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Nearest neighbor search is a fundamental task in various domains, such as federated learning, data mining,

information retrieval, and biomedicine. With the increasing need to utilize data from different organizations

while respecting privacy regulations, private data federation has emerged as a promising solution. However, it

is costly to directly apply existing approaches to federated k-nearest neighbor (kNN) search with difficult-to-

compute distance functions, like graph or sequence similarity. To address this challenge, we propose FedKNN,

a system that supports secure federated kNN search queries with a wide range of similarity measurements.

Our system is equipped with a new Distribution-Aware kNN (DANN) algorithm to minimize unnecessary

local computations while protecting data privacy. We further develop DANN*, a secure version of DANN

that satisfies differential obliviousness. Extensive evaluations show that FedKNN outperforms state-of-the-art

solutions, achieving up to 4.8× improvement on federated graph kNN search and up to 2.7× improvement on

federated sequence kNN search. Additionally, our approach offers a trade-off between privacy and efficiency,

providing strong privacy guarantees with minimal overhead.

CCS Concepts: • Information systems→ Combination, fusion and federated search; • Security and
privacy→Management and querying of encrypted data; Privacy-preserving protocols; Hardware-based
security protocols.

Additional Key Words and Phrases: Federated analytics, kNN search, trusted execution environment (TEE),

differential obliviousness

ACM Reference Format:
Xinyi Zhang, Qichen Wang, Cheng Xu, Yun Peng, and Jianliang Xu. 2024. FedKNN: Secure Federated k-Nearest

Neighbor Search: [technical report]. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 11 (February 2024),

26 pages. https://doi.org/10.1145/3639266

1 INTRODUCTION
Nearest neighbor search is a fundamental problem in computer science that finds applications in

various domains, including federated learning [15], data mining [30], information retrieval [49], and

biomedicine [47]. With the rapid growth of data across organizations, utilizing data from multiple
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Table 1. Running Time Results (s) (𝑘 = 128,𝑚 = 8, Uniform)

Dataset

Baseline HuFu-Ext [41]

Local Cost Other Costs Local Cost Other Costs

AIDS 42.72 0.21 15.62 0.73

SYN 27.18 0.18 13.69 0.77

DBLP 4.29 0.20 5.61 0.67

GENOME 700.94 0.22 751.13 0.71

sources for nearest neighbor search has become increasingly prevalent. Here are two examples of

such application scenarios:

Example 1.1. Breast and ovarian cancers are genetically linked. To improve patient outcomes,
hospitals can collaborate and use gene expression data to measure the DNA similarity of patients’
cancer cells. Recognizing these commonalities can improve diagnosis accuracy and treatment outcomes.
Using nearest neighbor search across different hospitals enables efficient identification of similar cancer
cell gene expressions, allowing researchers and doctors to uncover significant genetic patterns and
improve patient care.

Example 1.2. Pharmaceutical companies often seek to search for similar drugs in other companies’
databases to improve the efficiency of drug development (e.g., AIDS).With vast drug candidate databases
containing chemical structures and biological activities, companies can use nearest neighbor search to
identify similar drug structures across databases. If they find a drug of interest, they can collaborate
with the corresponding company to speed up drug development.

In the above application scenarios, a basic approach for nearest neighbor search is to share all

relevant data with a third party (e.g., a cloud computing platform). This third party is responsible for

conducting the computation and producing results. However, this approach faces several challenges.

Sharing private data with a third party is often prohibited by privacy regulations (e.g., GDPR [17],

CCPA [7], PIPL [1]), and can also raise concerns regarding liability and commercial competition.

Moreover, the distribution and availability of data may vary across different organizations and are

subject to changes, making it challenging to maintain a consistent and up-to-date global view of

the data. These issues hinder the full utilization of combined data from all parties involved, leading

to what is known as the data isolation problem [5].

Given the challenges associated with data silos and the limitations of sharing private data

with third parties, the concept of private data federation has been proposed [3]. In a private data

federation, participating parties agree on a shared schema and permissible queries. Each party

runs these queries on their private data, sharing only the final results. Notably, individual parties’

databases or intermediate results generated during query processing remain undisclosed. This

approach enables secure collaboration while preserving the privacy and confidentiality of each

party’s data.

Several studies have focused on secure query processing over private data federation, such as

SMCQL [3], Conclave [42], Senate [35], and SECRECY [32] for SQL queries, and Hu-Fu [41] for

spatial queries. While these works have made initial progress towards federated nearest neighbor

search using security tools like secure multi-party computation (SMC), they assume that the distance

functions, such as Euclidean or Manhattan distance, can be easily computed, and the bottleneck

lies in security tools.

For nearest neighbor search queries with difficult-to-compute distance functions, such as graph

or sequence similarity, local computations at each participant can become the bottleneck, rendering

existing solutions inefficient. In Table 1, following the system settings in Section 6, we provide some
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preliminary results (in terms of query time) of nearest neighbor search by applying the baseline and

the state-of-the-art [41] algorithms directly to these types of queries. The results clearly show that

the overhead of local computations is the primary bottleneck of query efficiency. Moreover, existing

solutions use SMC for secure interaction among participants, which can complicate the execution

of operations such as sorting. This exacerbates the local computational burden for nearest neighbor

queries, especially when there is a lack of prior knowledge about the data.

This paper aims to address the challenges of efficient and secure nearest neighbor search in

private data federation, focusing on queries where the local computational overhead dominates. We

follow the semi-honest threat model and adopt a hardware enclave-based approach to efficiently

support secure queries. To this end, we propose FedKNN, an efficient system for supporting

federated k-nearest neighbor (kNN) search queries. FedKNN is equipped with our newly proposed

Distribution-Aware kNN (DANN) processing algorithm to reduce the local computations required

for each participating party, which is a key factor in improving system efficiency. The core idea of

DANN is to obtain the possible distribution of query results over the private data of each party using

a fast preprocessing round. This allows each party to compute local kNNs with different 𝑘 values

separately, minimizing unnecessary local computations. To protect private information during

query processing, we enhance DANN with differential privacy techniques and further develop

DANN*, which maintains efficiency while meeting the differential obliviousness requirement [8].

