produces a data set that meets the data

buyer’s requirements, the utility of the coalition is assigned value 1; otherwise, value 0. This binary

framework allows for transactions where the data set is either purchased in its entirety or not

purchased at all and finds applications in various scenarios. For instance, in some existing data

markets like DataRade, a data buyer typically has the option to either purchase a complete data set

or choose not to make any purchase, rather than paying a fraction of the cost for a partial portion

of the data. The main focus of this paper is to address the question of how to assess the contribution

of each data owner in a fair and efficient manner.

The simple binary setting can be modeled as a simple game in cooperative game theory [13].

The Shapley fairness principle [71] is the most fundamental and widely used approach to achieving

fairness in this context. The Shapley value, as the unique solution that embodies Shapley fairness,

measures the expected marginal contribution of a participant over all possible coalitions of other

participants. However, due to the combinatorial nature of the Shapley value, computing the exact

Shapley value is #P-hard [22, 25]. Faigle and Kern [25] demonstrated that even in a simple game,

the computation of the Shapley value is #P-hard in general.

To address this challenge, some existing studies have focused on approximating the Shapley

value [47, 48]. These approximation methods often utilize Monte Carlo simulation and require

a substantial number of samples to reduce the error to an acceptable level. As a result, these

approximation methods can still be time-consuming. Other studies have made assumptions about

additional properties of utility functions [29, 36, 41, 45]. For example, Luo et al. [45] assumed that

the utility of a target data set can be decomposed, allowing for the decomposition of Shapley value

computation. However, to the best of our knowledge, the general problem of computing the Shapley

value for data assemblage tasks as a simple game has not been modeled or explored in the existing

literature.

In this paper, we tackle the challenge of efficiently computing the Shapley value in data assemblage

tasks as simple games and make several contributions. After the problem definition and the review

of related work in Section 2, we firstly leverage the concept of pivotal probability in simple games

and transform the computation of pivotal probabilities in data assemblage tasks into a problem of

counting beneficiaries using minimal syntheses in data assemblage. This transformation allows

us to devise an algorithm for computing the Shapley value, which has a time complexity that

depends only on the data owners participating in those minimal syntheses, rather than all the
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data owners. Secondly, considering that data sets are often assembled in a structured manner, such

as through operations like join, concatenation, projection, and selection, we make a significant

observation that the Shapley value can be computed using subsets of minimal syntheses within

the inclusion-exclusion framework in combinatorics (Section 3). Drawing from this insight, we

develop a game decomposition approach and utilize cutting-edge techniques in Boolean function

decomposition into disjunctive normal form (Section 4). Thirdly, through extensive experiments, we

provide compelling evidence that our novel approaches greatly enhance the efficiency of Shapley

value computation in data assemblage tasks modeled as simple games (Sections 5 and 6). Lastly,

we conclude the paper and discuss future directions (Section 7). Limited by space, we omit most

proofs, which can be found in the full version technical report [46].

2 PROBLEM DESCRIPTION AND RELATEDWORK
2.1 Data Assemblage Tasks as Simple Games
In cooperative game theory [13], a characteristic function game 𝐺 is defined by a pair (𝑂,𝜈),
where𝑂 is a set of players and 𝜈 : 2

𝑂 → R a characteristic function, which maps each coalition
𝐶 ⊆ 𝑂 to a real number 𝜈 (𝐶) ∈ R called the value of the coalition. The whole set of players 𝑂

itself as a coalition is called the grand coalition. A characteristic function game 𝐺 = (𝑂,𝜈) is
monotone if for any coalitions 𝐶 and 𝐶′

such that 𝐶 ⊆ 𝐶′ ⊆ 𝑂 , 𝜈 (𝐶) ≤ 𝜈 (𝐶′).
A characteristic function game 𝐺 = (𝑂,𝜈) is a simple game if it is monotone and the charac-

teristic function only takes values 0 and 1, that is, 𝜈 (𝐶) ∈ {0, 1} for any coalition 𝐶 ⊆ 𝑂 . In other

words, in a simple game, a coalition either succeeds (i.e., achieving the goal) or fails. A classic

example of cooperative simple games is voting games [14]. Given a finite set of voters 𝑂 as the

players, each vote has the same weight, say 1. Let 𝑞 ≥ 0 be a quota. The characteristic function

𝜈 : 2
𝑂 → {0, 1} is defined as, for any coalition 𝐶 ⊆ 𝑂 , 𝜈 (𝐶) = 1 if |𝐶 | ≥ 𝑞; and 0 otherwise. In this

paper, we focus on cooperative simple games. Thus, hereafter, without specific mentioning, the

term “game” refers to cooperative simple game.

Consider a set of data owners 𝑂 , each having a data set. In a data assemblage task, the data
owners collaborate and try to produce a target data set 𝐷 that a data buyer wants to acquire. Since

the data owners use their data sets to conduct the data assemblage task, for the sake of brevity, we

overload symbol 𝑜 ∈ 𝑂 to denote a data owner as well as the data set that the owner has. In the

rest of the paper, we use the terms interchangeably and do not distinguish data owners and the

corresponding data sets.

In the context of a data assemblage task, a coalition 𝐶 ⊆ 𝑂 is a subset of data owners. If the

data sets in a coalition 𝐶 can be used to produce the target data set 𝐷 , then 𝐶 is called a synthesis.
In general, there may exist multiple syntheses in a data assemblage task. Moreover, adding more

data owners to a synthesis does not prevent the target data set from being produced. Therefore, a

superset of a synthesis is also a synthesis.

Example 1 (Data assemblage task). Suppose a data buyer wants to acquire the data about the

house value and the resident names at street address 𝑎. The target data schema is 𝑅 = (address,
resident, value). A data owner 𝑜1 has the home value data in the schema 𝑅1 = (address, value).
Data owners 𝑜2, 𝑜3, and 𝑜4 have some partial information about the residents living in those homes

in schema 𝑅2 = (address, resident). The target data set can be produced using the assemblage plan

(𝑜1 ⊲⊳ (𝑜2 ∪ 𝑜3 ∪ 𝑜4)). {𝑜1, 𝑜2, 𝑜3, 𝑜4} is a synthesis, since it produces the target data set.
Suppose 𝑜1 = {(𝑎, 300𝑘)}, 𝑜2 = {(𝑎, 𝐽𝑜ℎ𝑛), (𝑎,𝐴𝑚𝑦)}, 𝑜3 = {(𝑎, 𝐽𝑜ℎ𝑛), (𝑎,𝐶𝑎𝑡ℎ𝑦)}, and 𝑜4 =

{(𝑎,𝐴𝑚𝑦), (𝑎,𝐶𝑎𝑡ℎ𝑦)}. Since (𝑜1 ⊲⊳ (𝑜2 ∪𝑜3 ∪𝑜4)) = (𝑜1 ⊲⊳ (𝑜2 ∪𝑜3)), {𝑜1, 𝑜2, 𝑜3} is also a synthesis.
So are {𝑜1, 𝑜2, 𝑜4} and {𝑜1, 𝑜3, 𝑜4}. □

We can model a data assemblage task as a simple game using syntheses.
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Definition 1 (Data assemblage). A data assemblage task is a simple game (𝑂,𝜈), where 𝑂 is a

set of data owners and the value of a coalition is defined as, for any coalition 𝐶 ⊆ 𝑂 , 𝜈 (𝐶) = 1 if 𝐶

is a synthesis; and 0 otherwise. We also call a data owner a player. □

Simple games have been extensively researched in literature [14, 54]. The major challenge is the

representation. A straightforward approach is to list every possible coalition and its corresponding

value or every successful coalition, but this becomes exponential in the number of data owners,

making it inefficient. To address this challenge, many studies have explored more succinct repre-

sentations, such as characteristic functions. One example is the use of monotone boolean functions

to represent simple games [54]. In this representation, the characteristic function 𝜈 (·) is a boolean
function, which takes a set of data owners as input and considers each data owner as either being

part of the coalition (TRUE) or not (FALSE). The coalition is considered winning if the characteristic

function returns TRUE and otherwise losing. A characteristic function in a data assemblage task as

a simple game can be written in disjunctive normal form (DNF), where each conjunction term is a

synthesis [19, 54].

2.2 Shapley Value
In a data assemblage task, how should we fairly assess the contribution made by every data owner

in assembling the target data set? Due to the monotonicity of the data assemblage game, data

owners are motivated to cooperate and form the grand coalition in data assemblage tasks. Therefore,

the Shapley value [71] becomes a natural choice.

Definition 2 (Shapley value [71]). Given a characteristic function game (𝑂,𝜈), the Shapley value
of a player 𝑜 ∈ 𝑂 is

𝜓 (𝑜) = 1

|𝑂 |
∑︁

𝐶⊆𝑂\{𝑜 }

𝜈 (𝐶 ∪ {𝑜}) − 𝜈 (𝐶)( |𝑂 |−1
|𝐶 |

) =
1

|𝑂 |!
∑︁

𝜋∈Π𝑂

(𝜈 (𝑃𝜋𝑜 ∪ {𝑜}) − 𝜈 (𝑃𝜋𝑜 )) (1)

where Π𝑂 is the set of all possible permutations of the players in 𝑂 and 𝑃𝜋
𝑜 is the set of players

preceding 𝑜 in permutation 𝜋 ∈ Π𝑂 . □

Shapley value is the only payoff division scheme that satisfies the Shapley fairness [71], which
consists of the properties of efficiency, no payoff for dummy, symmetry, and additivity. Given the

attractive properties of the Shapley value, we are interested in computing the Shapley value for

every data owner in a data assemblage task as a simple game. However, computing the Shapley

value using Equation 1 is often very costly and cannot scale up to a large set of players due to the

combinatorial nature [29, 37].

2.3 Related Work
With the increasing popularity of data science, more and more data markets (such as Dawex

1
,

Snowflake data marketplace
2
, and BDEX

3
) have been established to facilitate the exchange of data

between data suppliers and data consumers [27, 67]. Seven categories of participants have been

identified in these data markets [55].

A key issue in data markets is revenue allocation [17]. Some popular methods include the

core [31] and the leave-one-out method [18]. However, both the core and the leave-one-out method

do not fulfill all fairness properties.

Due to the combinatoric nature, the computation of the exact Shapley value can be very expensive.

To tackle this challenge, one approach is to approximate the Shapley value using the Monte Carlo

1
https://www.dawex.com/en/, accessed on May 9, 2021.

2
https://www.snowflake.com/data-marketplace/, accessed on May 9, 2021.

3
https://www.bdex.com, accessed on May 9, 2021.
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sampling method [47]. Other studies have explored additional assumptions, such as considering

the uniqueness or novelty of data items [41], assuming that adding a small number of training

data points has a negligible impact on model performance [29], exploiting the locality of utility in

certain models [36], and applying the independent utility assumption [45]. Our study distinguishes

from the existing work by exploring the opportunity of fast Shapley value computation enabled by

some interesting properties of simple games. Comparing with those studies, this paper does not

require any additional assumption and focuses on the computation of the exact Shapley value in a

simple game.

Shapley [70] proposed that a simple game can be decomposed into smaller sub-games and such a

decomposition can be represented using a decomposition tree. Since the characteristic function of

a simple game can be represented as a monotone boolean function, the decomposition tree can be

obtained via the decomposition of monotone boolean function. To compute the decomposition tree,

Bioch [7, 8] proposed a decomposition algorithm based on generalized Shannon decomposition [11,

12, 69] and showed that the tree can be obtained in polynomial time. However, the previous studies

on game decomposition mainly focus on the representation of simple games using smaller sub-

games after game decomposition and how to obtain the decomposition tree, but do not address how

to use game decomposition to speed up Shapley value computation. To the best of our knowledge,

we are the first to use decomposition of simple games to accelerate Shapley value computation.

Our study is remotely related to quantifying the contribution of database tuples to query an-

swering in Shapley value [23, 44, 51, 52, 66]. The key difference is that those studies compute the

exact Shapley value only for the queries where probability computation is tractable [20, 23], but

our study puts no restriction on query types and can be applied to all queries in general.

3 COMPUTING SHAPLEY VALUE USING SYNTHESES
In this section, we first review the pivotal interpretation of the Shapley value [26, 49]. Then, we

transform the problem of Shapley value computation to computing pivotal probabilities using

syntheses.

3.1 Pivotal Probability and Shapley Value
In a data assemblage game, we can divide all coalitions into two categories: the losing coalitions,
which cannot produce the target data set, and the syntheses, which are winning coalitions that

produce the target data set. A data owner 𝑜 is pivotal for a losing coalition𝐶 if𝐶∪{𝑜} is a synthesis.
Using this notion, we can rewrite Equation 1 into

𝜓 (𝑜) = 1

|𝑂 |! |{𝜋 ∈ Π𝑂 |𝜈 (𝑃𝜋
𝑜 ) = 0, 𝜈 (𝑃𝜋

𝑜 ∪ {𝑜}) = 1}|, (2)

which gives the intuition of pivotal probability [26, 49].

Definition 3 (Pivotal probability). Given a set of data owners 𝑂 and permutation 𝜋 ∈ Π𝑂 , a data

owner 𝑜 is pivotal for 𝜋 and 𝜋 is a beneficiary of 𝑜 if 𝜈 (𝑃𝜋
𝑜 ) = 0 and 𝜈 (𝑃𝜋

𝑜 ∪ {𝑜}) = 1. Denote by

B𝑜 = {𝜋 ∈ Π𝑂 |𝜈 (𝑃𝜋
𝑜 ) = 0, 𝜈 (𝑃𝜋

𝑜 ∪ {𝑜}) = 1} the set of beneficiaries of 𝑜 . The pivotal probability
of 𝑜 is the probability that 𝑜 is pivotal for a permutation, that is,

| B𝑜 |
|Π𝑂 | =

| B𝑜 |
|𝑂 |! . □

Proposition 4. [49] In a simple game 𝐺 = (𝑂,𝜈), for any player 𝑜 ∈ 𝑂 , the Shapley value𝜓 (𝑜)
equals the pivotal probability of 𝑜 . □

Based on Proposition 4, the problem of computing Shapley value for a data owner in a data

assemblage task can be transformed into computing the pivotal probability of the data owner.

According to Equation 2, to calculate the pivotal probability of a data owner 𝑜 , we only need to

count the number of permutations for which 𝑜 is pivotal, that is, the size of B𝑜 in Definition 3.
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3.2 Counting Beneficiaries Using Minimal Syntheses
Any superset of a synthesis can produce the target data set and thus is also a synthesis. This

superset monotonicity leads to a huge combinatorial space that contains many syntheses. To count

the number of permutations for which a data owner is pivotal, we are interested in the minimal

subsets of data owners that are syntheses. A synthesis𝐶 isminimal if for any coalition𝐶′ ⊂ 𝐶 ,𝐶′

is not a synthesis. We have the following result immediately.

Proposition 5. If 𝐶 is a minimal synthesis, then for every data owner 𝑜 ∈ 𝐶 , 𝑜 is pivotal for
𝐶 \ {𝑜}. □

A data owner 𝑜 is a dummy if there does not exist any minimal synthesis 𝐶 such that 𝑜 ∈ 𝐶 .

According to Equation 2,𝜓 (𝑜) = 0. Thus, we only need to compute the Shapley value for those data

owners appearing in minimal syntheses. Since dummies do not contribute to Shapley computation,

we can safely remove all dummies from our consideration. In this paper, without further mentioning

we assume that every data owner is not a dummy.
What is the relation between beneficiary permutations and minimal syntheses? We have the

following observation.

Theorem 6. In a data assemblage game where 𝑂 is the set of data owners, for a data owner 𝑜 ∈ 𝑂

and a permutation 𝜋 ∈ Π𝑂 , 𝜋 is a beneficiary of 𝑜 if and only if 𝑃𝜋
𝑜 ∪ {𝑜} is a synthesis and, for every

minimal synthesis 𝐶 ⊆ 𝑃𝜋
𝑜 ∪ {𝑜}, 𝑜 ∈ 𝐶 .

Proof. (Sufficiency) Since 𝑃𝜋
𝑜 ∪ {𝑜} is a synthesis, 𝜈 (𝑃𝜋

𝑜 ∪ {𝑜}) = 1. Moreover, since for every

minimal synthesis 𝐶 ⊆ 𝑃𝜋
𝑜 ∪ {𝑜}, 𝑜 ∈ 𝐶 . 𝑃𝜋

𝑜 does not contain any minimal synthesis and thus is not

a synthesis, that is, 𝜈 (𝑃𝜋
𝑜 ) = 0. Therefore, 𝜋 is a beneficiary of 𝑜 .