Our main contributions and results are summarized as follows:

• We present FedKNN, a pioneering system that can efficiently and securely compute a variety

of kNN queries on a data federation, particularly for kNN queries where local computations

are the performance bottleneck.

• We propose a new Distribution-Aware kNN (DANN) query algorithm that reduces the amount

of unnecessary local computations while ensuring that the original data is not shared with

third parties. We show that the expected complexity of DANN is close to the theoretical

optimal and better than the baseline solution (Theorem 4.8).

• We develop DANN* using differential privacy and provide a detailed security analysis. Com-

pared with the state-of-the-art solution [41], our approach satisfies differential oblivious-

ness [8] and can offer provable privacy guarantees for each participant (Theorem 4.16).

• We implement a FedKNN prototype system and conduct extensive evaluations on various

types of datasets. The results show that FedKNN outperforms current state-of-the-art solutions

by up to 4.8× on federated graph kNN search and up to 2.7× on federated sequence kNN

search. Our experiments also demonstrate that by adding differential privacy, our approach

can provide strong privacy guarantees with only a small additional overhead.

In the rest of this paper, we present the kNN search and system model in Section 2 and describe

the security basics in Section 3. We then propose our DANN and DANN* algorithms in Section 4

and prove that DANN* satisfies differential obliviousness. We present our system implementation

in Section 5, followed by the evaluation results in Section 6. Finally, we review the related works in

Section 7 and conclude the paper in Section 8.

2 BACKGROUND AND SYSTEMMODEL
2.1 k-Nearest Neighbor (kNN) Search
Consider a database D, where each data object 𝑜 ∈ D is represented as a tuple in the form of

𝑜 = ⟨𝑖𝑑, 𝑑⟩. Here, 𝑖𝑑 is the unique identifier of the data object and 𝑑 is the original data object (e.g.,

string, graph, or time series). The original data object 𝑑 can be regarded as a point in the universe

U, where U is a metric space. The similarity of two points 𝑥,𝑦 ∈ U is defined by a similarity

metricM(𝑥,𝑦).
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Similarity Metrics. A variety of similarity metrics can be employed to measure the similarity or

dissimilarity between data points in diverse applications. Examples include Euclidean distance and

Manhattan distance for geometric points, edit distance for strings and graphs, cosine similarity for

vectors, and Jaccard distance for sets.

Some similarity metrics, such as Euclidean distance and Manhattan distance, can be computed in

𝑂 (𝑙) time, where 𝑙 represents the dimensionality of the space. When the dimensionality is relatively

low, the cost of distance computation can be considered as a constant and omitted when analyzing

the computational cost for KNN queries. This assumption is also prevalent in prior works [41].

However, certain similarity metrics, like edit distance, impose a higher computational burden.

Example 2.1. Edit Distance. The edit distance is a widely employed similarity metric for com-

paring two sequences [49, 50, 53] or graph data objects [9, 21, 28]. It is defined as the number of

“edit operations” needed to transform one data object into another. Nevertheless, computing the

edit distance for either sequences or graph data is NP-hard [14, 52].

A kNN search query 𝑄 is defined in the form of ⟨𝑘, 𝑑𝑞⟩, where 𝑑𝑞 ∈ U is the query point and 𝑘

denotes the number of data objects 𝑜 ∈ D that must be returned for the kNN query. Meanwhile,

the query result set 𝑄 (D) satisfies |𝑄 (D)| = 𝑘 and ∀𝑜 ∈ 𝑄 (D),∀𝑜 ′ ∈ D − 𝑄 (D),M(𝑑𝑞, 𝑜 .𝑑) ≤
M(𝑑𝑞, 𝑜 ′ .𝑑).
An intuitive approach to processing kNNs queries involves computing the distance between

each data object 𝑜 ∈ D and the query point 𝑑𝑞 , followed by sorting to retrieve the top-𝑘 results.

However, this approach is inefficient as it computes distances between 𝑑𝑞 and every 𝑜 ∈ D, even

when |D| is significantly larger than 𝑘 .

As a more effective alternative, we can construct an index I on the database D, such as R-

tree [11] for spatial data or search tree [9] for graph data. Utilizing preprocessing and pruning, the

index is able to compute the kNN function in 𝑂 (𝑘 × cost𝑑 × cost𝑢) time, with a hidden constant

factor or logarithmic factor [9]:

• kNNCompute(D, 𝑘, 𝑑𝑞), for computing the kNNs of the query point 𝑑𝑞 against all data objects

in the database D.

Here, cost𝑑 represents the cost of computing the distance between any two points, and cost𝑢

represents the unit cost required by kNNCompute(D, 𝑘, 𝑑𝑞), including the cost of accessing the

index and the cost of retrieving data objects. For a given database instance D and similarity metric

M, the running time of kNNCompute(D, 𝑘, 𝑑𝑞) is generally proportional to 𝑘 , which has also been

verified by our experimental results (Figure 4 (a)) in Section 6.

Additionally, the index I may also assist in filtering the top-𝑘 lower-bound distances and support

the following function as well:

• kLBCompute(D, 𝑘, 𝑑𝑞), for computing the top-𝑘 lower-bound distances of the query point 𝑑𝑞
against all data objects in the database D.

In general, kLBCompute(D, 𝑘, 𝑑𝑞) is much faster than kNNCompute(D, 𝑘, 𝑑𝑞). Therefore, we in-
tend to leverage the lower-bound distances to estimate the distribution of top-𝑘 results across

different parties, thereby reducing the need for costly distance computations.