(Necessity) Since 𝜋 is a beneficiary of 𝑜 , according to Definition 3, 𝑃𝜋
𝑜 ∪ {𝑜} is a synthesis and

𝜈 (𝑃𝜋
𝑜 ) = 0. Assume that 𝑃𝜋

𝑜 ∪ {𝑜} contains one minimal synthesis 𝐶 such that 𝑜 ∉ 𝐶 . Then, 𝐶 ⊆ 𝑃𝜋
𝑜 ,

thus, 𝑃𝜋
𝑜 is a synthesis – a contradiction to the assumption 𝜈 (𝑃𝜋

𝑜 ) = 0. □

Theorem 6 points to a useful direction of computing the Shapley value of a data owner 𝑜 . To

calculate the size of B𝑜 , we only need to consider the minimal syntheses containing 𝑜 and the

prefixes of permutations where those minimal syntheses appear. We model such prefixes as the

permutation set as follows.

For a subset of data owners 𝐶 ⊆ 𝑂 and a permutation 𝜋 ∈ Π𝑂 , let 𝑃
𝜋
𝐶
be the minimum prefix of

𝜋 that contains all owners in 𝐶 . For a data owner 𝑜 ∈ 𝐶 , let 𝑃𝐶≺𝑜 = {𝜋 | the last owner in 𝑃𝜋
𝐶
is 𝑜}

be the set of permutations where all other owners in 𝐶 precede 𝑜 . For a minimal synthesis 𝐶 and

a data owner 𝑜 ∈ 𝐶 , the permutation set of 𝐶 with respect to 𝑜 is PS(𝐶 ≺ 𝑜) = {𝜋 ∈ 𝑃𝐶≺𝑜 |
𝑃𝜋
𝐶
\ {𝑜} does not contain any minimal synthesis}. Following Theorem 6, in a data assemblage

game, for any data owner 𝑜 , B𝑜 = ∪minimal synthesis𝐶 s.t. 𝑜∈𝐶 PS(𝐶 ≺ 𝑜). Thus, we can count the

beneficiaries of 𝑜 using minimal syntheses. However, it is costly to compute |B𝑜 | using this formula

directly. Since PS(𝐶 ≺ 𝑜) is a subset of 𝑃𝐶≺𝑜 , we can count | PS(𝐶 ≺ 𝑜) | through considering the

permutations in 𝑃𝐶≺𝑜 .

Example 2 (Permutation Set). Suppose a set of data owners 𝑂 = {𝑜1, 𝑜2, 𝑜3} can produce

a target data set in coalition and the minimal syntheses are 𝐶1 = {𝑜1, 𝑜2}, 𝐶2 = {𝑜1, 𝑜3}, and
𝐶3 = {𝑜2, 𝑜3}. Then, for data owner 𝑜1, B𝑜1 = PS(𝐶1 ≺ 𝑜1) ∪ PS(𝐶2 ≺ 𝑜1).

How can we obtain PS(𝐶1 ≺ 𝑜1) from 𝑃𝐶1≺𝑜1 = {𝑜3𝑜2𝑜1, 𝑜2𝑜3𝑜1, 𝑜2𝑜1𝑜3}? According to the

definitions, we need to filter out those permutations in 𝑃𝐶1≺𝑜1 whose prefixes contain a minimal

synthesis before 𝑜1. Apparently, a minimal synthesis can appear before 𝑜1 only if it does not

contain 𝑜1. In this example, 𝐶3 is the only minimal synthesis that does not contain 𝑜1. Every

permutation in 𝑃 (𝐶1∪𝐶3 )≺𝑜1 also belongs to 𝑃𝐶1≺𝑜1 but does not belong to PS(𝐶1 ≺ 𝑜1). Thus,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 56. Publication date: February 2024.



Fast Shapley Value Computation in Data Assemblage Tasks as Cooperative Simple Games (Technical Report) 56:7

PS(𝐶1 ≺ 𝑜1) = 𝑃𝐶1≺𝑜1 \𝑃 (𝐶1∪𝐶3 )≺𝑜1 . We can easily calculate 𝑃 (𝐶1∪𝐶3 )≺𝑜1 = {𝑜2𝑜3𝑜1, 𝑜3𝑜2𝑜1}. Similarly,

PS(𝐶2 ≺ 𝑜1) = 𝑃𝐶2≺𝑜1 \ 𝑃 (𝐶2∪𝐶3 )≺𝑜1 . Thus, B𝑜1 =
⋃

𝐶∈{𝐶1,𝐶2 } 𝑃𝐶≺𝑜1 \
⋃

𝐶∈{𝐶1∪𝐶3,𝐶2∪𝐶3 } 𝑃𝐶≺𝑜1 =

{𝑜2𝑜1𝑜3, 𝑜3𝑜1𝑜2}. □

Let 𝑆 be the set of all minimal syntheses. For any data owner 𝑜 , denote by 𝑆𝑜 the set of minimal

syntheses that contain 𝑜 and by 𝑆𝑜 the set of minimal syntheses that do not contain 𝑜 . Example 2

leads to the following general result.

Corollary 1. In a data assemblage game, for any data owner 𝑜 , B𝑜 =
⋃

𝐶∈𝑆𝑜 𝑃𝐶≺𝑜 \⋃
𝐶∈{𝐶𝑥∪𝐶𝑦 |𝐶𝑥 ∈𝑆𝑜 ,𝐶𝑦 ∈𝑆𝑜 } 𝑃𝐶≺𝑜 =

⋃
𝐶∈𝑆𝑜 𝑃𝐶≺𝑜 \

⋃
𝐶∈{𝐶𝑥∪𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑆𝑜×𝑆𝑜 } 𝑃𝐶≺𝑜 . □

Corollary 1 transforms the problem of counting |B𝑜 | into computing 𝑃𝐶≺𝑜 . Here, we need to

consider every coalition 𝐶 ∈ {𝐶𝑥 ∪ 𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦) ∈ 𝑆𝑜 × 𝑆𝑜 }. It is easy to notice that, for any

𝐶1,𝐶2 ∈ {𝐶𝑥 ∪ 𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦) ∈ 𝑆𝑜 × 𝑆𝑜 }, if 𝐶1 ⊂ 𝐶2, then 𝑃𝐶1≺𝑜 ⊃ 𝑃𝐶2≺𝑜 , and thus, we do not

need to consider 𝐶2 in calculating B𝑜 using Corollary 1. Formally, given a set 𝑆 of coalitions, let

𝑚𝑖𝑛𝑖𝑚𝑎𝑙 (𝑆) = {𝐶 | 𝐶 ∈ 𝑆, �𝐶′ ∈ 𝑆 s.t. 𝐶 ⊃ 𝐶′} be the set of minimal coalitions in 𝑆 . Then, we

can rewrite B𝑜 =
⋃

𝐶∈𝑆𝑜 𝑃𝐶≺𝑜 \
⋃

𝐶∈𝑚𝑖𝑛𝑖𝑚𝑎𝑙 ({𝐶𝑥∪𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑆𝑜×𝑆𝑜 }) 𝑃𝐶≺𝑜 .

For multiple sets of coalitions 𝑆1, . . . , 𝑆𝑛 ⊆ 2
𝑂
, denote by M𝑆1×···×𝑆𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 ({∪𝑛

𝑖=1𝐶𝑖 |
(𝐶1, . . . ,𝐶𝑛) ∈ 𝑆1 × · · · × 𝑆𝑛}) the set of minimal coalitions formed by concatenating one coalition

from each 𝑆𝑖 (1 ≤ 𝑖 ≤ 𝑛). When 𝑛 = 1, we define M𝑆1 =𝑚𝑖𝑛𝑖𝑚𝑎𝑙 (𝑆1). From Corollary 1, we have

|𝐵𝑜 | = | ∪𝐶∈𝑆𝑜 𝑃𝐶≺𝑜 | − | ∪𝐶∈M𝑆𝑜 ×𝑆𝑜
𝑃𝐶≺𝑜 | (3)

According to the definition of 𝑃𝐶≺𝑜 , |𝑃𝐶≺𝑜 | =
( |𝑂 |
|𝐶 |

)
( |𝐶 | − 1)!( |𝑂 | − |𝐶 |)! =

|𝑂 |!
( |𝑂 |− |𝐶 | )! |𝐶 |! ( |𝐶 | − 1)!( |𝑂 | − |𝐶 |)! =

|𝑂 |!
|𝐶 | . Besides,

⋂
𝐶∈𝑆𝑜 𝑃𝐶≺𝑜 = 𝑃 (⋃𝐶∈𝑆𝑜 𝐶 )≺𝑜 holds by defi-

nition. Applying the set union cardinality formula, we have | ∪𝐶∈𝑆𝑜 𝑃𝐶≺𝑜 | = |𝑂 |! ·∑𝑋 ⊆𝑆𝑜
|𝑋 | ≥1

(−1) |𝑋 |−1

|∪𝐶𝑥 ∈𝑋𝐶𝑥 | .

Given a set of coalitions𝑋 , denote byOwner(𝑋 ) the set of data owners participating in at least one
coalition in𝑋 , that is, Owner(𝑋 ) = ∪𝐶𝑥 ∈𝑋𝐶𝑥 . Then, we have | ∪𝐶∈𝑆𝑜 𝑃𝐶≺𝑜 | = |𝑂 |! ·∑𝑋 ⊆𝑆𝑜

|𝑋 | ≥1

(−1) |𝑋 |−1

| Owner(𝑋 ) | .

Similarly, | ∪𝐶∈M𝑆𝑜 ×𝑆𝑜
𝑃𝐶≺𝑜 | = |𝑂 |! · ∑𝑋 ⊆M𝑆𝑜 ×𝑆𝑜

|𝑋 | ≥1

(−1) |𝑋 |−1

| Owner(𝑋 ) | . Plugging into Equation 3, we get

|𝐵𝑜 | = |𝑂 |! ·
( ∑

𝑋 ⊆𝑆𝑜
|𝑋 |≥1

(−1) |𝑋 |−1

| Owner(𝑋 ) | −
∑

𝑋 ⊆M𝑆𝑜 ×𝑆𝑜
|𝑋 |≥1

(−1) |𝑋 |−1

| Owner(𝑋 ) |

)
.

According to the definition of pivotal probabilities, we have

Theorem 7. Given a set of owners𝑂 and a set of minimal syntheses in a data assemblage game, let
𝑂 ′ ⊆ 𝑂 be the set of owners in minimal syntheses. Then, ∀𝑜 ∈ 𝑂 \𝑂 ′,𝜓 (𝑜) = 0 and ∀𝑜 ∈ 𝑂 ′,

𝜓 (𝑜) =
∑︁

𝑋 ⊆𝑆𝑜
|𝑋 | ≥1

(−1) |𝑋 |−1

| Owner(𝑋 ) | −
∑︁

𝑋 ⊆M𝑆𝑜 ×𝑆𝑜
|𝑋 | ≥1

(−1) |𝑋 |−1

| Owner(𝑋 ) | . (4)

The complexity of computing the Shapley value using Theorem 7 is exponential to

max( |𝑆𝑜 |, |M𝑆𝑜×𝑆𝑜 |), but does not rely on the number of data owners.

4 DATA ASSEMBLAGE GAME DECOMPOSITION
In this section, we develop a game decomposition approach. We first describe the ideas and then

illustrate the intuition using examples. Last, we present the algorithm.
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4.1 Key Ideas
For the sake of brevity, hereafter we write a coalition as a sequence of data owners, such as𝐶 = 𝑜1𝑜2
as a shorthand for 𝐶 = {𝑜1, 𝑜2}. Without specific mention, we also write 𝑜1 ∪ 𝑜2 as a shorthand of

{𝑜1} ∪ {𝑜2} = {𝑜1, 𝑜2}, which is a set of two coalitions where each contains only one data owner.

Using Theorem 7 to calculate the Shapley value needs to consider all possible subsets of

𝑆𝑜 and M𝑆𝑜×𝑆𝑜 . When there are many minimal syntheses, either 𝑆𝑜 or 𝑆𝑜 is large, and thus

max( |𝑆𝑜 |, |M𝑆𝑜×𝑆𝑜 |) is large. The computation is costly. Since syntheses are combinations of

data owners, likely the number of data owners is significantly smaller than the number of syn-

theses, that is, |𝑂 | ≪ min(2 |𝑆𝑜 | − 1, 2 |M𝑆𝑜 ×𝑆𝑜 | − 1). Instead of enumerating all possible sub-

sets of 𝑆𝑜 or M𝑆𝑜×𝑆𝑜 , we can rearrange the summation in Equation 4 by dividing the subsets

of 𝑆𝑜 or M𝑆𝑜×𝑆𝑜 into up to |𝑂 | groups according to the number of data owners participat-

ing in those subsets, that is, 𝜓 (𝑜) =
∑ |𝑂 |

𝑘=1

(∑
𝑋 ⊆𝑆𝑜

|𝑂𝑤𝑛𝑒𝑟 (𝑋 ) |=𝑘

(−1) |𝑋 |−1

| Owner(𝑋 ) | −
∑

𝑋 ⊆M𝑆𝑜 ×𝑆𝑜
|𝑂𝑤𝑛𝑒𝑟 (𝑋 ) |=𝑘

(−1) |𝑋 |−1

| Owner(𝑋 ) |

)
=

∑ |𝑂 |
𝑘=1

1

𝑘

(∑
𝑋 ⊆𝑆𝑜

|𝑂𝑤𝑛𝑒𝑟 (𝑋 ) |=𝑘
(−1) |𝑋 |−1 − ∑

𝑋 ⊆M𝑆𝑜 ×𝑆𝑜
|𝑂𝑤𝑛𝑒𝑟 (𝑋 ) |=𝑘

(−1) |𝑋 |−1

)
. For a set of coalitions 𝑆 and a num-

ber 𝑘 (𝑘 ≥ 0), the inclusion-exclusion coefficient (or IEC in short)
4
of 𝑆 with respect to 𝑘

is IEC(𝑆, 𝑘) =
∑

𝑋 ⊆𝑆
| Owner(𝑋 ) |=𝑘

(−1) |𝑋 |−1
. If there is no subset of 𝑆 with 𝑘 data owners, we define

IEC(𝑆, 𝑘) = 0 for 𝑘 ≥ 1, and IEC(𝑆, 0) = −1. We immediately have

𝜓 (𝑜) =
|𝑂 |∑︁
𝑘=1

IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘)
𝑘

(5)

To compute IEC(𝑆𝑜 , 𝑘) and IEC(M𝑆𝑜×𝑆𝑜 , 𝑘), we try to find non-empty subsets of 𝑆𝑜 orM𝑆𝑜×𝑆𝑜
with 𝑘 data owners that can be composed using smaller coalitions. In many situations, due to the

redundancy among different data owners’ data sets, there may exist some structural patterns in

minimal syntheses. For example, in Example 1, every minimal synthesis contains 𝑜1 and picks

two from 𝑜2, 𝑜3, and 𝑜4. This insight inspires a divide-and-conquer strategy: we can divide the set

of minimal syntheses into exclusive subsets such that each subset can be constructed using the

combinations of multiple smaller sub-coalitions. After the decomposition, we can compose 𝑆𝑜 and

M𝑆𝑜×𝑆𝑜 with smaller coalitions and compute IEC(𝑆𝑜 , 𝑘) and IEC(M𝑆𝑜×𝑆𝑜 , 𝑘) faster by enumerating

smaller coalitions. This strategy is more effective for data assemblage tasks, since typically data

sets are assembled in some structured way, such as join, selection, and projection. In this section,

we develop the strategy and implement it using game decomposition.

Let us illustrate the intuition using three examples, each representing a different decomposition

scenario. Each example is introduced in four steps. The first step isminimal synthesis decomposition,
where we partition minimal syntheses by identifying a structural pattern. This pattern allows

us to partition both 𝑆𝑜 and M𝑆𝑜×𝑆𝑜 into smaller coalitions. In the second step, IEC computation
decomposition, we elucidate how to decompose the computation of IEC(𝑆𝑜 , 𝑘) and IEC(M𝑆𝑜×𝑆𝑜 , 𝑘)
by leveraging the insights from minimal synthesis decomposition. The general idea is to divide the

subsets of 𝑆𝑜 andM𝑆𝑜×𝑆𝑜 with𝑘 data owners into distinct groups, where each group can be evaluated
in closed-form or shares the same computation process. In the third step, Shapley value computation,
we detail the Shapley value calculation for a data owner in the provided example, highlighting

the reduced computational complexity achieved through IEC computation decomposition. In the

4
We coin the name because that each IEC represents a coefficient in the well-known inclusion-exclusion principle in

combinatorics [9].
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fourth step, generalization, we generalize our discussions based on the insights gained from the

example.

4.2 Vertical Decomposition
We begin with the vertical decomposition, where a set of minimal syntheses can be decomposed

into the Cartesian product of a group of smaller coalitions such that each pair of these coalitions

does not share any common data owners.

Minimal Synthesis Decomposition. Consider a set of data owners𝑂 = {𝑜1, . . . , 𝑜6} producing
a target data set in coalition and the minimal syntheses are 𝐶1 = 𝑜1𝑜2𝑜5, 𝐶2 = 𝑜1𝑜2𝑜6, 𝐶3 = 𝑜1𝑜3𝑜5,

𝐶4 = 𝑜1𝑜3𝑜6, 𝐶5 = 𝑜4𝑜5, and 𝐶6 = 𝑜4𝑜6. Interestingly, the set of all minimal syntheses can be

decomposed into the Cartesian product of two groups of coalitions, {𝑜1𝑜2, 𝑜1𝑜3, 𝑜4} × {𝑜5, 𝑜6}, that
is, every minimal synthesis contains one among 𝑜1𝑜2, 𝑜1𝑜3, and 𝑜4, and one between 𝑜5 and 𝑜6.

Accordingly we can decompose the minimal syntheses into two groups of smaller coalitions,

𝑆1 = {𝑜1𝑜2, 𝑜1𝑜3, 𝑜4}, 𝑆2 = {𝑜5, 𝑜6}. The sets of data owners participating in the two groups are

𝑂1 = 𝑂𝑤𝑛𝑒𝑟 (𝑆1) = {𝑜1, 𝑜2, 𝑜3, 𝑜4} and 𝑂2 = 𝑂𝑤𝑛𝑒𝑟 (𝑆2) = {𝑜5, 𝑜6}, respectively. The minimal

syntheses can be constructed in a structured way M𝑆1×𝑆2 .
Owner 𝑜1 only participates in some coalitions in 𝑆1. Denote by 𝑆1𝑜

1

the set of coalitions in 𝑆1
that contain 𝑜1 and by 𝑆1𝑜

1

the set of coalitions in 𝑆1 that do not contain 𝑜1. Then, we have 𝑆𝑜1 =

M𝑆1𝑜
1

×𝑆2= {𝐶1,𝐶2,𝐶3,𝐶4} and M𝑆𝑜
1
×𝑆𝑜

1

= M𝑆1𝑜
1

×𝑆1𝑜
1

×𝑆2= {𝑜1𝑜2𝑜4𝑜5, 𝑜1𝑜2𝑜4𝑜6, 𝑜1𝑜3𝑜4𝑜5, 𝑜1𝑜3𝑜4𝑜6}.
IEC Computation Decomposition. To compute𝜓 (𝑜1) using Equation 5, we need to compute

IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) for 𝑘 ∈ [1, |𝑂 |].
We can compute IEC(𝑆𝑜1 , 𝑘) using the decomposition 𝑆𝑜1 = M𝑆1𝑜

1

×𝑆2 . Instead of enumerating

all non-empty subsets of 𝑆𝑜1 , we can efficiently compute IEC(𝑆𝑜1 , 𝑘) by dividing the coalitions in

𝑆𝑜1 with 𝑘 data owners into several groups according to their projections onto 𝑆1𝑜
1

and 𝑆2. This

division allows us to evaluate each group quickly using closed-form expressions.

For each non-empty subset𝑊 ⊆ 𝑆𝑜1 = M𝑆1𝑜
1

×𝑆2 with 𝑘 data owners,𝑊 can be decomposed

into two parts,𝑊 [𝑆1𝑜1 ] ⊆ 𝑆1𝑜1 and𝑊 [𝑆2] ⊆ 𝑆2, where𝑊 [𝑆1𝑜1 ] and𝑊 [𝑆2] are the subsets of

coalitions in 𝑆1𝑜1 and 𝑆2 that compose𝑊 , respectively. Formally, for any subset𝑊 ⊆ M𝑇1⊘···⊘𝑇𝑙 ,
where 𝑇1, . . . ,𝑇𝑙 are sets of coalitions and ⊘ ∈ {×,∪}5, the projection of𝑊 on 𝑇𝑖 is defined as

𝑊 [𝑇𝑖 ] = {𝐶 | 𝐶 ∈ 𝑇𝑖 , ∃𝐶′ ∈𝑊 s.t. 𝐶 ⊆ 𝐶′}.
Clearly, the 𝑘 data owners in 𝑊 must be from either 𝑊 [𝑆1𝑜1 ] or 𝑊 [𝑆2]. Thus,

| Owner(𝑊 [𝑆1𝑜1 ]) | ≥ 1, | Owner(𝑊 [𝑆2]) | ≥ 1, and | Owner(𝑊 [𝑆1𝑜1 ]) | + | Owner(𝑊 [𝑆2]) | = 𝑘 .

Therefore, we can divide all non-empty subsets𝑊 ⊆ 𝑆𝑜1 with 𝑘 data owners into 𝑘 − 1 groups

according to the number of data owners in𝑊 [𝑆𝑜1 ]. We have

IEC(𝑆𝑜1 , 𝑘) = IEC(M𝑆1𝑜
1

×𝑆2 , 𝑘)

=
∑︁

𝑊 ⊆M𝑆
1𝑜

1

×𝑆
2
, | Owner(𝑊 ) |=𝑘

(−1) |𝑊 |−1

=

𝑘−1∑︁
𝑘1=1

∑︁
𝑊 ⊆M𝑆

1𝑜
1

×𝑆
2

| Owner(𝑊 ) |=𝑘, | Owner(𝑊 [𝑆1𝑜
1
] ) |=𝑘1

(−1) |𝑊 |−1
(6)

On the right-hand side of Equation 6, the IEC of each group of subsets𝑊 ⊆ M𝑆1𝑜
1

×𝑆2 , where

| Owner(𝑊 ) | = 𝑘 and | Owner(𝑊 [𝑆𝑜1 ]) | = 𝑘1, can be computed in closed form. That is, for 𝑘 ∈

5∪ will be used in horizontal decomposition (Section 4.3).
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[1, |𝑂1 |] and 𝑘1 ∈ [1, 𝑘 − 1], when 𝑆1𝑜
1

and 𝑆2 do not share any common data owner, we have∑︁
𝑊 ⊆M𝑆

1𝑜
1

×𝑆
2
, | Owner(𝑊 ) |=𝑘

| Owner(𝑊 [𝑆1𝑜
1
] ) |=𝑘1

(−1) |𝑊 |−1 = IEC(𝑆1𝑜1 , 𝑘1) · IEC(𝑆2, 𝑘 − 𝑘1) (7)

The proof of Equation 7 can be found in Appendix A. As an illustration of Equation 7, consider 𝑘 = 3

and 𝑘1 = 2.𝑊1 = {𝑜1𝑜2𝑜5},𝑊2 = {𝑜1𝑜2𝑜6},𝑊3 = {𝑜1𝑜3𝑜5}, and𝑊4 = {𝑜1𝑜3𝑜6} are the 4 non-empty

subsets of 𝑆𝑜1 with 3 data owners where | Owner(𝑊 [𝑆1𝑜1 ]) | = 2. IEC(𝑆1𝑜1 , 2) · IEC(𝑆2, 3 − 2) =

4 × (−1)1−1 = 4. Now plugging Equation 7 into Equation 6, we have

IEC(𝑆𝑜1 , 𝑘) = IEC(M𝑆1𝑜
1

×𝑆2 , 𝑘)

=

𝑘−1∑︁
𝑘1=1

(
IEC(𝑆1𝑜1 , 𝑘1) · IEC(𝑆2, 𝑘 − 𝑘1)

)
=

∑︁
𝑘1+𝑘2=𝑘,𝑘1≥1, 𝑘2≥1

(
IEC(𝑆1𝑜

1

, 𝑘1) · IEC(𝑆2, 𝑘2)
) (8)

Equation 8 shows how we break down the IEC computation for non-empty subsets of 𝑆𝑜1
with 𝑘 data owners into the IEC computation of smaller coalitions, 𝑆1𝑜

1

and 𝑆2, using the de-

composition 𝑆𝑜1 = M𝑆1𝑜
1

×𝑆2 . Similarly, we have IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) = IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

×𝑆2 , 𝑘) =∑
𝑘1+𝑘2=𝑘

𝑘1≥1, 𝑘2≥1

(
IEC(M𝑆1𝑜

1

×𝑆1𝑜
1

, 𝑘1) · IEC(𝑆2, 𝑘2)
)
.

Combing the above two equations, we get

IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) =
∑︁

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥1

( (
IEC(𝑆1𝑜

1

, 𝑘1) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1)
)
· IEC(𝑆2, 𝑘2)

)
(9)

Plugging Equation 9 into Equation 5, we get

𝜓 (𝑜1) =
|𝑂1 |∑︁
𝑘1=1

|𝑂 |− |𝑂1 |∑︁
𝑘2=1

(
IEC(𝑆1𝑜

1

, 𝑘1) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1)
)
· IEC(𝑆2, 𝑘2)

𝑘1 + 𝑘2
(10)

Shapley Value Computation. In Equation 10, we enumerate all non-empty subsets of 𝑆1𝑜
1

,

M𝑆1𝑜
1

×𝑆1𝑜
1

, and 𝑆2, and consider |𝑂1 | · ( |𝑂 | − |𝑂1 |) possible combinations of IEC(𝑆1𝑜
1

, 𝑘1) −
IEC(M𝑆1𝑜

1

×𝑆1𝑜
1

, 𝑘1) (𝑘1 ∈ [1, |𝑂1 |]) and IEC(𝑆2, 𝑘2) (𝑘2 ∈ [1, |𝑂 | − |𝑂1 |]). Instead of enumerat-

ing all (2 |𝑆𝑜1 | − 1) + (2
���M𝑆𝑜

1
×𝑆𝑜

1

��� − 1) = 30 non-empty subsets of 𝑆𝑜1 andM𝑆𝑜
1
×𝑆𝑜

1

using Equation 4,

we only need to consider (2
���𝑆1𝑜

1

��� − 1) + (2

����M𝑆
1𝑜

1

×𝑆
1𝑜

1

���� − 1) + (2 |𝑆2 | − 1) + |𝑂1 | · ( |𝑂 | − |𝑂1 |) = 17 terms

in total using Equation 10. The reduction is significant when |𝑆𝑜1 | or
���M𝑆𝑜

1
×𝑆𝑜

1

��� is large.
Using Equation 10 we can compute 𝜓 (𝑜1) =

(2−0)×2
2+1 + (2−0)×(−1)

2+2 + (−1−2)×2
3+1 + (−1−2)×(−1)

3+2 +
(0−(−1) )×2

4+1 + (0−(−1) )×(−1)
4+2 = 1

6
.

In Equation 10, IEC(𝑆2, 𝑘2) only refers to the data owners in 𝑂 \𝑂1. All data owners in 𝑂1 share

the same IEC(𝑆2, 𝑘2) value. Thus, we can precompute and reuse IEC(𝑆2, 𝑘2) for 𝑘2 ∈ [1, |𝑂 | − |𝑂1 |]
when calculating the Shapley values for the data owners in 𝑂1.

Generalization. We can generalize the above discussion. Partitioning minimal syntheses into

the Cartesian product of non-overlapping coalitions, each devoid of shared data owners, allows us

to decompose both 𝑆𝑜 and M𝑆𝑜×𝑆𝑜 into smaller coalitions. This, in turn, enables the decomposition

of the computation of IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘) into the IEC computation of smaller coalitions.
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Lemma 1. Consider a data assemblage game (𝑂,𝜈) without dummies and the set of minimal
syntheses 𝑆 , where 𝑆 can be decomposed into 𝑛 groups of coalitions 𝑆1, . . . , 𝑆𝑛 such that (1) for any
1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑂𝑖 ∩ 𝑂 𝑗 = ∅ and ∪𝑛

𝑖=1𝑂𝑖 = 𝑂 , where 𝑂𝑖 = Owner(𝑆𝑖 ) (1 ≤ 𝑖 ≤ 𝑛); and (2)
𝑆 = M𝑆1×···×𝑆𝑛 . For a group of coalitions 𝑆𝑖 (1 ≤ 𝑖 ≤ 𝑛), let 𝑉

𝑆𝑖
= M𝑆1×···×𝑆𝑖−1×𝑆𝑖+1 · · ·×𝑆𝑛 . Then, for a

data owner 𝑜 ∈ 𝑂𝑖 and 𝑘 ∈ [1, |𝑂 |],

IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘) =
∑︁

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥1

( (
IEC(𝑆𝑖𝑜 , 𝑘1) − IEC(M𝑆𝑖𝑜 ×𝑆𝑖𝑜 , 𝑘1)

)
· IEC(𝑉

𝑆𝑖
, 𝑘2)

)
,

(11)

where

IEC(𝑉
𝑆𝑖
, 𝑘2) = IEC(M𝑆1×···×𝑆𝑖−1×𝑆𝑖+1 · · ·×𝑆𝑛 , 𝑘2)

=
∑︁∑𝑛

𝑗=1, 𝑗≠𝑖 𝑘
′
𝑗=𝑘2

∀ 𝑗∈[1,𝑛]and 𝑗≠𝑖,𝑘 ′
𝑗 ≥1

𝑛∏
𝑗=1, 𝑗≠𝑖

IEC(𝑆 𝑗 , 𝑘′𝑗 ) (12)

Proof sketch. Equation 11 follows Equation 9 by replacing 𝑆2 by 𝑉𝑆𝑖
. Equation 12 is a general-

ization of Equation 8. □

4.3 Horizontal Decomposition
Now we look at the horizontal decomposition, where a set of minimal syntheses can be partitioned

into exclusive subsets such that each pair of these subsets does not share any common data owners.

Minimal Synthesis Decomposition. Consider a set of data owners𝑂 = {𝑜1, . . . , 𝑜8} producing a
target data set in coalition and the minimal syntheses are𝐶1 = 𝑜1𝑜2,𝐶2 = 𝑜1𝑜3,𝐶3 = 𝑜2𝑜3,𝐶4 = 𝑜4𝑜5,

𝐶5 = 𝑜5𝑜6,𝐶6 = 𝑜6𝑜7, and𝐶7 = 𝑜8. The set of minimal syntheses can be partitioned into three groups,

𝑆1 = {𝑜1𝑜2, 𝑜1𝑜3, 𝑜2𝑜3}, 𝑆2 = {𝑜4𝑜5, 𝑜5𝑜6, 𝑜6𝑜7}, and 𝑆3 = {𝑜8}, such that each data owner participates

in only the minimal syntheses of one group and every minimal synthesis belongs to only one group.

Let 𝑂𝑖 = Owner(𝑆𝑖 ) (1 ≤ 𝑖 ≤ 3), that is, 𝑂1 = {𝑜1, 𝑜2, 𝑜3}, 𝑂2 = {𝑜4, 𝑜5, 𝑜6, 𝑜7}, and 𝑂3 = {𝑜8}. For
𝑜1 ∈ 𝑂1, 𝑆1𝑜

1

= {𝑜1𝑜2, 𝑜1𝑜3} and 𝑆1𝑜
1

= {𝑜2𝑜3}. 𝑆𝑜1 = 𝑆1𝑜
1

and M𝑆𝑜
1
×𝑆𝑜

1

= M𝑆1𝑜
1

×(𝑆1𝑜
1

∪𝑆2∪𝑆3 ) . Let

𝐿
𝑆1

= 𝑆2 ∪ 𝑆3 be the set of minimal syntheses that do not contain any data owner in 𝑂1. Then,

M𝑆𝑜
1
×𝑆𝑜

1

= M𝑆1𝑜
1

×(𝑆1𝑜
1

∪𝐿
𝑆
1

) .

IEC Computation Decomposition. To compute𝜓 (𝑜1) using Equation 5, we need to compute

𝑂𝑆 (𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) for 𝑘 ∈ [1, |𝑂 |]. Clearly, IEC(𝑆𝑜1 , 𝑘) = IEC(𝑆1𝑜
1

, 𝑘).
Since 𝑆1𝑜

1

and 𝑆1𝑜
1

∪ 𝐿
𝑆1

may share common data owners, the computation of IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘)
cannot be decomposed directly using Equation 8. Instead, we can compute IEC(M𝑆𝑜

1
×𝑆𝑜

1

, 𝑘) using
the decomposition M𝑆𝑜

1
×𝑆𝑜

1

= M𝑆1𝑜
1

×(𝑆1𝑜
1

∪𝐿
𝑆
1

) = M𝑆1𝑜
1

×𝑆1𝑜
1

∪M𝑆1𝑜
1

×𝐿
𝑆
1

. We can categorize all

non-empty subsets ofM𝑆𝑜
1
×𝑆𝑜

1

with 𝑘 data owners into distinct cases according to whether their

projections onto M𝑆1𝑜
1

×𝑆1𝑜
1

and M𝑆1𝑜
1

×𝐿
𝑆
1

are empty or not. Through this categorization, we

observe that the subsets falling into the same case share the computation process.

Each non-empty subset 𝑊 ⊆ M𝑆𝑜
1
×𝑆𝑜

1

with 𝑘 data owners can be decomposed into two

parts,𝑊 [M𝑆1𝑜
1

×𝑆1𝑜
1

] ⊆ M𝑆1𝑜
1

×𝑆1𝑜
1

and𝑊 [M𝑆1𝑜
1

×𝐿
𝑆
1

] ⊆ M𝑆1𝑜
1

×𝐿
𝑆
1

, where𝑊 [M𝑆1𝑜
1

×𝑆1𝑜
1

] and
𝑊 [M𝑆1𝑜

1

×𝐿
𝑆
1

] are subsets of coalitions in M𝑆1𝑜
1

×𝑆1𝑜
1

and M𝑆1𝑜
1

×𝐿
𝑆
1

that compose𝑊 , respectively.