It is worth noting that our study does not assume any particular similarity metricM and treat

the kNN computation as a black-box process. Our system is flexible to work with any metrics and

indices that provide the above two functions.

For the sake of simplicity, we normalize cost𝑑 and cost𝑢 to 𝑂 (1) in the remainder of this pa-

per, assuming fixed D andM. We also neglect other costs associated with local computations,

as they are insignificant compared to cost𝑑 × cost𝑢 . Our main goal is to minimize

∑
𝑖 𝑘𝑖 for all

kNNCompute(D, 𝑘, 𝑑𝑞) computations invoked within our system.
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Fig. 1. System Model

2.2 Federated kNN
We consider the scenario of a private data federation, which is a collection of autonomous databases

as depicted in Figure 1. This federation shares a unified query interface to offer data analytics services

using the collective (sensitive) data of its members, without revealing unauthorized information to

any party involved in the analytics process [3, 41, 42]. A private data federation 𝐹 consists of three

types of parties:

(1) data providers P = {𝑃1, 𝑃2, · · · , 𝑃𝑚}, each data provider 𝑃𝑖 holding a private database 𝐷𝑖 , and

D = 𝐷1 ∪ · · · ∪ 𝐷𝑚 ;

(2) a broker responsible for planning and orchestrating the queries on D; and

(3) a user who submits queries to the broker.
This paper focuses on federated kNN queries. Any user can submit a query𝑄 to the broker, which

compiles 𝑄 into a query plan. Subsequently, the data providers collaboratively execute a secure

federated data analytics protocol. Once the protocol execution is complete, the broker returns the

final result set 𝑟 to the user. Table 2 summarizes the frequently used notations in this paper.

2.3 Threat Model
In federated computing, preserving the privacy and security of each party’s data is of the utmost

importance. In this paper, we adopt a semi-honest adversary model similar to prior works [3, 41, 42].

Specifically, we assume that there is no collusion among parties, and all parties in the private

data federation are honest but curious. They adhere to the protocol but may attempt to infer

information about other parties’ private inputs. Consequently, we consider two potential security

threats in the system: (i) the adversary may obtain raw, sensitive data in 𝑃𝑖 during data processing or

communication; and (ii) the adversary may observe the data access pattern during data processing

or communication to infer sensitive data in 𝑃𝑖 (e.g., the adversary can observe memory access and

network traffic to infer the order and source of the results). We will give the formal definition of

data access pattern in Section 3.2.

To address the first threat, the protocol should ensure data confidentiality in two aspects:

• Data Processing. This involves only the broker, which processes data from P. To ensure

data confidentiality, the input data from P should be encrypted, and all operations should be

performed on encrypted data.

• Data Transmission. All data transmitted from P to the broker should be sent via a secure

channel to prevent eavesdropping.

To counter the second threat, the protocol should protect the data access pattern in two aspects:
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Table 2. Frequently Used Notations

Notation Description

𝐹 the private data federation

P the set of data providers

D the set of the private databases held at every 𝑃𝑖
𝑚 the number of data providers in P
𝜀 the privacy budget for the differential obliviousness

𝜆 the potential max error probability for the query

𝑘𝑖 the number of local kNN results computed by 𝑃𝑖 in one round

𝑑 the data object in the database

𝑑𝑞 the query point

𝑑𝑖𝑠𝑡 the distance between two data objects

• Data Processing. This involves the curious data provider and the broker. For the broker,

the memory access pattern during data processing must be protected, as the broker can

potentially infer sensitive data from P through statistical analysis. For the curious data

provider, it can potentially deduce the data distributions of other data providers by analyzing

the local computations required for processing a kNN query.

• Data Transmission. The data transmitted from P to the broker should have the same size

when 𝑘 is fixed. This minimizes the potential for the adversary to infer additional information

about P by analyzing the communication volume.

Our core task is to design an efficient and secure federated data analytics protocol that improves

the performance of kNN queries over the data federation while ensuring the privacy of data

providers as defined above. In the following sections, we first present the security basics that

underlie our solution, and then describe our system, FedKNN, which fulfills these requirements.

3 SECURITY BASICS
3.1 Hardware Enclaves
Hardware enclaves have recently gained popularity due to their two security features: isolated

execution and sealing. While the specific details may differ depending on the vendor (e.g., Intel

SGX [12] and AMD SEV [27]), the general concepts remain the same. First, the isolated execution

of an enclave process restricts access to a subset of memory so that only that particular enclave

can access it. No other processes on the same processor, including the OS, hypervisor, or system

management module, can access that memory. Second, sealing allows encrypting and authenticating

the enclave’s data so that only the same enclave can decrypt it. However, the current enclave

architecture leaks memory access patterns when accessing the enclave’s memory (EPC) and the

rest of the main memory, which may be sensitive in practice [48]. In our FedKNN, we assume the

data broker is equipped with a hardware enclave. We leverage the enclave to improve performance

while also designing methods to protect access patterns.

3.2 Obliviousness
Obliviousness [20] is a commonly used security definition for many oblivious data structures,

providing protection for access patterns. Before introducing the formal definition of obliviousness,

we first introduce the leakage function of a protocol Π. Let L(D) be a leakage function that has

to be revealed during the execution of Π on a database D. We assume that the size of the private

input (|D|), the query𝑄 , the size of the final result set |Π(D)|, and the number of data providers𝑚
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are not sensitive. Based on this assumption, we have L(D) = {|D|, |Π(D)|, 𝑄,𝑚}.1 We first define

the access pattern during the protocol execution.

Definition 3.1 (Access Pattern). Let

AccessΠ (D) := (𝑞1, 𝑞2, · · · , 𝑞𝑧) (1)

denote the access pattern of length 𝑧, which defines the adversary’s observation during the execution

of Π on D. Each access 𝑞 ∈ AccessΠ (D) can be represented as a 5-tuple ⟨𝑜𝑝, 𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎⟩,
where 𝑜𝑝 ∈ {𝑟𝑒𝑎𝑑,𝑤𝑟𝑖𝑡𝑒}, 𝑠𝑟𝑐 is the party owning the data, 𝑑𝑠𝑡 is the party accessing the data,

𝑎𝑑𝑑𝑟 is the logical address accessed by the protocol, and 𝑑𝑎𝑡𝑎 is what is to be written or to be read.

In case 𝑠𝑟𝑐 = 𝑑𝑠𝑡 , the access denotes a processor accessing its local memory data (referred to as

memory access pattern); otherwise, it denotes a processor accessing the data from other parties

(referred to as network access pattern).

Depending on the protection level of the access pattern, obliviousness can be divided into two

types: full obliviousness [29] and differential obliviousness [8]. We first present the definition of full

obliviousness.

Definition 3.2 (Full Obliviousness [29, 36]). We say a protocol Π is fully oblivious if, given an

arbitrary database
¯D and a real databaseD where | ¯D| = |D|, a polynomial-time adversaryA only

has a negligible advantage to distinguish
¯D and D:

𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D),D) = 1] ≤ 𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ ( ¯D),D) = 1] + 𝛿 (2)

The simulator 𝑆𝑖𝑚Π (L,AccessΠ ( ¯D),D) will output 1 if A determines that
¯D is the same as D

based on L and AccessΠ ( ¯D). Intuitively, the probability that the adversary can gain additional

information beyond the leakage function is negligible and controlled by the security parameter 𝛿 .

However, achieving full obliviousness is expensive and will significantly degrade the query

performance. To improve performance, a relaxed security definition, called (𝜀, 𝛿)-differential obliv-
iousness, has been proposed [8, 36, 46]. Rather than making the access pattern of the protocol

indistinguishable for all inputs, differential obliviousness only necessitates that the access pattern

satisfies differential privacy. Yet, unlike differential privacy, which often adds noise to the final

results or raw data, differential obliviousness solely incorporates dummy operations during execu-

tion to conceal the access pattern. Therefore, differential obliviousness does not impact the query

results. The formal definition of (𝜀, 𝛿)-differential obliviousness is:

Definition 3.3 ((𝜀, 𝛿)-Differential Obliviousness [8]). We say a protocol Π is (𝜀, 𝛿)-oblivious if, for
any two neighboring databases D1 and D2 where |D1 | = |D2 | and |D1 − D2 | = 1, the following

condition is satisfied:

𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D1),D1) = 1] ≤ 𝑒𝜀𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D2),D1) = 1] + 𝛿 (3)

where 𝜀 represents the privacy budget and 𝛿 is a negligible probability for which 𝜀 does not hold.

3.3 Oblivious Data Processing
Oblivious Sort. Oblivious sorting [2] is a family of sorting algorithms whose memory access

pattern is solely determined by the input data’s length, regardless of the distribution of the data

being sorted. It can be used as a building block to design many oblivious algorithms. One well-

known approach to implementing an oblivious sort is the Bitonic sort [26], which has a time

complexity of 𝑂 (𝑁 log
2 𝑁 ) to sort 𝑁 elements.

1
We use L and L(D) interchangeably when the context is clear.
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Oblivious Priority Queue. The oblivious priority queue closely resembles a standard priority

queue, with the crucial distinction that it prevents the leakage of internal state information, such

as the queue’s size, through memory access pattern during algorithm execution. There are several

approaches to implementing an oblivious priority queue. One notable approach is to leverage

oblivious RAM [38], which is particularly well-suited for managing large-capacity queues. In

our paper, however, we use the oblivious sorting instead, as it has been shown to have better

performance for small-capacity queues. The oblivious priority queue supports the following

operations:

• 𝑂𝑏𝑙𝑖𝑃𝑟𝑖𝑜𝑟𝑄𝑢𝑒𝑢𝑒 ← init(𝑁 ): initialize the oblivious priority queue with capacity 𝑁 .

• Enqueue(𝑒): push one element 𝑒 to the queue. If 𝑒 is a tuple, the queue will sort based on its

first attribute. It is important to note that the enqueue operation does not increase the queue’s

capacity. If the queue is full and the new element is smaller than the largest element in the

queue, the largest element will be removed before adding the new element. Otherwise, the

new element will not be added to the queue.

• 𝑒 ← Dequeue(): retrieve the smallest non-dummy element 𝑒 from the queue. If no non-dummy

elements are in the queue, it returns a dummy element.

• 𝑖 ← GetIndex(𝑒): use the linear scan to obliviously find the index of the element 𝑒 in the

queue. If 𝑒 does not exist in the queue, it will return -1.

4 FedKNN ALGORITHMS
In this section, we present three kNN algorithms used in our FedKNN system. First, we present the

baseline algorithm in Section 4.1, which minimizes the communication cost. To reduce the local

computation overhead of the baseline algorithm, we propose a Distribution-Aware kNN (DANN)

algorithm in Section 4.2. To provide provable security guarantees for DANN, we introduce DANN*

in Section 4.3. We prove in Section 4.4 that DANN* satisfies (𝜀, 𝛿)−differential obliviousness.

4.1 Baseline Solution
Since each data provider 𝑃𝑖 can compute kNNs locally, an intuitive approach to support federated

kNN queries while maintaining obliviousness is as follows: each data provider computes and sends

its local top-𝑘 results to the broker; the broker then uses oblivious sort [26] to sort all received

results by distance and selects the top-𝑘 results to produce the final federated kNN results. To

ensure execution confidentiality, all computations of the broker are performed within its enclave.