The projections𝑊 [M𝑆1𝑜
1

×𝑆1𝑜
1

] and𝑊 [M𝑆1𝑜
1

×𝐿
𝑆
1

] cannot be empty at the same time. Depending

on whether they are empty or not, all possible non-empty subsets𝑊 ⊆ M𝑆𝑜
1
×𝑆𝑜

1

with 𝑘 data own-

ers can be divided into 3 cases,𝑊 [M𝑆1𝑜
1

×𝑆1𝑜
1

] ≠ ∅ and𝑊 [M𝑆1𝑜
1

×𝐿
𝑆
1

] ≠ ∅;𝑊 [M𝑆1𝑜
1

×𝑆1𝑜
1

] = ∅
and𝑊 [M𝑆1𝑜

1

×𝐿
𝑆
1

] ≠ ∅; and𝑊 [M𝑆1𝑜
1

×𝑆1𝑜
1

] ≠ ∅ and𝑊 [M𝑆1𝑜
1

×𝐿
𝑆
1

] = ∅. All subsets falling into
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the same case share the same computation process. That is, for 𝑘 ∈ [1, |𝑂 |],

IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

∪M𝑆1𝑜
1

×𝐿
𝑆
1

, 𝑘)

= IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘) + IEC(M𝑆1𝑜
1

×𝐿
𝑆
1

, 𝑘) − IEC(M (M𝑆
1𝑜

1

×𝑆
1𝑜

1

)×(M𝑆
1𝑜

1

×𝐿
𝑆
1

) , 𝑘)
(13)

The proof of Equation 13 can be found in Appendix B. As an illustration of Equation 13, when

𝑘 = 3, M𝑆1𝑜
1

×𝑆1𝑜
1

= {𝑜1𝑜2𝑜3} and M𝑆1𝑜
1

×𝐿
𝑆
1

= {𝑜1𝑜2𝑜8, 𝑜1𝑜3𝑜8, 𝑜1𝑜2𝑜4𝑜5, 𝑜1𝑜2𝑜5𝑜6, 𝑜1𝑜2𝑜6𝑜7,
𝑜1𝑜3𝑜4𝑜5, 𝑜1𝑜3𝑜5𝑜6, 𝑜1𝑜3𝑜6𝑜7}. There are 3 possible subsets of M𝑆1𝑜

1

×𝑆1𝑜
1

∪ M𝑆1𝑜
1

×𝐿
𝑆
1

with 3

data owners, that is, M𝑆1𝑜
1

×𝑆1𝑜
1

itself and the two single coalition subsets of M𝑆1𝑜
1

×𝐿
𝑆
1

, namely

{𝑜1𝑜2𝑜8} and {𝑜1𝑜3𝑜8}. Since M𝑆1𝑜
1

×𝑆1𝑜
1

has exact 3 data owners, the first term in Equation 13

IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 3) = (−1)1−1 = 1. Similarly, the second term IEC(M𝑆1𝑜
1

×𝐿
𝑆
1

, 3) = 2 × (−1)1−1 = 2.

As there is no subset of M𝑆1𝑜
1

×𝑆1𝑜
1

∪ M𝑆1𝑜
1

×𝐿
𝑆
1

that has 3 data owners and contains coali-

tions from both M𝑆1𝑜
1

×𝑆1𝑜
1

and M𝑆1𝑜
1

×𝐿
𝑆
1

, the third term IEC(M (M𝑆
1𝑜

1

×𝑆
1𝑜

1

)×(M𝑆
1𝑜

1

×𝐿
𝑆
1

) , 3) =

0. Thus, we have IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

∪ M𝑆1𝑜
1

×𝐿
𝑆
1

, 3) = 3. The computation of Equation 13 can

be further simplified. First, the third term M (M𝑆
1𝑜

1

×𝑆
1𝑜

1

)×(M𝑆
1𝑜

1

×𝐿
𝑆
1

) = M𝑆1𝑜
1

×𝑆1𝑜
1

×𝑆1𝑜
1

×𝐿
𝑆
1

=

M𝑆1𝑜
1

×𝑆1𝑜
1

×𝐿
𝑆
1

= M (M𝑆
1𝑜

1

×𝑆
1𝑜

1

)×𝐿
𝑆
1

. Thus, Equation 13 becomes IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

∪M𝑆1𝑜
1

×𝐿
𝑆
1

, 𝑘) =
IEC(M𝑆1𝑜

1

×𝑆1𝑜
1

, 𝑘) + IEC(M𝑆1𝑜
1

×𝐿
𝑆
1

, 𝑘) − IEC(M (M𝑆
1𝑜

1

×𝑆
1𝑜

1

)×𝐿
𝑆
1

, 𝑘). Second, consider the second and
the third terms in the above equation. Since 𝐿

𝑆1
shares no common owner with 𝑆1𝑜

1

andM𝑆1𝑜
1

×𝑆1𝑜
1

,

plugging Equation 8 into these two terms we can get

IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) = IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

∪M𝑆1𝑜
1

×𝐿
𝑆
1

, 𝑘)

= IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘) +
∑︁

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥1

IEC(𝑆1𝑜
1

, 𝑘1) · IEC(𝐿𝑆1 , 𝑘2)

−
∑︁

𝑘1+𝑘2=𝑘, 𝑘1≥1, 𝑘2≥1
IEC(M𝑆1𝑜

1

×𝑆1𝑜
1

, 𝑘1) · IEC(𝐿𝑆1 , 𝑘2)

(14)

Since IEC(𝑆𝑜1 , 𝑘) = IEC(𝑆1𝑜
1

, 𝑘), we have

IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘)

= IEC(𝑆1𝑜
1

, 𝑘) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘) −
∑︁

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥1

( (
IEC(𝑆1𝑜

1

, 𝑘1) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1)
)
· IEC(𝐿

𝑆1
, 𝑘2)

)
=

∑︁
𝑘1+𝑘2=𝑘

𝑘1≥1, 𝑘2≥0

( (
IEC(𝑆1𝑜

1

, 𝑘1) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1)
)
·
(
− IEC(𝐿

𝑆1
, 𝑘2)

) )
(15)

Equation 15 shows how we break down the computation of IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) into the

IEC computation of smaller coalitions, 𝑆1𝑜
1

,M𝑆1𝑜
1

×𝑆1𝑜
1

, and 𝐿
𝑆1
, by leveraging minimal synthesis

decomposition. Notably, the computation of IEC(𝐿
𝑆1
, 𝑘2) can be further decomposed using the

decomposition 𝐿
𝑆1

= 𝑆2 ∪ 𝑆3. According to Equation 14, when 𝑆2 and 𝑆3 share no common data
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owner, for any 𝑘2 ≥ 1 we have

IEC(𝐿
𝑆1
, 𝑘2 ) = IEC(𝑆2 ∪ 𝑆3, 𝑘2 )

= IEC(𝑆2, 𝑘2 ) + IEC(𝑆3, 𝑘2 ) −
∑︁

𝑘′
2
+𝑘′

3
=𝑘2

𝑘′
2
≥1, 𝑘′

3
≥1

(IEC(𝑆2, 𝑘 ′2 ) · IEC(𝑆3, 𝑘 ′3 ) )

= −
∑︁

𝑘′
2
+𝑘′

3
=𝑘2, 𝑘

′
2
≥0, 𝑘′

3
≥0

(
IEC(𝑆2, 𝑘 ′2 ) · IEC(𝑆3, 𝑘 ′3 )

) (16)

Note that Equation 16 can be extended to the case when 𝑘2 = 0, by definition we have IEC(𝐿
𝑆1
, 0) =

IEC(𝑆2, 0) = IEC(𝑆3, 0) = −1. Clearly, IEC(𝐿
𝑆1
, 0) = IEC(𝑆2, 0) · IEC(𝑆3, 0). Thus, Equation 16 holds

for any 𝑘2 ≥ 0. Plugging Equations 15 and 16 into Equation 5, we have

𝜓 (𝑜1) =
|𝑂1 |∑︁
𝑘1=1

|𝑂 |− |𝑂1 |∑︁
𝑘2=0

(
IEC(𝑆1𝑜

1

, 𝑘1) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1)
)
·
(
− IEC(𝐿

𝑆1
, 𝑘2)

)
𝑘1 + 𝑘2

, (17)

where IEC(𝐿
𝑆1
, 𝑘2) = −∑

𝑘 ′
2
+𝑘 ′

3
=𝑘2, 𝑘

′
2
≥0, 𝑘 ′

3
≥0

(
IEC(𝑆2, 𝑘′

2
) · IEC(𝑆3, 𝑘′

3
)
)
.

Shapley Value Computation. In Equation 17, we first consider the computation of IEC(𝐿
𝑆1
, 𝑘2).

By definition, IEC(𝐿
𝑆1
, 0) = −1, so we only need to compute IEC(𝐿

𝑆1
, 𝑘2) for 𝑘2 ≥ 1. Additionally,

IEC(𝑆2, 0) = IEC(𝑆3, 0) = −1, which means we only need to enumerate all non-empty subsets of 𝑆2
and 𝑆3. We consider |𝑂2 | · |𝑂3 | possible combinations of IEC(𝑆2, 𝑘 ′2) (𝑘 ′2 ∈ [1, |𝑂2 |]) and IEC(𝑆3, 𝑘 ′3)
(𝑘 ′

3
∈ [1, |𝑂3 |]). We exclude combinations when 𝑘 ′

2
= 0 or 𝑘 ′

3
= 0 since they result in − IEC(𝑆3, 𝑘 ′3)

and − IEC(𝑆2, 𝑘 ′2), respectively, which are computed during the enumeration of non-empty subsets

of 𝑆3 and 𝑆2. Thus, to compute IEC(𝐿
𝑆1
, 𝑘2) for 𝑘2 ∈ [1, |𝑂 | − |𝑂1 |], instead of enumerating all

2
|𝐿

𝑆
1

| −1 = 15 non-empty subsets of 𝐿
𝑆1
, we only need to consider 2

|𝑆2 | −1+2 |𝑆3 | −1+ |𝑂2 | · |𝑂3 | = 12

terms using Equation 16. The reduction is significant when |𝐿
𝑆1
| is large.

In Equation 17, in addition to the above 12 terms to compute IEC(𝐿
𝑆1
, 𝑘2) for 𝑘2 ∈ [0, |𝑂 | − |𝑂1 |],

we enumerate all non-empty subsets of 𝑆1𝑜
1

andM𝑆1𝑜
1

×𝑆1𝑜
1

, respectively, and consider all |𝑂1 | · ( |𝑂 |−
|𝑂1 |+1) possible combinations of IEC(𝑆1𝑜

1

, 𝑘1)−IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1) (𝑘1 ∈ [1, |𝑂1 |]) and IEC(𝐿𝑆1 , 𝑘2).

Instead of enumerating all (2 |𝑆𝑜1 |−1)+(2
���M𝑆𝑜

1
×𝑆𝑜

1

���−1) = 514 non-empty subsets of 𝑆𝑜1 andM𝑆𝑜
1
×𝑆𝑜

1

using Equation 4, we only need to consider (2 |𝑆1𝑜1 |−1)+(2

����M𝑆
1𝑜

1

×𝑆
1𝑜

1

����−1)+12+|𝑂1 | · ( |𝑂 |− |𝑂1 |+1) =
34 terms in total using Equation 17. The reduction is significant when |𝑆𝑜1 | or |M𝑆𝑜

1
×𝑆𝑜

1

| is large.
Now using Equation 17 we can compute𝜓 (𝑜1) = (2−0)×1

2+0 + (2−0)×(−1)
2+1 + (2−0)×(−3)

2+2 + (2−0)×5
2+3 +

(2−0)×(−2)
2+4 + (−1−1)×1

3+0 + (−1−1)×(−1)
3+1 + (−1−1)×(−3)

3+2 + (−1−1)×(−5)
3+3 + (−1−1)×(−2)

3+4 = 11

105
.

In Equation 17, IEC(𝐿
𝑆1
, 𝑘2) only refers to the data owners in𝑂 \𝑂1. All data owners in𝑂1 share

the same IEC(𝐿
𝑆1
, 𝑘2) value. We can precompute and reuse IEC(𝐿

𝑆1
, 𝑘2) for 𝑘2 ∈ [0, |𝑂 | − |𝑂1 |] when

calculating the Shapley values for data owners in 𝑂1.

Generalization. We can generalize the above discussion. Partitioning minimal syntheses into

distinct, non-overlapping (in terms of data owners) subsets allows us to partition both 𝑆𝑜 andM𝑆𝑜×𝑆𝑜
into smaller coalitions. Subsequently, this allows the computation of IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘)
to be decomposed using IEC within these smaller coalitions.

Lemma 2. Consider a data assemblage game (𝑂,𝜈) without dummies and the set of minimal
syntheses 𝑆 , where 𝑆 can be decomposed into 𝑛 groups of coalitions 𝑆1, . . . , 𝑆𝑛 such that (1) for any
1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑂𝑖 ∩𝑂 𝑗 = ∅ and ∪𝑛

𝑖=1𝑂𝑖 = 𝑂 , where 𝑂𝑖 = Owner(𝑆𝑖 ) (1 ≤ 𝑖 ≤ 𝑛); and (2) 𝑆 = ∪𝑛
𝑖=1𝑆𝑖 .

For a group of coalitions 𝑆𝑖 (1 ≤ 𝑖 ≤ 𝑛), let 𝐿
𝑆𝑖
= 𝑆1 ∪ · · · ∪ 𝑆𝑖−1 ∪ 𝑆𝑖+1 · · · ∪ 𝑆𝑛 . Then, for a data owner
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𝑜 ∈ 𝑂𝑖 (1 ≤ 𝑖 ≤ 𝑛) and 𝑘 ∈ [1, |𝑂 |],

IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘) =
∑︁

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥0

( (
IEC(𝑆𝑖𝑜 , 𝑘1) − IEC(M𝑆𝑖𝑜 ×𝑆𝑖𝑜 , 𝑘1)

)
·
(
− IEC(𝐿

𝑆𝑖
, 𝑘2)

) )
,

(18)

where
IEC(𝐿

𝑆𝑖
, 𝑘2) = IEC(𝑆1 ∪ · · · ∪ 𝑆𝑖−1 ∪ 𝑆𝑖+1 · · · ∪ 𝑆𝑛, 𝑘2)

=(−1)𝑛−2
∑︁∑𝑛

𝑗=1, 𝑗≠𝑖 𝑘
′
𝑗=𝑘2

∀ 𝑗∈[1,𝑛]and 𝑗≠𝑖,𝑘 ′
𝑗 ≥0

𝑛∏
𝑗=1, 𝑗≠𝑖

IEC(𝑆 𝑗 , 𝑘′𝑗 ) (19)

Proof sketch. Equation 18 can be obtained following Equation 15. Equation 19 is a generaliza-

tion of Equation 16. □

4.4 Hybrid Decomposition
Now let us consider a more sophisticated case where a set of minimal syntheses cannot be directly

partitioned vertically or horizontally in the ways shown in Sections 4.2 and 4.3. We divide the mini-

mal syntheses into exclusive subsets that can be further decomposed using vertical decomposition.

Different from horizontal decomposition, in this partitioning we allow that some exclusive subsets

may have data owners in common as long as upon decomposing each pair of all resulting smaller

coalitions shall have no data owners in common.

Minimal Synthesis Decomposition. Consider a set of data owners𝑂 = {𝑜1, . . . , 𝑜5} producing
a target data set in coalition, and the minimal syntheses are 𝐶1 = 𝑜1𝑜3, 𝐶2 = 𝑜1𝑜4, 𝐶3 = 𝑜2𝑜3,

𝐶4 = 𝑜2𝑜4, 𝐶5 = 𝑜1𝑜5, 𝐶6 = 𝑜2𝑜5, 𝐶7 = 𝑜3𝑜5, and 𝐶8 = 𝑜4𝑜5. We can partition the minimal syntheses

into three exclusive subsets: {𝐶1,𝐶2,𝐶3,𝐶4}, {𝐶5,𝐶6}, and {𝐶7,𝐶8} such that each subset can be

further decomposed as the Cartesian product of three sets of smaller coalitions, namely, 𝑆1 =

{𝑜1, 𝑜2}, 𝑆2 = {𝑜3, 𝑜4}, and 𝑆3 = {𝑜5}, that is, {𝐶1,𝐶2,𝐶4,𝐶4} = M𝑆1×𝑆2 , {𝐶5,𝐶6} = M𝑆1×𝑆3 , and
{𝐶6,𝐶7} = M𝑆2×𝑆3 . Let 𝑂𝑖 = Owner(𝑆𝑖 ) (1 ≤ 𝑖 ≤ 3), that is, 𝑂1 = {𝑜1, 𝑜2}, 𝑂2 = {𝑜3, 𝑜4}, and
𝑂3 = {𝑜5}. Under this decomposition, the minimal syntheses can be constructed in a structured

way, that is,M𝑆1×𝑆2 ∪M𝑆1×𝑆3 ∪M𝑆2×𝑆3 .
For 𝑜1 ∈ 𝑂1, 𝑆1𝑜

1

= {𝑜1} and 𝑆1𝑜
1

= {𝑜2}. Let 𝑉𝑆1 = 𝑆2 ∪ 𝑆3 be the set of coalitions with data

owners in 𝑂 \𝑂1 that can compose minimal syntheses with each coalition in 𝑆1, and 𝐿𝑆1
= M𝑆2×𝑆3

the set of minimal syntheses that do not contain any data owner in 𝑆1. We have 𝑆𝑜1 = M𝑆1𝑜
1

×𝑉
𝑆
1

,

𝑆𝑜1 = M𝑆1𝑜
1

×𝑉
𝑆
1

∪ 𝐿
𝑆1
, and M𝑆𝑜

1
×𝑆𝑜

1

= M𝑆1𝑜
1

×𝑆1𝑜
1

×𝑉
𝑆
1

∪M𝑆1𝑜
1

×𝑉
𝑆
1

×𝐿
𝑆
1

.