Moreover, a secure channel is established between the broker and each data provider through the

enclave for all communications. The baseline algorithm minimizes the communication cost as it

involves only one round of communication, with a total volume of 𝑂 (𝑚 · 𝑘), where𝑚 represents

the number of data providers.

Example 4.1. We use Figure 2 as an example to illustrate the query procedure of the baseline

solution. Suppose we have three data providers P = {𝑃1, 𝑃2, 𝑃3} in the data federation, and each 𝑃𝑖
has three data objects in its private database 𝐷𝑖 . A user wants to retrieve the three most similar

objects to the query point 𝑑𝑞 by sending a query 𝑄 = ⟨3, 𝑑𝑞⟩ to the broker. The broker will send

an identical sub-query to each 𝑃𝑖 to request each 𝑃𝑖 to return its local top-3 similar objects to

𝑑𝑞 . Once 𝑃𝑖 finishes its local kNN computations, it will send the result set to the broker, i.e.,

𝑟1 = {⟨8, 𝑑1⟩, ⟨9, 𝑑2⟩, ⟨11, 𝑑3⟩}, 𝑟2 = {⟨6, 𝑑4⟩, ⟨10, 𝑑5⟩, ⟨12, 𝑑6⟩}, and 𝑟3 = {⟨12, 𝑑7⟩, ⟨13, 𝑑8⟩, ⟨14, 𝑑9⟩}.
Finally, the broker will use an oblivious priority queue to filter the final top three results, i.e.,

𝑟 = {⟨6, 𝑑4⟩, ⟨8, 𝑑1⟩, ⟨9, 𝑑2⟩}.

Theorem 4.2. (Baseline cost). For any arbitrary federated database D, the baseline algorithm has
a time cost of 𝑂 (𝑚 · 𝑘).
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Fig. 2. An Example of FedKNN

Proof. In the baseline solution, the final results of the federated kNN query are obtained by

filtering the local kNN results of each data provider 𝑃𝑖 . Each data provider 𝑃𝑖 must compute 𝑘 local

nearest neighbor results, which requires invoking ComputeDist at least 𝑂 (𝑘) times. Therefore, for

a data federation with𝑚 data providers, the baseline algorithm necessitates calling ComputeDist

at least 𝑂 (𝑚 · 𝑘) times across all parties. □

Theorem 4.3. (Baseline security). The baseline algorithm is fully oblivious for any two databases
D1 and D2 with |D1 | = |D2 |.

Proof. According to Section 2, the adversaries in the protocol can be divided into two types:

curious data provider (denoted as A𝑝 ) and curious broker (denoted as A𝑏 ). For A𝑝 , it will not learn

anything beyond L. Therefore, we have:
Pr[AccessΠ (D1) ∈ 𝑆] ≤ 𝑃𝑟 [AccessΠ (D2) ∈ 𝑆] + 𝛿

With this, we can derive that:

𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D1),D1) = 1] ≤
𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D2),D1) = 1] + 𝛿

So the baseline algorithm keeps the full obliviousness to A𝑝 .

For A𝑏 , only the access pattern needs to be considered since the algorithm is executed in the

TEE. For any two databases D1 and D2 with same size |D1 | = |D2 |. When the query𝑄 is the same,

with the obliviousness claims of the oblivious priority queue and the identical communication

volume of all 𝑃𝑖 , A𝑏 will not learn anything beyond L. Thus, the baseline algorithm keeps the full

obliviousness to A𝑏 . Therefore, without considering the collusion, the baseline algorithm keeps

the full obliviousness for any adversary. □

4.2 Distribution-Aware kNNQuery (DANN)
From Theorem 4.2, we can find that if the computation cost of similarity metrics is high, the

overhead of local computations can become the bottleneck, which will significantly affect the

scalability of the system. In this subsection, we propose a novel federated kNN query algorithm,

Distribution-Aware kNN (DANN), to address this bottleneck. DANN enhances the performance of

federated kNN queries by reducing the unnecessary local kNN computations performed by each

data provider 𝑃𝑖 .
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Algorithm 1: Distribution-Awared kNN Query

1 Function DANN(𝑘 , 𝑑𝑞)
Input: User query parameter 𝑘 , query point 𝑑𝑞
Output: Query result set

2 𝑟 ← PriorityQueue.Init(𝑘);
3 𝑙𝑏𝑄𝑢𝑒𝑢𝑒 ← PriorityQueue.Init(𝑘);
4 𝑘𝑀𝑎𝑝 ← Map.Init();

// Phase 1: Lower bound estimation

5 for 𝑖 ∈ {1, · · · ,𝑚} do
6 {𝑙𝑏}𝑖 ← 𝑃𝑖 .LocalKLB(𝑘, 𝑑𝑞);
7 for 𝑙𝑏 ∈ {𝑙𝑏}𝑖 do 𝑙𝑏𝑄𝑢𝑒𝑢𝑒.Enqueue(⟨𝑙𝑏, 𝑖⟩) ;
8 for 𝑖 ∈ {1, · · · ,𝑚} do
9 𝑘𝑖 ← Max( |{⟨𝑙𝑏, 𝑗⟩ ∈ 𝑙𝑏𝑄𝑢𝑒𝑢𝑒 ∧ 𝑖 = 𝑗}|, 1);

10 𝑘𝑀𝑎𝑝 [𝑖] ← 𝑘𝑖 ;

// Phase 2: First-round kNN computation

11 for 𝑖 ∈ {1, · · · ,𝑚} do
12 𝑟𝑖 ← 𝑃𝑖 .LocalKNN(𝑘𝑀𝑎𝑝 [𝑖], 𝑑𝑞);
13 for ⟨𝑑𝑖𝑠𝑡, 𝑑⟩ ∈ {𝑟𝑖 } do
14 𝑟 .Enqueue(⟨𝑑𝑖𝑠𝑡, 𝑑⟩);
15 for 𝑖 ∈ {1, · · · ,𝑚} do
16 if 𝑟𝑖 .last() ∈ 𝑟 then
17 𝑞𝑖 ← 𝑟 .GetIndex(𝑟𝑖 .last());
18 𝑘′

𝑖
← 𝑘𝑀𝑎𝑝 [𝑖] + 𝑘 − 𝑞𝑖 ;

19 𝑘𝑀𝑎𝑝 [𝑖] ← 𝑘′
𝑖
;

// Phase 3: Second-round kNN computation

20 Repeat Lines 11-14;

21 return 𝑟 ;

The core idea of DANN is to obtain the possible distribution of query results over the private

dataset of each data provider using a fast preprocessing round. With the information on possible

result distribution, the broker can prompt each 𝑃𝑖 to compute their local kNNs with different 𝑘𝑖
values separately, thus reducing local computations to enhance query performance. Algorithm 1

gives a detailed description of the query processing procedure. The broker starts by initializing two

priority queues and a map (Lines 2-4). The priority queues track the query results and lower-bound

distance estimations, whereas the map stores the NN counts for each data provider. The main

procedure consists of three phases: (1) lower bound estimation, (2) first-round kNN computation,

and (3) second-round kNN computation.

(1) Lower bound estimation. When the broker receives a new query ⟨𝑘,𝑑𝑞⟩, it sends the query
to each 𝑃𝑖 to quickly estimate a list of lower-bound distances. For each 𝑃𝑖 , upon receiving ⟨𝑘,𝑑𝑞⟩
from the broker, it computes the top-𝑘 lower-bound distances of the query point 𝑑𝑞 . The top-𝑘

lower-bound list {𝑙𝑏}𝑖 is then returned to the broker. After receiving {𝑙𝑏}𝑖 from each data provider

(Lines 5-6), the broker uses a priority queue to filter the global top-𝑘 ⟨𝑙𝑏, 𝑖⟩ list (Line 7). Next, the
broker will count the number of each 𝑃𝑖 in the global top-𝑘 list as 𝑘𝑖 (Lines 8-10), which is used to

estimate the distribution of kNN results in P. It should be noted that if 𝑃𝑖 has no lower bound in the

global top-𝑘 list, its 𝑘𝑖 will be set to 1 by default. This is because 𝑃𝑖 can still potentially have some

query results, and setting 𝑘𝑖 to 1 ensures that 𝑃𝑖 will always perform some local kNN computations

in the next phase.
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Example 4.4. We still use Figure 2 as an example to illustrate the query procedure of DANN, where

𝑄 = ⟨3, 𝑑𝑞⟩. For the lower bound estimation phase, the broker will send ⟨3, 𝑑𝑞⟩ to the three data

providers 𝑃1, 𝑃2, and 𝑃3 to obtain their local top-3 lower-bound distances. After each 𝑃𝑖 finishes its

local lower-bound computation, it will return the low-bound list to the broker, i.e., {𝑙𝑏}1 = {2, 8, 8},
{𝑙𝑏}2 = {3, 6, 9}, and {𝑙𝑏}3 = {7, 8, 10}. Then, the broker will use the priority queue to filter the

global top-3 lower bounds, 𝑙𝑏𝑄𝑢𝑒𝑢𝑒 = {⟨2, 1⟩, ⟨3, 2⟩, ⟨6, 2⟩}, and use them to estimate the first-round

𝑘𝑖 for each 𝑃𝑖 . Hence, we have 𝑘1 = 1 and 𝑘2 = 2. For 𝑃3, there is no lower-bound value in 𝑙𝑏𝑄𝑢𝑒𝑢𝑒

that comes from {𝑙𝑏}3, so 𝑘3 = 1 by default.

(2) First-round kNN computation. After finishing the distribution estimation, the broker

requests each 𝑃𝑖 to return their top-𝑘𝑖 (𝑘𝑖 ≥ 1) results (Lines 11-12). Once the first-round local kNN

results are received from all data providers, the broker selects the top-𝑘 objects as candidate results

(Lines 13-14). Since each data provider will provide at least one result and 𝑘 ≤ ∑
𝑖 𝑘𝑖 < 𝑘 +𝑚, the

following lemma stands true.

Lemma 4.5. For any arbitrary federated database D, the first-round computation has a time cost of
𝑂 (𝑘 +𝑚).

The broker then iteratively checks the candidate results to obtain a new 𝑘 ′𝑖 for each 𝑃𝑖 , which

will be used in the second-round local kNN computation. Specifically, the broker first checks

whether the last data object in 𝑟𝑖 returned by 𝑃𝑖 is in the top-𝑘 candidate result set 𝑟 (Line 16). If not,

this means that 𝑃𝑖 has returned enough local results to construct the final federated kNN results.

Otherwise, 𝑃𝑖 may have more results that need to be returned. In this case, the broker determines

the position 𝑞𝑖 of 𝑃𝑖 ’s last data object in 𝑟 . The maximum number of extra possible results that may

contribute to the final query results is 𝑘 − 𝑞𝑖 . Thus, the second-round NN count 𝑘 ′𝑖 of 𝑃𝑖 will be
updated to 𝑘 ′𝑖 = 𝑘𝑖 + 𝑘 − 𝑞𝑖 (Lines 17-19).

Example 4.6. Continuing from Example 4.4, after obtaining the possible results’ distribution from

the lower bound estimation, the broker will next send a different sub-query 𝑞𝑖 to each 𝑃𝑖 based on 𝑘𝑖 .