IEC Computation Decomposition. To compute 𝜓 (𝑜1) using Equation 5, we need to com-

pute IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) for 𝑘 ∈ [1, |𝑂 |]. According to Equation 14, we have

IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) = IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

×𝑉
𝑆
1

∪ M𝑆1𝑜
1

×𝑉
𝑆
1

×𝐿
𝑆
1

, 𝑘) =
∑

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥1

IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1) ·

IEC(𝑉
𝑆1
, 𝑘2) + ∑

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥1

IEC(𝑆1𝑜
1

, 𝑘1) · IEC(M𝑉
𝑆
1

×𝐿
𝑆
1

, 𝑘2) − ∑
𝑘1+𝑘2=𝑘

𝑘1≥1, 𝑘2≥1
IEC(M𝑆1𝑜

1

×𝑆1𝑜
1

, 𝑘1) ·

IEC(M𝑉
𝑆
1

×𝐿
𝑆
1

, 𝑘2). Combing the above two equations, we have

IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘)

=
∑︁

𝑘1+𝑘2=𝑘, 𝑘1≥1, 𝑘2≥1

((
IEC(𝑆1𝑜

1

, 𝑘1) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1)
)

·
(
IEC(𝑉

𝑆1
, 𝑘2) − IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2)
)) (20)
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On the right-hand side of Equation 20, we can further decompose the computation of IEC(𝑉
𝑆1
, 𝑘2) −

IEC(M𝑉
𝑆
1

×𝐿
𝑆
1

, 𝑘2) using the decompositions𝑉
𝑆1

= 𝑆2 ∪ 𝑆3 and 𝐿𝑆1
= M𝑆2×𝑆3 . Plugging Equation 16

into IEC(𝑉
𝑆1
, 𝑘2) and Equation 8 into IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2), we have IEC(𝑉𝑆1 , 𝑘2) − IEC(M𝑉
𝑆
1

×𝐿
𝑆
1

, 𝑘2) =
IEC(𝑆2, 𝑘2) + IEC(𝑆3, 𝑘2) − 2 ·∑ 𝑘 ′

2
+𝑘 ′

3
=𝑘2

𝑘 ′
2
≥1, 𝑘 ′

3
≥1

(
IEC(𝑆2, 𝑘 ′2) · IEC(𝑆3, 𝑘 ′3)

)
. Plugging this equation and Equa-

tion 20 into Equation 5, we have

𝜓 (𝑜1) =
|𝑂1 |∑︁
𝑘1=1

|𝑂 |− |𝑂1 |∑︁
𝑘2=1

((
IEC(𝑆1𝑜

1

, 𝑘1) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1)
)
·
IEC(𝑉

𝑆1
, 𝑘2) − IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2)
𝑘1 + 𝑘2

)
, (21)

where IEC(𝑉
𝑆1
, 𝑘2)−IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2) = IEC(𝑆2, 𝑘2)+IEC(𝑆3, 𝑘2) −2 ·
∑

𝑘 ′
2
+𝑘 ′

3
=𝑘2

𝑘 ′
2
≥1, 𝑘 ′

3
≥1

(
IEC(𝑆2, 𝑘′

2
) · IEC(𝑆3, 𝑘′

3
)
)
.

Shapley Value Computation. In Equation 21, to compute IEC(𝑉
𝑆1
, 𝑘2) − IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2),
we enumerate all non-empty subsets of 𝑆2 and 𝑆3, and consider |𝑂2 | · |𝑂3 | possible combinations

of IEC(𝑆2, 𝑘 ′2) (𝑘 ′2 ∈ [1, |𝑂2 |]) and IEC(𝑆3, 𝑘 ′3) (𝑘 ′3 ∈ [1, |𝑂3 |]). Thus, instead of enumerating all

2
|𝑉

𝑆
1

| − 1 + 2

|M𝑉
𝑆
1

×𝐿
𝑆
1

| − 1 = 10 non-empty subsets of 𝑉
𝑆1

and M𝑉
𝑆
1

×𝐿
𝑆
1

, we only need to consider

2
|𝑆2 | − 1 + 2

|𝑆3 | − 1 + |𝑂2 | · |𝑂3 | = 6 terms in total in the computation. The reduction is significant

when |𝑉
𝑆1
| or

���M𝑉
𝑆
1

×𝐿
𝑆
1

��� is large.
In Equation 21, in addition to the 6 terms in computing IEC(𝑉

𝑆1
, 𝑘2) − IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2) (𝑘2 ∈
[1, |𝑂 | − |𝑂1 |]), we enumerate all non-empty subsets of 𝑆1𝑜

1

andM𝑆1𝑜
1

×𝑆1𝑜
1

and consider |𝑂1 | · ( |𝑂 | −
|𝑂1 |) possible combinations of IEC(𝑆1𝑜

1

, 𝑘1) − IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

, 𝑘1) (𝑘1 ∈ [1, |𝑂1 |]) and IEC(𝑉𝑆1 , 𝑘2) −

IEC(M𝑉
𝑆
1

×𝐿
𝑆
1

, 𝑘2). Instead of enumerating all (2 |𝑆𝑜1 | −1) + (2 |M𝑆𝑜
1
×𝑆𝑜

1

| −1) = 38 non-empty subsets

of 𝑆𝑜1 and M𝑆𝑜
1
×𝑆𝑜

1

using Equation 4, we only need to consider (2 |𝑆1𝑜1 | − 1) + (2
|M𝑆

1𝑜
1

×𝑆
1𝑜

1

|
− 1) +

6 + |𝑂1 | · ( |𝑂 | − |𝑂1 |) = 14 terms in total using Equation 21. The reduction is significant when |𝑆𝑜1 |
or |M𝑆𝑜

1
×𝑆𝑜

1

| is large.
Now we can use Equation 21 to compute 𝜓 (𝑜1) =

(1−0)×3
1+1 + (1−0)×(−5)

1+2 + (1−0)×2
1+3 + (0−1)×3

2+1 +
(0−1)×(−5)

2+2 + (0−1)×2
2+3 = 11

60
.

In Equation 21, IEC(𝑉
𝑆1
, 𝑘2) − IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2) only refers to the data owners in 𝑂 \ 𝑂1. All

data owners in 𝑂1 share the same IEC(𝑉
𝑆1
, 𝑘2) − IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2) value. We can precompute and

reuse IEC(𝑉
𝑆1
, 𝑘2) − IEC(M𝑉

𝑆
1

×𝐿
𝑆
1

, 𝑘2) for 𝑘2 ∈ [0, |𝑂 | − |𝑂1 |] when calculating Shapley values for

data owners in 𝑂1.

Generalization. Again, let us generalize the above discussion. Partitioning minimal syntheses

into exclusive subsets with vertical decomposition potential enables us to decompose both 𝑆𝑜
and M𝑆𝑜×𝑆𝑜 into smaller coalitions. This, in turn, facilitates the decomposition of IEC(𝑆𝑜 , 𝑘) −
IEC(M𝑆𝑜×𝑆𝑜 , 𝑘) through the use of IEC within these smaller coalitions.

Theorem 8. Consider a data assemblage game (𝑂,𝜈) without dummies and the set of minimal
syntheses 𝑆 , where 𝑆 can be decomposed into 𝑛 groups of coalitions 𝑆1, . . . , 𝑆𝑛 such that (1) for any
1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑂𝑖 ∩ 𝑂 𝑗 = ∅ and ∪𝑛

𝑖=1𝑂𝑖 = 𝑂 , where 𝑂𝑖 = Owner(𝑆𝑖 ) (1 ≤ 𝑖 ≤ 𝑛); and (2) there
exists a unique non-empty subset N ⊆ 2

{1,...,𝑛} \ ∅ where 𝑆 = ∪{ 𝑗1,..., 𝑗𝑙 }∈NM𝑆 𝑗
1
×···×𝑆 𝑗𝑙

. For any 𝑆𝑖

(1 ≤ 𝑖 ≤ 𝑛), denote by N𝑖 = {𝑋 | 𝑋 ∈ N and 𝑖 ∈ 𝑋 } and N𝑖 = {𝑋 | 𝑋 ∈ N and 𝑖 ∉ 𝑋 }, respectively,
the set of elements in N that do and do not contain 𝑖 . Denote by N𝑖𝑐 = {𝑋 \ {𝑖} | 𝑋 ∈ N𝑖 } the set of
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elements in N𝑖 by excluding 𝑖 . Then, we have

IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘)

=
∑︁

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥1

( (
IEC(𝑆𝑖𝑜 , 𝑘1) − IEC(M𝑆𝑖𝑜 ×𝑆𝑖𝑜 , 𝑘1)

)
·
(
IEC(𝑉

𝑆𝑖
, 𝑘2) − IEC(M𝑉

𝑆𝑖
×𝐿

𝑆𝑖
, 𝑘2)

) )
, (22)

where
IEC(𝑉

𝑆𝑖
, 𝑘2) = IEC(∪{ 𝑗1,..., 𝑗𝑙 }∈N𝑖𝑐

M𝑆 𝑗
1
×···×𝑆 𝑗𝑙

, 𝑘2)

=
∑︁

𝑋 ⊆N𝑖𝑐

|𝑋 | ≥1

(
(−1) |𝑋 |−1

∑︁
let {𝑡1,...,𝑡𝑙 }=∪𝑍 ∈𝑋𝑍

𝑘 ′
𝑡
1

+···+𝑘 ′
𝑡𝑙
=𝑘2

∀1≤ 𝑗≤𝑙,𝑘 ′
𝑡 𝑗
≥1

𝑙∏
𝑗=1

IEC(𝑆𝑡 𝑗 , 𝑘′𝑡 𝑗 )
)
,

(23)

and similarly,

IEC(M𝑉
𝑆𝑖
×𝐿

𝑆𝑖
, 𝑘2) = IEC(∪{ 𝑗1,..., 𝑗𝑙 }∈MN𝑖𝑐 ×N

𝑖

M𝑆 𝑗
1
×···×𝑆 𝑗𝑙

, 𝑘2)

=
∑︁

𝑋 ⊆MN𝑖𝑐 ×N
𝑖

|𝑋 | ≥1

(
(−1) |𝑋 |−1

∑︁
let {𝑡1,...,𝑡𝑙 }=∪𝑍 ∈𝑋𝑍

𝑘 ′
𝑡
1

+···+𝑘 ′
𝑡𝑙
=𝑘2

∀1≤ 𝑗≤𝑙,𝑘 ′
𝑡 𝑗
≥1

𝑙∏
𝑗=1

IEC(𝑆𝑡 𝑗 , 𝑘′𝑡 𝑗 )
)
.

(24)

Proof sketch. Equation 22 can be obtained following Equation 20. Equation 23

is a generalization of Equation 14. Equation 24 can be obtained by computing

𝐼𝐸𝐶 (∪{ 𝑗1,..., 𝑗𝑙 }∈MN𝑖𝑐 ×N
𝑖
M𝑆 𝑗

1
×···×𝑆 𝑗𝑙

, 𝑘2) using Equation 23. □

Note that Equations 12 and 19 are two special cases of Equation 23 for any 𝑘2 ≥ 1. In the

hybrid decomposition, when 𝑉
𝑆𝑖

= M𝑆1×···𝑆𝑖−1×𝑆𝑖+1 · · ·×𝑆𝑛 , N𝑖𝑐 = {{1, . . . , 𝑖, 𝑖 + 1, . . . , 𝑛}}. We can

obtain Equation 12 by plugging N𝑖𝑐 = {{1, . . . , 𝑖, 𝑖 + 1, . . . , 𝑛}} into Equation 23. Similarly, when

𝑉
𝑆𝑖
= ∪𝑛

𝑗=1, 𝑗≠𝑖𝑆 𝑗 , N𝑖𝑐 = {{1}, . . . , {𝑖}, {𝑖 + 1}, . . . , {𝑛}}. We can obtain Equation 19 by plugging N𝑖𝑐

= {{1}, . . ., {𝑖}, {𝑖 + 1}, . . ., {𝑛}} into Equation 23.

4.5 Data Assemblage Game Decomposition
The previous discussion illustrates our ideas of decomposing minimal syntheses to speed up the

Shapley value computation. Now, we formulate game decomposition, which implements this

process.

Definition 9 (Game Decomposition). Given a data assemblage game (𝑂,𝜈) without dummies

and the set of minimal syntheses 𝑆 . A set of data assemblage games 𝐷 = {(𝑂1, 𝜈1), . . . , (𝑂𝑛, 𝜈𝑛)},
where every game (𝑂𝑖 , 𝜈𝑖 ) (1 ≤ 𝑖 ≤ 𝑛) does not have dummies and the corresponding set of

minimal syntheses is 𝑆𝑖 , is a decomposition of (𝑂,𝜈) if (owner partitioning) 𝑂 = ∪𝑛
𝑖=1𝑂𝑖 , where

𝑂𝑖 = Owner(𝑆𝑖 ) (1 ≤ 𝑖 ≤ 𝑛), and 𝑂𝑖 ∩𝑂 𝑗 = ∅ for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛; and (modularity) there exists a
unique non-empty subset N ⊆ 2

{1,...,𝑛} \ ∅ such that 𝑆 = ∪{ 𝑗1,..., 𝑗𝑙 }∈NM𝑆 𝑗
1
×···×𝑆 𝑗𝑙

. N is called the

decomposition mapping (DM in short) from 𝑆 to 𝑆1, . . . , 𝑆𝑛 , denote by DM(𝑆 → {𝑆1, . . . , 𝑆𝑛}).
A decomposition 𝐷 is grounded if every |𝑂𝑖 | = 1 (1 ≤ 𝑖 ≤ 𝑛). A decomposition 𝐷 is trivial if
𝑛 = 1. □

Proposition 10 (Grounded decomposition). Every data assemblage game without dummies
has a unique grounded decomposition.
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Proof. Consider a data assemblage game (𝑂,𝜈) without dummies, where 𝑂 = {𝑜1, . . . , 𝑜𝑛}(𝑛 ≥
1) and the set of minimal syntheses 𝑆 . For 1 ≤ 𝑖 ≤ 𝑛, we define a data assemblage game (𝑂𝑖 , 𝜈𝑖 )
such that 𝑂𝑖 = {𝑜𝑖 }, 𝜈𝑖 ({𝑜𝑖 }) = 1 otherwise 0. Clearly, the set of minimal syntheses for the game

(𝑂𝑖 , 𝜈𝑖 ) is 𝑆𝑖 = {𝑂𝑖 }. We show that 𝐷 = {(𝑂1, 𝜈1), . . . , (𝑂𝑛, 𝜈𝑛)} is a unique grounded decomposition

of (𝑂,𝜈).
We first prove that 𝐷 is a decomposition of (𝑂,𝜈). 𝐷 meets the owner partitioning requirement

apparently. For the modularity requirement, for any minimal synthesis 𝐶 = 𝑜 𝑗1 · · ·𝑜 𝑗𝑙 of (𝑂,𝜈),
denote by 𝐼 (𝐶) = { 𝑗1, . . . , 𝑗𝑙 } ⊆ {1, . . . , 𝑛} the set of index of owners in 𝐶 . Clearly, the mapping

between 𝐶 and 𝐼 (𝐶) is one to one. Now we show that the non-empty subset N = {𝐼 (𝐶) | 𝐶 ∈ 𝑆} ⊆
2
{1,...,𝑛} \ ∅ is a decomposition mapping from 𝑆 to {𝑆1, . . . , 𝑆𝑛}.
First, for any 𝐿 = { 𝑗1, . . . , 𝑗𝑙 } ∈ N , 𝐶 = 𝑜 𝑗1 · · ·𝑜 𝑗𝑙 is a minimal synthesis such that

𝐼 (𝐶) = 𝐿 and 𝐶 = 𝐶𝑆 𝑗
1
×···×𝑆 𝑗𝑙

. Since N is the set of 𝐼 (𝐶) for all minimal syntheses 𝐶 ∈ 𝑆 ,

𝑆 = ∪{ 𝑗1,..., 𝑗𝑙 }∈N𝐶𝑆 𝑗
1
×···×𝑆 𝑗𝑙

. Second, assume there is another non-empty subset N ′ ⊆ 2
{1,...,𝑛} \ ∅

such that 𝑆 = ∪{ 𝑗1,..., 𝑗𝑙 }∈N′𝐶𝑆 𝑗
1
×···×𝑆 𝑗𝑙

and N ≠ N ′
. Then, there must exist 𝐿 ∈ N such that 𝐿 ∉ N ′

.