Therefore, in the first-round local kNN computation, we get 𝑟1 = {⟨8, 𝑑1⟩}, 𝑟2 = {⟨6, 𝑑4⟩, ⟨10, 𝑑5⟩},
and 𝑟3 = {⟨12, 𝑑7⟩}. The broker then filters the set of candidate results 𝑟 = {⟨6, 𝑑4⟩, ⟨8, 𝑑1⟩, ⟨10, 𝑑5⟩}
for checking. In the checking step, for 𝑃1, the last data object ⟨8, 𝑑1⟩ ∈ 𝑟 and 𝑞1 = 2, which implies

that 𝑃1 may still have at most one result, so its second-round NN count is updated to 𝑘 ′
1
= 2.

Similarly, for 𝑃2, we have ⟨10, 𝑑5⟩ ∈ 𝑟 and 𝑞2 = 3. As 𝑞2 = 3 is the last index of 𝑟 , no extra results

are needed from 𝑃2, so 𝑘
′
2
remains as 𝑘 ′

2
= 2. For 𝑃3, as ⟨12, 𝑑7⟩ ∉ 𝑟 , it means that 𝑃3 has returned

enough local results for constructing the final result set, so its second-round NN count keeps the

same as the first-round NN count.

(3) Second-round kNN computation. Due to the imperfect lower-bound estimation, the first-

round kNN computation may miss some results. Therefore, to ensure the correctness of kNN search

results, the second-round kNN computation is needed to retrieve all potential candidates and obtain

the final results. After checking the candidate results in the first round, the broker will send 𝑘 ′𝑖 to
each 𝑃𝑖 for the second-round local kNN computation.

2
Upon receiving the second-round results

from all data providers, the broker will select the top-𝑘 results as the final results of the federated

kNN query (Line 20).

Lemma 4.7. For any arbitrary federated database D, assuming 𝑘𝑖 ≥ 𝑘
𝑚

and the data objects are
randomly distributed among all data providers, the second-round kNN computation has an expected
time cost of 𝑂 (𝑚2).
2
Note that each data provider can continue from the first round and perform the incremental computation to compute the

top-𝑘 ′
𝑖
results in the second round.
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Proof. The additional cost equals the sum of𝑘−𝑞𝑖 for all data providers. To compute the expected

value of 𝑞𝑖 , we can model the problem: Given 𝑘 integers from 1 to 𝑘 and randomly selecting 𝑘𝑖
integers from the list without duplication, what is the expected maximum integer selected?

Let 𝑗 be the maximum integer, then there exist 𝐶
𝑘𝑖−1

𝑗−1
different combinations, and 𝑃𝑟 [𝑚𝑎𝑥 = 𝑗] =

𝐶
𝑘𝑖−1

𝑗−1

/
𝐶
𝑘𝑖
𝑘
. Hence,

𝐸 [𝑞𝑖 ] =
𝑘∑︁

𝑗=𝑘𝑖

𝑗 · 𝑃𝑟 [𝑚𝑎𝑥 = 𝑗] =
𝑘∑︁

𝑗=𝑘𝑖

𝑗 ·
𝐶
𝑘𝑖−1

𝑗−1

𝐶
𝑘𝑖
𝑘

=
𝑘𝑖

𝑘𝑖 + 1

· (𝑘 + 1)

and

𝐸 (
∑︁
𝑖

𝑘 ′𝑖 ) =
∑︁
𝑖

𝐸 (𝑘 − 𝑞𝑖 ) =
∑︁
𝑖

(𝑘 − 𝑘𝑖
𝑘𝑖 + 1

)

It is clear that if 𝑘𝑖 becomes larger, 𝐸 (∑𝑖 𝑘
′
𝑖 ) becomes smaller. If 𝑘𝑖 ≥ 𝑘

𝑚
for all 𝑖 , then

𝐸 (
∑︁
𝑖

𝑘 ′𝑖 ) ≤
∑︁
𝑖

𝑘𝑚 − 𝑘
𝑘 +𝑚 < 𝑚 · (𝑚 − 1) = 𝑂 (𝑚2)

Then, the second-round computation is expected to have 𝑂 (𝑚2) additional cost. □

Although it is possible that 𝑘𝑖 <
𝑘
𝑚
, we can slightly modify the first-round computation to return

the top-𝑚𝑎𝑥 ( 𝑘
𝑚
, 𝑘𝑖 ) results. It adds only an additional constant factor to the first-round computation.

In practice, the second-round computation cost would be much less than 𝑂 (𝑚2), as will be shown
in the experiments (Figure 4(b)).

Combining Lemmas 4.5 and 4.7, we can obtain the theorem:

Theorem 4.8. (DANN cost). For any arbitrary federated database D, the DANN algorithm has an
expected time cost of 𝑂 (𝑘 +𝑚2).

Note that when 𝑘 ≥ 𝑚2
, our method is expected to have a time cost of 𝑂 (𝑘), which is optimal.

Example 4.9. Continuing from Example 4.6, we continue the local kNN computation with 𝑘 ′𝑖 for
each 𝑃𝑖 . The results are 𝑟1 = {⟨8, 𝑑1⟩, ⟨9, 𝑑2⟩}, 𝑟2 = {⟨6, 𝑑4⟩, ⟨10, 𝑑5⟩}, and 𝑟3 = {⟨12, 𝑑7⟩}. The broker
then filters the final top-3 result set 𝑟 = {⟨6, 𝑑4⟩, ⟨8, 𝑑1⟩, ⟨9, 𝑑2⟩}.

Potential Information Leakage of DANN. Although DANN has expected optimal time com-

plexity, it does not consider data privacy, which could potentially lead to information leakage.