Since 𝐿 is a set of index of owners in some minimal synthesis 𝐶 ∈ 𝑆 , 𝐿 ∉ N ′
implies that 𝐶 ∉

∪{ 𝑗1,..., 𝑗𝑙 }∈N′𝐶𝑆 𝑗
1
×···×𝑆 𝑗𝑙

. This leads to a contradiction to the assumption 𝑆 = ∪{ 𝑗1,..., 𝑗𝑙 }∈N′𝐶𝑆 𝑗
1
×···×𝑆 𝑗𝑙

.

Thus, the modularity requirement is satisfied. Thus, 𝐷 is a decomposition of (𝑂,𝜈).
Since every |𝑂𝑖 | = 1 for 1 ≤ 𝑖 ≤ 𝑛, 𝐷 is a grounded decomposition of (𝑂,𝜈).

A decomposition can be one of the following four cases. If 𝑆 = M𝑆1×···×𝑆𝑛 and 𝑛 > 1, 𝐷 is a

vertical decomposition; if 𝑆 = 𝑆1 ∪ · · · ∪ 𝑆𝑛 and 𝑛 > 1, 𝐷 is a horizontal decomposition; if 𝐷 is

not horizontal, vertical, or trivial, then it is a hybrid decomposition; otherwise, 𝐷 is trivial. For a

grounded decomposition 𝐷 , if 𝐷 is vertical or horizontal, then it can help to speed up the Shapley

value computation as illustrated in Sections 4.2 and 4.3. Otherwise, it does not help to accelerate

the Shapley value computation.

In general, a game may have multiple decompositions. It can be shown that a game cannot

have a vertical decomposition and a horizontal decomposition at the same time. If a game has

a vertical or horizontal decomposition (not necessary grounded), then it is vertically or hori-
zontally decomposable, respectively. Otherwise, it is holistic decomposable. A game (𝑂,𝜈)
can be in only one of the following three mutually exclusive categories: vertically decomposable,

horizontally decomposable, and holistic decomposable. A thorough treatment of decomposability

of data assemblage games is an interesting problem, but is well beyond the capacity of this paper. It

will be addressed in a separate study.

Using Equations 11, 18, and 22 to compute IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) in Equation 5 needs

to consider all possible subsets of 𝑆 𝑗 (1 ≤ 𝑗 ≤ 𝑛). When there are many coalitions in 𝑆 𝑗 , the

computation can be still costly. We can recursively decompose a data assemblage game until

reaching the grounded decomposition.

For example, consider a set of data owners 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5} producing a target data set

in coalition, and the minimal syntheses are 𝐶1 = 𝑜1𝑜3, 𝐶2 = 𝑜2𝑜3, 𝐶3 = 𝑜1𝑜4𝑜5, 𝐶4 = 𝑜2𝑜4𝑜5, and

𝐶5 = 𝑜3𝑜4𝑜5. We can first decompose (𝑂,𝜈) into three sub-games (𝑂1, 𝜈1), (𝑂2, 𝜈2), and (𝑂3, 𝜈3)
using the hybrid decomposition, where 𝑂1 = {𝑜1, 𝑜2}, 𝑂2 = {𝑜3}, and 𝑂3 = {𝑜4, 𝑜5}, and the

corresponding sets of minimal syntheses are 𝑆1 = {𝑜1, 𝑜2}, 𝑆2 = {𝑜3}, and 𝑆3 = {𝑜4𝑜5}, respectively.
Then, the set of minimal syntheses can be constructed asM𝑆1×𝑆2 ∪M𝑆1×𝑆3 ∪M𝑆2×𝑆3 . Then, (𝑂1, 𝜈1)
and (𝑂3, 𝜈3) can be further decomposed into two sub-games where each sub-game contains only

one data owner using the horizontal decomposition and the vertical decomposition, respectively.

To record the result of recursive decomposition, we can build a decomposition tree T [70],

where each tree node is a decomposition. To keep our notations simple, we also use symbol 𝐷

to denote a node in a decomposition tree. For a node 𝐷 ∈ T , we record all children nodes as
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{𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5}
⊙𝐷1

{𝑜1, 𝑜2}
⊕𝐷2 {𝑜3}𝐷3

{𝑜4, 𝑜5}
⊗𝐷4

{𝑜1}𝐷5 {𝑜2}𝐷6 {𝑜4}𝐷7 {𝑜5}𝐷8

Fig. 1. Example of Decomposition Tree.

𝐷.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, the parent node as 𝐷.𝑝𝑎𝑟𝑒𝑛𝑡 , the set of data owners as 𝐷.𝑂 , and the set of minimal

syntheses as 𝐷.𝑆 . Besides, we use the symbols ⊗, ⊕, and ⊙ to represent the vertical decomposition,

the horizontal decomposition, and the hybrid decomposition, respectively. The decomposition tree

of (𝑂,𝜈) is as shown in Figure 1.

To compute 𝜓 (𝑜1) according to Equation 5, we need to compute IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘),
which can be obtained using Equation 22. Given that 𝐷1 is holistic decomposable, we have

IEC(𝑆𝑜1 , 𝑘) − IEC(M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘) = IEC(𝐷1 .𝑆𝑜1 , 𝑘) − IEC(𝐷1 .M𝑆𝑜
1
×𝑆𝑜

1

, 𝑘)6 = ∑
𝑘1+𝑘2=𝑘

𝑘1≥1, 𝑘2≥1

( (
IEC(𝐷1 .𝑉𝐷2 .𝑆

, 𝑘1) −

IEC(𝐷1 .M𝑉
𝐷
2
.𝑆
×𝐿

𝐷
2
.𝑆
, 𝑘1)

)
·
(
IEC(𝐷2 .𝑆𝑜1 , 𝑘2) − IEC(𝐷2 .M𝑆𝑜

1
×𝑆𝑜

1

, 𝑘2)
) )
.

Notably, IEC(𝐷1 .𝑉𝐷2 .𝑆
, 𝑘1)−IEC(𝐷1 .M𝑉

𝐷
2
.𝑆
×𝐿

𝐷
2
.𝑆
, 𝑘1) involves only the data owners in Owner(𝐷1 .𝑆)\

Owner(𝐷2 .𝑆), that is, 𝐷1 .𝑂 \ 𝐷2.𝑂 . Given a non-leaf node 𝐷 ∈ T and one of its children 𝐷𝑐 , for any

data owner 𝑜 ∈ 𝐷𝑐 .𝑂 , denote by IECE(𝐷,𝐷𝑐 , 𝑘) the part of computation excluding data owners in

𝐷𝑐 .𝑂 using Equations 11, 18, and 22. Then, for 𝑘 ≥ 1,

IECE(𝐷,𝐷𝑐 , 𝑘) =


IEC(𝐷.𝑉

𝐷𝑐 .𝑆
, 𝑘) if 𝐷 is a vertical decomposition,

− IEC(𝐷.𝐿
𝐷𝑐 .𝑆

, 𝑘) if 𝐷 is a horizontal decomposition,

IEC(𝐷.𝑉
𝐷𝑐 .𝑆

, 𝑘) − IEC(𝐷.M𝑉
𝐷𝑐 .𝑆

×𝐿
𝐷𝑐 .𝑆

, 𝑘) if 𝐷 is a hybrid decomposition.

Define IECE(𝐷, 𝐷𝑐 , 0) = 0 when 𝐷 is a vertical or hybrid decomposition, and IECE(𝐷,𝐷𝑐 , 0) = 1

when 𝐷 is a horizontal decomposition.

Based on the above discussion, we have the following main result on recursive game decomposi-

tion and Shapley value computation.

Theorem 11. Given a decomposition tree T with the set of data owners 𝑂 and a data owner 𝑜 ∈ 𝑂 .
Let 𝐷𝑙 be the leaf node in T that contains 𝑜 . For any non-leaf node 𝐷 ∈ T , let 𝐷𝑐 be a child of 𝐷 , its
parent 𝐷.𝑝𝑎𝑟𝑒𝑛𝑡 , and a number 𝑘 ≥ 0, let

𝛾 (𝐷, 𝐷𝑐 , 𝑘) =

IECE(𝐷,𝐷𝑐 , 𝑘) if 𝐷 is root,∑

𝑘1+𝑘2=𝑘
𝑘1≥0, 𝑘2≥0

(
IECE(𝐷,𝐷𝑐 , 𝑘1) · 𝛾 (𝐷.𝑝𝑎𝑟𝑒𝑛𝑡, 𝐷, 𝑘2)

)
otherwise. (25)

Then,𝜓 (𝑜) = ∑ |𝑂 |−1
𝑘=1

𝛾 (𝐷𝑙 .𝑝𝑎𝑟𝑒𝑛𝑡,𝐷𝑙 ,𝑘 )
𝑘+1 .

Proof. The proof can be found in Appendix C. □

Algorithm 1 presents the recursive decomposition Shapley value (RDSV) approach using Theo-

rem 11, which consists of three steps. In the first step, decomposition tree construction (Line 2), given

the set of minimal syntheses, according to Corollary 8 in Bioch [7], a decomposition tree (called mod-

ular tree by Bioch [7]) can be generated in𝑂 ( |𝑆 | · |𝑂 ′ |5) time. Here, the minimal syntheses as input

can be obtained by, for example, tracking the provenance of each tuple in a data set using tools like

6
For simpliticy, we redefine 𝐷1 .M𝑆𝑜

1
×𝑆𝑜

1

= M𝐷1 .𝑆𝑜1 ×𝐷1 .𝑆𝑜
1

, with 𝐷1 before the dot operator signifying the constraint of

minimal syntheses 𝑆𝑜1 under the decomposition 𝐷1. This convention will be consistently followed thereafter.
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Algorithm 1: RDSV: computing Shapely value with recursive decomposition.

Input: a set of data owners 𝑂 = {𝑜1, . . . , 𝑜𝑛} and the corresponding set of minimal syntheses 𝑆

Output: the Shapley value𝜓 (𝑜𝑖 ) (1 ≤ 𝑖 ≤ 𝑛)
1 remove dummies from 𝑂 , let 𝑂 ′

be the set of non-dummy owners;

2 generate the decomposition tree T ;

3 bottom-up traverse T foreach 𝐷 ∈ T do
4 if 𝐷 is not a root node then
5 if 𝐷 is a vertical, horizontal, and hybrid decomposition, respectively then
6 compute IEC(𝐷.𝑆, 𝑘) for 𝑘 ∈ [1, |𝐷.𝑂 |] using Equation 12, Equation 19, and Equation 23;

7 else // 𝐷 is a leaf node
8 IEC(𝐷.𝑆, 1) = 1;

9 top-down traverse T foreach 𝐷 ∈ T do
10 if 𝐷 is not a leaf node then
11 foreach 𝐷𝑐 ∈ 𝐷.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
12 if 𝐷 is a vertical, horizontal, and hybrid decomposition, respectively then
13 compute IECE(𝐷, 𝐷𝑐 , 𝑘) for 𝑘 ∈ [1, |𝐷.𝑂 | − |𝐷𝑐 .𝑂 |] using Equation 12, Equation 19,

and Equation 23;

14 compute 𝛾 (𝐷,𝐷𝑐 , 𝑘) using Equation 25;

15 else // 𝐷 is a leaf node
16 compute𝜓 (𝑜) (𝑜 ∈ 𝐷.𝑂) using Theorem 11;

ProvSQL [68]. In the second step, IEC Computation (Lines 3 to 8), let 𝑁⊕ , 𝑁⊗ , and 𝑁⊙ be the numbers

of vertical, horizontal, and hybrid decompositions in the decomposition tree T , respectively. The

complexity of IEC computation is𝑂 ((𝑁⊕ +𝑁⊗)𝑚𝑓𝑚𝑜
2+𝑁⊙2𝑚𝑓𝑚𝑜

2). In the last step, IECE Computa-
tion (Lines 9 to 16), the complexity of IECE computation step is𝑂 ((𝑁⊕+𝑁⊗)𝑚𝑓

2𝑚𝑜
2+𝑁⊙2𝑚𝑓𝑚𝑓𝑚𝑜

2).
In summary, the complexity of Algorithm 1 is 𝑂 ((𝑁⊕ + 𝑁⊗)𝑚𝑓

2𝑚𝑜
2 + 𝑁⊙2𝑚𝑓𝑚𝑓𝑚𝑜

2 + |𝑆 | · |𝑂 ′ |5),
where 𝑁⊕ + 𝑁⊗ + 𝑁⊙ ≤ |𝑂 ′ | − 1. If there is no hybrid decomposition in T , the complexity of Algo-

rithm 1 is polynomial. Otherwise, it is exponential in the maximum fan-out of the decomposition

tree.

Last but not least, in a decomposition tree, the data owners in all leaf nodes under the same parent

node have the identical Shapley value if the parent node is a vertical or horizontal decomposition.

This result speeds up the Shapley value computation further.

5 EMPIRICAL EVALUATION
In this section, we evaluate the performance of our proposed method RDSV empirically against

the baseline methods.

5.1 Experiment Setup
We compare with three baselines. The traditional method (TRAD) computes the exact Shapley

value using Equation 1. Thepermutation-based samplingmethod (PERM) approximates Shapley
value using the Monte-Carlo sampling method [47]. We use PERM-1000 and PERM-2000 to

report the results when PERM takes 1,000 and 2,000 permutations as the sample, respectively.

Although the independent utility based method (IUSV) [45] cannot solve data assemblage tasks

as simple games in general, we also design specific experiments to compare with IUSV under the

independent utility assumption. Our experiment settings are similar to [45]. In all baselines, utility

is computed directly using minimal syntheses and thus they can take the full advantage of the

availability of minimal syntheses.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 56. Publication date: February 2024.



56:20 Xuan Luo et al.

Table 1. Default System Parameters

Parameters Default value

Number of data owners per table 𝑘 500

Zipfan parameter 𝛼 3.0

Maximum number of copies𝑚 4

Zipfan parameter 𝛽 (used in UA) 3.0

All methods are implemented using the Rust programming language [50]. The artifacts materials

can be found at https://github.com/IDEAL-Lab/shapley-value-simple-game. We use a commodity

server with Intel Xeon 2.00GHz E7-4730 CPU and 125GB RAM, running Ubuntu 20.04 LTS to

run the experiments. We enforce a timeout
7
of 7,200 seconds in our experiments. A program is

terminated if the runtime exceeds the timeout threshold.

In our experiments, we use a real data set TPC-H
8
, which has 8 tables with 5, 25, 10,000, 150,000,

200,000, 800,000, 1,500,000, and 6,001,215 records, respectively. We assign the records in each table

of the data set to the data owners in three steps.

First, an owner can have data from multiple tables. We decide the number of owners assigned

to each table in the data set. We consider two settings. In the EO (for equal number of owners)

setting we randomly choose 𝑘 owners for each table except for the two smallest tables in the data

set. Only 5 owners are assigned to each of those two tables as they have very few records. In the

UO (for unequal number of owners) setting we choose 𝑘 owners randomly for the largest table, 5

owners to each of the two smallest tables, and 10 owners to each of the other tables in the data set.

In this setting, we explore the effect of splitting records in a large table among multiple owners on

Shapley value computation.

When we assign owners to a table, each owner has the equal chance. Moreover, whether a owner

has data from a table does not affect the chance that the owner has data from another table.

Second, after we assign owners to each table, we next decide the number of copies of each record

in a table. The number of copies of tuples follows the Zipfian distribution [56] with parameter 𝛼

for each table. Besides, we impose a restriction on the maximum number of copies that a tuple can

have, denoted by𝑚.

Last, we assign records to owners in each table. Two different settings are considered. The EA
(for equal chance assignment) setting assigns records to owners uniformly. Specifically, if a record

has 𝑙 copies and there are 𝑘 owners assigned to the table (𝑙 ≤ 𝑘), each owner has a probability of
𝑙
𝑘

of obtaining a copy of the record. We impose a constraint that each owner can hold at most one

copy of a record. This ensures that the expected number of records held by each owner within

a table is the same. The UA (for unequal chance assignment) setting assigns records to owners

according to the Zipfian distribution with parameter 𝛽 . Once again, we enforce that each data

owner can hold at most one copy of a record. This approach leads to a small number of owners

holding the majority of records in a table.

In total, we have four different settings, which can test how data owner distribution may affect

Shapley value computation. Specifically, by EO versus UO, we can observe the effect of owner

diversity in tables. By EA versus UA, we can observe the effect of dominating owners. Table 1 shows

the default parameter values in our experiments.

7
We conduct 10 iterations for each experiment. If a timeout or an out-of-memory (OOM) issue occurs during any of these

iterations, we record the runtime as a timeout.

8
http://www.tpc.org/tpch/, accessed on July 1, 2022.
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Fig. 2. Scalability on Number of Data Owners 𝑘 per Table.

Table 2. Error Rate of PERM Under Default Parameters

EO-EA EO-UA UO-EA UO-UA

PERM-1000 6.64% 6.63% 6.64% 6.64%

PERM-2000 4.70% 4.69% 4.74% 4.70%

In the TPC-H data set, a coalition plan executes equi-join queries among all tables and generates

a coalition set with 6,001,215 tuples. To compare with IUSV, we set the utility of each tuple in the

coalition set to 1. Then, the generation of each tuple in the coalition set can be regarded as a data

assemblage game. Thus, we have 6,001,215 games in the experiments and IUSV can be applied [45].

We evaluate all methods using Runtime, the total clock time of computing the Shapley values

for all data owners in all simple games. We also assess Error rate, the average error in percentage

of Shapley value by PERM. That is, 𝑒𝑟𝑟𝑜𝑟 = 1

𝑡

∑𝑡
𝑖=1

∑
𝑢∈U |𝜓𝑖 (𝑢 )−�𝜓𝑖 (𝑢 ) |∑

𝑢∈U 𝜓𝑖 (𝑢 ) × 100%, where 𝑡 is the number

of games,𝜓𝑖 (𝑢) and �𝜓𝑖 (𝑢) are the exact Shapley value and the one approximated by PERM in the

𝑖-th simple game, respectively. The higher error rate, the lower the quality of the approximated

Shapley value by PERM. For RDSV we evaluate some additional metrics. The vertical rate,
horizontal rate, andhybrid rate are the percentages of the total number of vertical decompositions,

horizontal decompositions, and hybrid decompositions over the sum of the total number of all

three decompositions in all games, respectively.

5.2 Scalability
We first consider the scalability with regards to 𝑘 , the number of data owners per table (Figure 2).

Among the three baselines, PERM with sample sizes 1,000 and 2,000 outperforms TRAD and IUSV
in runtime. Here we choose the sample sizes 1000 and 2000 since a larger sample size causes PERM
timeout. The approximation quality of PERM is low with these two sample sizes, with the error rate

ranging from 4.69% to 6.64% under the default system parameters as shown in Table 2. Compared

with PERM, RDSV outperforms the baselines by an order of magnitude and can compute the exact

Shapley value in all cases.

In all the four settings, when the number of data owners per table 𝑘 increases, more data owners

hold some records inmore tables. Thus, the number ofminimal syntheses and the number ofminimal

synthesis owners in a game increase. The average fan-out and the number of decompositions in

the decomposition tree of a game also increase. Those factors cause the increase of runtime in all

methods.

Next, we test the scalability with regards to data set size, that is, the total number of records in a

data set. We generate TPC-H data set with size 2 million (2M), 4 million (4M), 6 million (6M), and
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8 million (8M) using the TPC-H benchmark kit
9
. Then, we compare the runtime of the methods

under the default parameters in all the four settings. As shown in Figure 3a, the runtime of all

methods increases linearly with respect to the data set size in the EO-UA setting. We also observe

the similar trends in the other three settings and omit the details here due to limited space. In all the

four settings, RDSV consistently outperforms all baselines. Notably, as the data set size increases,

our model’s performance improvement becomes even more pronounced. This demonstrates the

scalability of RDSV with respect to the data set size.

5.3 Effect of Data Assignment Distribution
We first test the runtime with respect to the Zipfian parameter 𝛼 . A larger 𝛼 results in less copies

of each record and less records assigned to a data owner, and leads to a decrease in the number of

minimal syntheses and the number of minimal synthesis owners in a game. Such decreases lead to

a significant reduction in the number of decompositions required. Therefore, the runtime of RDSV
reduces when 𝛼 increases as shown in Figure 3b

10
. Although the runtime of the baselines also

decreases substantially when 𝛼 increases, RDSV is still at least one order of magnitude faster than

the baselines. The advantage of RDSV is clear. We observe similar trends in all the four settings.

Limited by space, we only show the setting EO-UA here.

Next, we test the runtime with respect to the maximum number of copies𝑚. A larger𝑚 means

that more records are held by each data owner, resulting in more minimal syntheses and minimal

synthesis owners in a game. This leads to the increase of the runtime of all methods, including

RDSV, as shown in Figure 3c. Still,RDSV is at least one order of magnitude faster than the baselines.

We observe similar trends in all the four settings. Limited by space, we only show the setting EO-UA
here.

In the settings of UA, the Zipfian distribution with parameter 𝛽 controls how records are dis-

tributed among owners in a biased manner. Figure 4 shows that in both the settings EO-UA and

UO-UA, RDSV and the baselines are insensitive to 𝛽 . This is because each owner can have at

most one copy of a record, and both the number of minimal syntheses and the number of minimal

synthesis owners are primarily determined by the number of copies assigned to each record, that

is, by the Zipfian parameter 𝛼 and the maximum number of copies𝑚. Again, RDSV is orders of

magnitude faster than the baselines.

5.4 Ablation Study
RDSV employs three types of decompositions. We investigate how those decompositions affect the

efficiency of the method by ablating one type of decomposition at a time. For example, “No-vertical”

9
https://github.com/gregrahn/tpch-kit, accessed on May 20, 2023.

10
In this paper, a method’s line extending past a plot’s boundary signifies its runtime exceeding the timeout for the respective

x-axis parameter. For instance, TRAD’s runtime exceeds the timeout at 𝛼 = 2.5.
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is the version of RDSV that does not conduct vertical decomposition. Figures 5, 6, and 7 report the

performance of the ablations and our complete method with respect to various parameters.

Figure 5 shows the scalability of the ablations with respect to 𝑘 , the number of data owners per

table. No-vertical exceeds timeout threshold in all settings except for the cases when 𝑘 = 10. When

the data assemblage task is an equi-join query, the root of the decomposition tree is often a vertical

decomposition. Thus, without the vertical decomposition, RDSV is unable to decompose almost

all games in our experiments. Without a game decomposition, RDSV degenerates to Equation 5,

where the computational cost is high when the number of minimal syntheses is large. When 𝑘 = 10,

the maximum number of minimal synthesis owners cannot exceed 10.
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For the same reason, No-vertical exceeds the timeout threshold in all settings in Figures 6 and 7.

No-vertical is barely able to compute the Shapley value in a brute force manner. This experiment

shows that vertical decompositions are essential for data assemblage tasks with equi-join queries.

No-horizontal has very little performance loss with respect to the number of data owners 𝑘

per table (Figure 5) and the Zipfian parameter 𝛼 (Figure 6). Since we impose a constraint on the

maximum number of copies per tuple (4 by default), the number of data owners involved in a

horizontal decomposition is also constrained by the same parameter. When the number of owners

is small, not conducting horizontal decompositions does not hurt the performance much, since

computing the Shapley value by enumerating all coalitions is fast anyway. However, if we increase

the maximum number of copies (Figure 7), the gap between No-horizontal and the complete method

increases dramatically.

To investigate the role of hybrid decompositions in RDSV, Figure 8 plots the vertical rate,

horizontal rate, and hybrid rate in the setting EO-UA with respect to parameters 𝑘 , 𝛼 ,𝑚, and 𝛽

varies. The trends are similar in other settings and are omitted limited by space. Interestingly,

the hybrid rate is quite low compared to the vertical rate and the horizontal rate in all settings.

However, this does not mean that hybrid decompositions are not useful in RDSV. RDSV may

exceed the timeout threshold when the number of data owners holding records is high and data is

dense or when some records have a large number of copies, such as the cases when 𝑘 = 50 in all

the four settings of Figure 5 and𝑚 = 6 in all the four settings of Figure 7. In all those cases, there

are only a small number of games with a large number of minimal syntheses that cannot be well

decomposed without the hybrid decomposition. This result shows that, although the hybrid rate is

low, the hybrid decomposition is powerful once it can be applied.

The ablations are not sensitive and do not lose much performance with respect to 𝛽 for the same

reason as discussed at the end of Section 5.3. Limited by space, we omit the details here.

6 A CASE STUDY
To test the performance of RDSV in real-world applications, we conduct a case study on real-world

data assemblage tasks.

We use the European Soccer Database (ESD) from Kaggle
11
, a data set that inherently contains

data owner information. ESD is a meticulously compiled data set sourced from web crawling using

different APIs, encompassing a wealth of information spanning players, teams, and match data

from 2008 to 2016. ESD comprises a total of 7 tables.

As an example used in our case study, we find out for each team whether the team won at least

one game in the 2016 season
12
. Accordingly, for each team that won at least once, there is a data

assemblage game to assemble at least one record of the team’s wins. Those tasks involve four tables

11
http://www.kaggle.com/hugomathien/soccer, accessed on Oct 1, 2023.

12
https://www.kaggle.com/code/abdelrhmanragab/european-soccer, accessed on Oct 1, 2023.
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Listing 1. SQL Representation of the Data Analysis Task in the Case Study

SELECT DISTINCT winner FROM (
SELECT m.id ,

CASE
WHEN m.home_team_goal > m.away_team_goal

THEN home_team.team_long_name
WHEN m.home_team_goal < m.away_team_goal

THEN away_team.team_long_name
ELSE 'DRAW'

END AS winner
FROM Match AS m
INNER JOIN Country AS c ON m.country_id = c.id
INNER JOIN Team AS home_team

ON m.home_team_api_id = home_team.team_api_id
LEFT JOIN Team AS away_team

ON m.away_team_api_id = away_team.team_api_id
INNER JOIN League AS l ON m.league_id = l.id
WHERE m.season = '2015/2016 '

) AS subquery
WHERE winner != 'DRAW'

Table 3. Runtime (unit: sec) of All Methods in the Case Study

TRAD IUSV PERM-2000 PERM-1000 RDSV

- - 6.42 4.07 2.45

in ESD: Country, League, Team, and Match, with 11, 11, 299, and 25,979 records, respectively. The

task encompasses a sequence of table joins. A SQL representation of the task is shown in Listing 1.

In table Match, there are 3,326 records related to the 2016 season. In tables Team and Match, the
information about API-ids is provided, which indicates where the records are collected. Naturally,

each API can be regarded as a data owner. In total, there are 3,689 unique APIs providing the data

related to this query. Note that one record may be provided by more than one API. Accordingly,

the total number of data owners in this case is 3,689.

There are 188 teams that won in the season. 2,843 data owners contribute to 2,471 minimal

syntheses in those 188 data assemblage games. We compute the Shapley value for each data owner

in each of those games. It is worth noting that in this setting, IUSV [45] can work and thus can

serve as a baseline.

The total runtime of each method over all those 188 games is shown in Table 3
13
. Among the

three baselines, both TRAD and IUSV cannot complete within 2 hours, and PERM significantly

outperforms TRAD and IUSV by completing in just a few seconds. However, PERM exhibits low

approximation quality with sample sizes 1,000 and 2,000, resulting in error rates of 8.13% and 5.80%,

respectively. In contrast, RDSV not only outperforms all baselines in runtime but also computes

the exact Shapley value. This demonstrates the efficiency and effectiveness of RDSV in real-world

applications. Remarkably, all 188 games can be decomposed through a combination of only vertical

decomposition and horizontal decomposition, with the vertical rate and the horizontal rate at

74.08% and 25.92%, respectively.

13
In this table, a “-” indicates a timeout
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7 CONCLUSIONS AND DISCUSSIONS
In this paper, we tackle the problem of Shapley value computation in data assemblage tasks as

cooperative games and use pivotal probabilities to count beneficiaries. By game decomposition, we

significantly improve the efficiency and retain the exactness.

While our discussion here focuses on simple games, it offers insights and methods that can

inspire ideas for more general games with non-binary utility functions. As future work, we may

convert a non-binary utility function (e.g., a 𝑘-nary function) into a composition of multiple binary

utility functions. Subsequently, our proposed method can be applied to each of these binary utility

functions. Our proposed method leverages a decomposition algorithm [7, 8] that is applicable to

general boolean functions, encompassing both monotone and non-monotone boolean functions. As

another interesting direction, we may adopt a similar game decomposition approach to expedite

the computation of Shapley values in scenarios where the utility function takes a non-monotone

boolean form.
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APPENDIX

In this appendix, we provide the detailed proofs for some previously mentioned equations and

theorems.

A PROOF OF EQUATION 7

Proof. The general idea of the proof is to divide all non-empty subsets𝑊 ⊆ M𝑆1𝑜
1

×𝑆2 where

| Owner(𝑊 ) | = 𝑘 and | Owner(𝑊 [𝑆1𝑜1 ]) | = 𝑘1 into several groups and each group can be evaluated

in closed form. The proof can be divided into three steps.

First, we can divide M𝑆1𝑜
1

×𝑆2 with 𝑘 owners and | Owner(𝑊 [𝑆1𝑜1 ]) | = 𝑘1 into distinct groups

according to𝑊 [𝑆1𝑜1 ] and𝑊 [𝑆2]. Then, we have

∑︁
𝑊 ⊆M𝑆

1𝑜
1

×𝑆
2
, | Owner(𝑊 ) |=𝑘

| Owner(𝑊 [𝑆1𝑜
1
] ) |=𝑘1

(−1) |𝑊 |−1 =
∑︁

𝑋 ⊆𝑆1𝑜
1

,𝑌 ⊆𝑆2
| Owner(𝑋 ) |=𝑘1
| Owner(𝑋∪𝑌 ) |=𝑘

𝜏 (𝑋,𝑌 ), (26)

where

𝜏 (𝑋,𝑌 ) =
∑︁

𝑍⊆𝑋×𝑌
𝑋={𝐶𝑥 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍 }
𝑌={𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍 }

(−1) |𝑍 |−1

Second, we prove that 𝜏 (𝑋,𝑌 ) can be evaluated in closed-form. That is,

𝜏 (𝑋,𝑌 ) = (−1) |𝑋 |+|𝑌 |
(27)

To keep our current proof concise, we move the proof of Equation 27 to Appendix A.1. Plug-

ging Equation 27 into Equation 26, we have

∑︁
𝑊 ⊆M𝑆

1𝑜
1

×𝑆
2
, | Owner(𝑊 ) |=𝑘

| Owner(𝑊 [𝑆1𝑜
1
] ) |=𝑘1

(−1) |𝑊 |−1 =
∑︁

𝑋 ⊆𝑆1𝑜
1

,𝑌 ⊆𝑆2
| Owner(𝑋 ) |=𝑘1
| Owner(𝑋∪𝑌 ) |=𝑘

(−1) |𝑋 |+|𝑌 | , (28)

Third, since 𝑆1𝑜
1

and 𝑆2 share no data owner, we have

∑︁
𝑋 ⊆𝑆1𝑜

1

,𝑌 ⊆𝑆2
| Owner(𝑋 ) |=𝑘1
| Owner(𝑋∪𝑌 ) |=𝑘

(−1) |𝑋 |+|𝑌 | =
∑︁

𝑋 ⊆𝑆1𝑜
1

| Owner(𝑋 ) |=𝑘1

∑︁
𝑌 ⊆𝑆2

| Owner(𝑌 ) |=𝑘−𝑘1

(−1) |𝑋 |+|𝑌 | ,

(29)
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Plugging Equation 29 into Equation 28, we have∑︁
𝑊 ⊆M𝑆

1𝑜
1

×𝑆
2
, | Owner(𝑊 ) |=𝑘

| Owner(𝑊 [𝑆1𝑜
1
] ) |=𝑘1

(−1) |𝑊 |−1

=
∑︁

𝑋 ⊆𝑆1𝑜
1

| Owner(𝑋 ) |=𝑘1

∑︁
𝑌 ⊆𝑆2

| Owner(𝑌 ) |=𝑘−𝑘1

(−1) |𝑋 |+|𝑌 |

=
∑︁

𝑋 ⊆𝑆1𝑜
1

| Owner(𝑋 ) |=𝑘1

(
(−1) |𝑋 |−1 ·

∑︁
𝑌 ⊆𝑆2

| Owner(𝑌 ) |=𝑘−𝑘1

(−1) |𝑌 |−1
)

=
∑︁

𝑋 ⊆𝑆1𝑜
1

| Owner(𝑋 ) |=𝑘1

(−1) |𝑋 |−1 ·
∑︁
𝑌 ⊆𝑆2

| Owner(𝑌 ) |=𝑘−𝑘1

(−1) |𝑌 |−1

= IEC(𝑆1𝑜1 , 𝑘1) · IEC(𝑆2, 𝑘 − 𝑘1)

(30)

□

A.1 Proof of Equation 27

Proof. Suppose 𝑋 = {𝐶𝑥1 , . . . ,𝐶𝑥𝑚 }, 𝑌 = {𝐶𝑦1 , . . . ,𝐶𝑦𝑛 }, where 𝐶𝑥𝑖 ∈ 𝑆1𝑜
1

(1 ≤ 𝑖 ≤ 𝑚), 𝐶𝑦 𝑗
∈

𝑆2 (1 ≤ 𝑗 ≤ 𝑛). Considering the behavior of 𝐶𝑥𝑚 , 𝑍 can be represented as 𝑍 ⊆
(
(𝑋 \ {𝐶𝑥𝑚 } × 𝑌1) ∪

({𝐶𝑥𝑚 } × 𝑌2)
)
, where 𝑌1 ⊆ 𝑌 \ {∅}, 𝑌2 ⊆ 𝑌 \ {∅}, 𝑌1 ∪ 𝑌2 = 𝑌 . 𝑌1 and 𝑌2 cannot be ∅ in order to

satisfy 𝑋 = {𝐶𝑥 | (𝐶𝑥 ,𝐶𝑦) ∈ 𝑍 } and 𝑌 = {𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦) ∈ 𝑍 }. Then, we have

𝜏 (𝑋,𝑌 ) =
∑︁

𝑍1⊆𝑋\{𝐶𝑥𝑚 }×𝑌1
𝑋\{𝐶𝑥𝑚 }={𝐶𝑥 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍1 }

𝑌1={𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍1 }

∑︁
𝑍2⊆{𝐶𝑥𝑚 }×𝑌2

𝑌2={𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍2 }

(−1) |𝑍1+𝑍2 |

Depending on whether 𝑌1 = 𝑌 , we consider the following two cases. First, 𝑌1 ⊂ 𝑌 \ {∅}. Since
𝑌1∪𝑌2 = 𝑌 ,𝑌2 must be a superset of𝑌 \𝑌1. Take𝑌1 = {𝐶𝑦1 , . . . ,𝐶𝑦𝑛−1 } for example. Then {𝐶𝑦𝑛 } ⊆ 𝑌2.

For {𝐶𝑥𝑚 } × 𝑌2, it must include (𝐶𝑥𝑚 ,𝐶𝑦𝑛 ) and any possible pairs formed by 𝐶𝑥𝑚 and elements in

all possible subsets of 𝑌1. Then we can further simplify 𝜏 (𝑋,𝑌 ) by

𝜏 (𝑋,𝑌 ) =
∑︁

𝑍1⊆𝑋\{𝐶𝑥𝑚 }×𝑌1
𝑋\{𝐶𝑥𝑚 }={𝐶𝑥 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍1 }

𝑌1={𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍1 }

(−1) |𝑍1 | ×
𝑛−1∑︁
𝑖=0

(−1)𝑖+1 ×
(
𝑛 − 1

𝑖

)

Applying binomial theorem,

∑𝑛−1
𝑖=0 (−1)𝑖 ×

(
𝑛−1
𝑖

)
= 0. Thus, 𝜏 (𝑋,𝑌 ) = 0. Similarly, 𝜏 (𝑋,𝑌 ) = 0 holds

as long as 𝑌1 ⊂ 𝑌 \ ∅. Second, 𝑌1 = 𝑌 . In this case, 𝑌2 can be any non-empty subset of 𝑌 . By similar

proof, we have

𝜏 (𝑋,𝑌 ) =
∑︁

𝑍1⊆𝑋\{𝐶𝑥𝑚 }×𝑌1
𝑋\{𝐶𝑥𝑚 }={𝐶𝑥 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍1 }

𝑌1={𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍1 }

(−1) |𝑍1 | ×
𝑛∑︁
𝑖=1

(−1)𝑖 ×
(
𝑛

𝑖

)
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Applying binomial theorem,

∑𝑛
𝑖=1 (−1)𝑖 ×

(
𝑛−1
𝑖

)
= −

(
𝑛
0

)
= −1. Thus,

𝜏 (𝑋,𝑌 ) =
∑︁

𝑍1⊆𝑋\{𝐶𝑥𝑚 }×𝑌1
𝑋\{𝐶𝑥𝑚 }={𝐶𝑥 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍1 }

𝑌1={𝐶𝑦 | (𝐶𝑥 ,𝐶𝑦 ) ∈𝑍1 }

(−1) |𝑍1 |−1

Repeat case 1 and case 2 for elements in𝑋 \ {𝐶𝑥𝑚 } and 𝑌 one by one, we have 𝜏 (𝑋,𝑌 ) = (−1) |𝑋 |+|𝑌 |
.

□

B PROOF OF EQUATION 13

Proof. To simplify notations for the reader, let 𝐴 = M𝑆1𝑜
1

×𝑆1𝑜
1

, and 𝐵 = M𝑆1𝑜
1

×𝐿
𝑆
1

. Clearly,

𝐴 ∩ 𝐵 = ∅. Then, we can turn Equation 13 into

IEC(𝐴 ∪ 𝐵, 𝑘) = IEC(𝐴,𝑘) + IEC(𝐵, 𝑘) − IEC(M𝐴×𝐵, 𝑘) (31)

To prove Equation 31, the general idea is that all non-empty subsets of 𝐴 ∪ 𝐵 falls into several cases

depending on whether their projections on 𝐴 and 𝐵 are empty, and subsets falling into the same

case share the computation process. The proof can be divided into four steps.

First, all non-empty subsets𝑊 ⊆ 𝐴 ∪ 𝐵 with 𝑘 owners can be divided into 3 cases,𝑊 [𝐴] ≠ ∅ and

𝑊 [𝐵] ≠ ∅;𝑊 [𝐴] = ∅ and𝑊 [𝐵] = ∅;𝑊 [𝐴] = ∅ and𝑊 [𝐵] ≠ ∅; Then, we have

IEC(M𝑆1𝑜
1

×𝑆1𝑜
1

∪M𝑆1𝑜
1

×𝐿
𝑆
1

, 𝑘) =
∑︁

𝑊 ⊆𝐴∪𝐵
| Owner(𝑊 ) |=𝑘

(−1) |𝑊 |−1

=
∑︁

𝑊 ⊆𝐴∪𝐵
| Owner(𝑊 ) |=𝑘

𝑊 [𝐴]≠∅,𝑊 [𝐵 ]≠∅

(−1) |𝑊 |−1 +
∑︁

𝑊 ⊆𝐴∪𝐵
| Owner(𝑊 ) |=𝑘

𝑊 [𝐴]=∅,𝑊 [𝐵 ]≠∅

(−1) |𝑊 |−1

+
∑︁

𝑊 ⊆𝐴∪𝐵
| Owner(𝑊 ) |=𝑘

𝑊 [𝐴]≠∅,𝑊 [𝐵 ]=∅

(−1) |𝑊 |−1

=
∑︁

𝑊 ⊆𝐴∪𝐵
| Owner(𝑊 ) |=𝑘

𝑊 [𝐴]≠∅,𝑊 [𝐵 ]≠∅

(−1) |𝑊 |−1 +
∑︁
𝑊 ⊆𝐵

| Owner(𝑊 ) |=𝑘

(−1) |𝑊 |−1

+
∑︁

𝑊 ⊆𝐴
| Owner(𝑊 ) |=𝑘

(−1) |𝑊 |−1

=
∑︁

𝑊 ⊆𝐴∪𝐵
| Owner(𝑊 ) |=𝑘

𝑊 [𝐴]≠∅,𝑊 [𝐵 ]≠∅

(−1) |𝑊 |−1 + IEC(𝐵, 𝑘) + IEC(𝐴,𝑘)

(32)

Second, we consider the first term on the right-hand side of Equation 32. For any𝑊 ⊆ 𝐴 ∪ 𝐵

where | Owner(𝑊 ) | = 𝑘 ,𝑊 [𝐴] ≠ ∅, and𝑊 [𝐵] ≠ ∅,𝑊 can be represented as𝑊 = 𝑋 ∪ 𝑌 , where

𝑋 ⊆ 𝐴 and |𝑋 | ≥ 1, 𝑌 ⊆ 𝐵 and |𝑌 | ≥ 1, and | Owner(𝑋 ∪ 𝑌 ) | = | Owner(𝑊 ) | = 𝑘 . Since 𝐴 ∩ 𝐵 = ∅,
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|𝑋 ∪ 𝑌 | = |𝑋 | + |𝑌 |. Then, we have∑︁
𝑊 ⊆𝐴∪𝐵

| Owner(𝑊 ) |=𝑘
𝑊 [𝐴]≠∅,𝑊 [𝐵 ]≠∅

(−1) |𝑊 |−1 =
∑︁

𝑋 ⊆𝐴, |𝑋 | ≥1
𝑌 ⊆𝐵, |𝑌 | ≥1

| Owner(𝑋∪𝑌 ) |=𝑘

(−1) |𝑋∪𝑌 |−1

=
∑︁

𝑋 ⊆𝐴, |𝑋 | ≥1
𝑌 ⊆𝐵, |𝑌 | ≥1

| Owner(𝑋∪𝑌 ) |=𝑘

(−1) |𝑋 |+|𝑌 |−1 (33)

Third, now we consider the right-hand side of Equation 33. According to Equation 28, we have∑︁
𝑋 ⊆𝐴, |𝑋 | ≥1
𝑌 ⊆𝐵, |𝑌 | ≥1

| Owner(𝑋∪𝑌 ) |=𝑘

(−1) |𝑋 |+|𝑌 |−1 =
𝑘−1∑︁
𝑘1=1

∑︁
𝑋 ⊆𝐴,𝑌 ⊆𝐵

| Owner(𝑋 ) |=𝑘1
| Owner(𝑋∪𝑌 ) |=𝑘

(−1) |𝑋 |+|𝑌 |−1

= −
𝑘−1∑︁
𝑘1=1

∑︁
𝑊 ⊆M𝐴×𝐵 , | Owner(𝑊 ) |=𝑘

| Owner(𝑊 [𝐴] ) |=𝑘1

(−1) |𝑊 |−1

= −
∑︁

𝑊 ⊆M𝐴×𝐵 , | Owner(𝑊 ) |=𝑘
(−1) |𝑊 |−1

= − IEC(M𝐴×𝐵, 𝑘)

(34)

Fourth, plugging Equation 34 into Equation 33, we get∑︁
𝑊 ⊆𝐴∪𝐵

| Owner(𝑊 ) |=𝑘
𝑊 [𝐴]≠∅,𝑊 [𝐵 ]≠∅

(−1) |𝑊 |−1 = − IEC(M𝐴×𝐵, 𝑘) (35)

plugging Equation 35 into Equation 32, we obtain Equation 31 immediately. □

C PROOF OF THEOREM 11

Proof. Let 𝐷1, 𝐷2, . . . , 𝐷𝑙−1 be the ancestors of 𝐷𝑙 in the top-down traversal order of the de-

composition tree. To compute 𝜓 (𝑜), according to Equation 5, we need to compute IEC(𝑆𝑜 , 𝑘) −
IEC(M𝑆𝑜×𝑆𝑜 , 𝑘) = IEC(𝐷1.𝑆𝑜 , 𝑘) − IEC(𝐷1 .M𝑆𝑜×𝑆𝑜 , 𝑘).
Clearly, 𝐷1 can only be one of the three decompositions: vertical decomposition, horizontal

decomposition and hybrid decomposition. When 𝐷1 is a vertical decomposition, according to Equa-

tion 11, we have

IEC(𝐷1 .𝑆𝑜 , 𝑘) − IEC(𝐷1 .M𝑆𝑜×𝑆𝑜 , 𝑘)

=
∑︁

𝑘1+𝑘2=𝑘
𝑘1≥1, 𝑘2≥1

(
IEC(𝐷1 .𝑉𝐷2 .𝑆

, 𝑘1) ·
(
IEC(𝐷2 .𝑆𝑜 , 𝑘2) − IEC(𝐷2 .M𝑆𝑜×𝑆𝑜 , 𝑘2)

) )
=

∑︁
𝑘1+𝑘2=𝑘

𝑘1≥1, 𝑘2≥1

(
IECE(𝐷1, 𝐷2, 𝑘1) ·

(
IEC(𝐷2 .𝑆𝑜 , 𝑘2) − IEC(𝐷2 .M𝑆𝑜×𝑆𝑜 , 𝑘2)

) )
=

∑︁
𝑘1+𝑘2=𝑘

𝑘1≥0, 𝑘2≥1

(
IECE(𝐷1, 𝐷2, 𝑘1) ·

(
IEC(𝐷2 .𝑆𝑜 , 𝑘2) − IEC(𝐷2 .M𝑆𝑜×𝑆𝑜 , 𝑘2)

) )
(36)

Similarly, we can prove that Equation 36 holds when 𝐷1 is a horizontal decomposition or a hybrid

decomposition.
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For any 1 ≤ 𝑖 ≤ 𝑙 − 1, we can compute IEC(𝐷𝑖 .𝑆𝑜 , 𝑘) − IEC(𝐷𝑖 .M𝑆𝑜×𝑆𝑜 , 𝑘) using Equation 36. We

have

IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘) = IEC(𝐷1 .𝑆𝑜 , 𝑘) − IEC(𝐷1 .M𝑆𝑜×𝑆𝑜 , 𝑘)

=
∑︁

𝑘1+𝑘2=𝑘
𝑘1≥0, 𝑘2≥1

(
IECE(𝐷1, 𝐷2, 𝑘1) ·

(
IEC(𝐷2 .𝑆𝑜 , 𝑘2) − IEC(𝐷2 .M𝑆𝑜×𝑆𝑜 , 𝑘2)

) )
=

∑︁
𝑘1+𝑘2+𝑘3=𝑘

𝑘1≥0, 𝑘2≥0;𝑘3≥1

(
IECE(𝐷1, 𝐷2, 𝑘1) · IECE(𝐷2, 𝐷3, 𝑘2)·

(
IEC(𝐷3 .𝑆𝑜 , 𝑘3) − IEC(𝐷3 .M𝑆𝑜×𝑆𝑜 , 𝑘3)

) )
= · · ·

=
∑︁

𝑘1+···+𝑘𝑙=𝑘
∀1≤𝑖≤𝑙−1,𝑘𝑖≥0;𝑘𝑙 ≥1

( (
IECE(𝐷1, 𝐷2, 𝑘1) · IECE(𝐷2, 𝐷3, 𝑘2) · · ·

· IECE(𝐷𝑙−1, 𝐷𝑙 , 𝑘𝑙−1)
)
·
(
IEC(𝐷𝑙 .𝑆𝑜 , 𝑘𝑙 ) − IEC(𝐷𝑙 .M𝑆𝑜×𝑆𝑜 , 𝑘𝑙 )

) )

(37)

Since 𝐷𝑙 is a leaf node which contains the single data owner 𝑜 , 𝑘𝑙 can only be 1. We have

IEC(𝐷𝑙 .𝑆𝑜 , 1) − IEC(𝐷𝑙 .M𝑆𝑜×𝑆𝑜 , 1) = 1 − 0 = 1. Thus, Equation 37 becomes

IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘)

=
∑︁

𝑘1+···+𝑘𝑙−1=𝑘−1
∀1≤𝑖≤𝑙−1,𝑘𝑖≥0

(
IECE(𝐷1, 𝐷2, 𝑘1) · IECE(𝐷2, 𝐷3, 𝑘2) · · · · IECE(𝐷𝑙−1, 𝐷𝑙 , 𝑘𝑙−1)

)
(38)

Equation 38 can be computed in a recursive way by using Equation 25. Then, we get

IEC(𝑆𝑜 , 𝑘) − IEC(M𝑆𝑜×𝑆𝑜 , 𝑘)
=𝛾 (𝐷𝑙−1, 𝐷𝑙 , 𝑘 − 1) = 𝛾 (𝐷𝑙 .𝑝𝑎𝑟𝑒𝑛𝑡, 𝐷𝑙 , 𝑘 − 1) (39)

Plugging Equation 39 into Equation 5, we have

𝜓 (𝑜) =
|𝑂 |∑︁
𝑘=1

𝛾 (𝐷𝑙 .𝑝𝑎𝑟𝑒𝑛𝑡, 𝐷𝑙 , 𝑘 − 1)
𝑘

=

|𝑂 |−1∑︁
𝑘=0

𝛾 (𝐷𝑙 .𝑝𝑎𝑟𝑒𝑛𝑡, 𝐷𝑙 , 𝑘)
𝑘 + 1

=0 +
|𝑂 |−1∑︁
𝑘=1

𝛾 (𝐷𝑙 .𝑝𝑎𝑟𝑒𝑛𝑡, 𝐷𝑙 , 𝑘)
𝑘 + 1

=

|𝑂 |−1∑︁
𝑘=1

𝛾 (𝐷𝑙 .𝑝𝑎𝑟𝑒𝑛𝑡, 𝐷𝑙 , 𝑘)
𝑘 + 1

Our proof is complete. □
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