As we mentioned in Section 2.3, the adversaries in the protocol can be divided into two types:

curious data provider (denoted as A𝑝 ) and curious broker (denoted as A𝑏 ). For A𝑝 , LocalKLB and
LocalKNN are executed by the data providers in plaintext. For the lower-bound estimation, as the

broker requests each 𝑃𝑖 to return 𝑘 lower-bound distances of the query point, A𝑝 cannot acquire

additional information through communication other than L. For the two rounds of local kNN

search,A𝑝 can obtain the local NN counts 𝑘𝑖 and 𝑘
′
𝑖 , in addition to L. This extra information gives

A𝑝 with an advantage in distinguishing between two distinct databases.

ToA𝑏 , Algorithm 1 is executed by the broker in the enclave.A𝑏 cannot obtain plaintext sensitive

data during data processing or communication, which is guaranteed by the enclave. However, as

we mentioned in Section 2.3, A𝑏 can still observe the data access pattern during the processing of

local top-𝑘 lower-bound distances and local kNN results.

Specifically, in the data processing stage, Algorithm 1 utilizes two priority queues, 𝑟 and 𝑙𝑏𝑄𝑢𝑒𝑢𝑒 ,

to store candidate results and lower-bound distances. Their access patterns can reveal the relative

order and number of results from different data providers, thereby providing an additional advantage
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for A𝑏 to distinguish between two distinct databases. For the update and access of 𝑘𝑀𝑎𝑝 , in the

lower-bound estimation phase, we traverse 𝑖 ∈ {0...𝑚} for the update of 𝑘𝑖 , so the access pattern of

𝑘𝑀𝑎𝑝 is solely determined by the number of data providers and is unrelated to specific data and

query being processed. Therefore, the access and update of 𝑘𝑀𝑎𝑝 in the lower-bound estimation

phase is oblivious. However, in the first-round kNN computation, as it is necessary to check

whether 𝑃𝑖 ’s last data object is in the candidate result set 𝑟 to determine whether to update 𝑘𝑖 , the

memory access pattern of 𝑘𝑀𝑎𝑝 will be leaked. By observing which 𝑘𝑖 in 𝑘𝑀𝑎𝑝 is updated,A𝑏 can

potentially infer the distribution of the final query results among the data providers.

During data transmission, the size of 𝑟𝑖 sent back to the broker varies due to the differences

in the local NN counts for each data provider. By observing the communication volume, A𝑏 can

infer the local NN counts 𝑘𝑖 and 𝑘
′
𝑖 . Consequently, this provides A𝑏 with an additional advantage

beyond L.
In summary, during the execution of DANN, A𝑏 can potentially obtain the order of results and

the number of each data provider’s results in the final result set 𝑟 by observing the memory access

pattern. Moreover, A𝑏 can also learn each data provider’s local NN counts 𝑘𝑖 and 𝑘 ′𝑖 from the

network access pattern.

4.3 Secure Version of DANN (DANN*)
To mitigate the potential information leakage discussed above, we propose a secure version of

DANN, called DANN*. In DANN*, we adopt (𝜀, 𝛿)-differential obliviousness, which, as mentioned

in Section 3.2, can maintain the algorithm’s efficiency while providing a measurable level of privacy

protection. This approach allows us to set a formal limit on the information leakage of the data

providers.

DANN* requires somemodifications to the DANN algorithm tomeet the differential obliviousness

requirement. We show DANN* in Algorithm 2 and highlight the changes in blue. For the input,

DANN* requires two additional parameters, 𝜀 and 𝜆, from the user. For these two parameters, 𝜀

means howmany advantages the adversary may gain from the access pattern, and 𝜆 is the maximum

probability that the final kNN results contain false objects due to the noise.

We make the following modifications to prevent the broker from inferring sensitive information

about the data providers from the memory access pattern. First, we replace the priority queues 𝑟

and 𝑙𝑏𝑄𝑢𝑒𝑢𝑒 with an oblivious version introduced in Section 3.3 (Lines 2-3). Second, to address

the issue of memory access pattern leakage resulting from candidate result checking during the

first-round kNN computation, we make the process oblivious (Lines 17-21). Specifically, we use

boolean operations to replace conditional branches (Lines 18-19), to calculate the second-round NN

count and update all values in 𝑘𝑀𝑎𝑝 . This only increases the multiplication operation cost at most

2 ·𝑚 times and the 𝑘𝑀𝑎𝑝 update overhead𝑚 − 1 times. As a result, our control flow of updating

𝑘𝑀𝑎𝑝 during the checking step relates only to the number of data providers𝑚.

For the curious data provider, it may deduce the data distributions of other data providers by

analyzing the local NN counts 𝑘𝑖 and 𝑘 ′𝑖 during query processing. To counter this threat, it is

necessary to ensure that the local NN counts 𝑘𝑖 and 𝑘
′
𝑖 satisfy differential privacy for each 𝑃𝑖 , in

order to achieve differential obliviousness. Meanwhile, as 𝑘𝑖 and 𝑘
′
𝑖 are positive integers, a Laplace

noise with
𝜀
2
privacy budget and an offset − 2

𝜀
ln(2 · 𝜆) are added to 𝑘𝑖 and 𝑘

′
𝑖 (Line 12). The offset

guarantees that the added noise is positive with probability 1 − 𝜆.
Definition 4.10 (Laplace mechanism F (D, 𝑓 , 𝜀)). Given a function 𝑓 : D ↦→ R∗, we add a non-

negative noise 𝜉 drawn from the Laplace distribution 𝐿𝑎𝑝 ( 𝛥𝑓

𝜀
) to the output 𝑓 (D). Formally, the

Laplace mechanism outputs the following:

F (D, 𝑓 , 𝜀) = 𝑓 (D) + 𝜉 (4)
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Algorithm 2: Secure Distribution-Awared kNN Query

1 Function DANN∗(𝑘 , 𝑑𝑞 , 𝜀, 𝜆)
Input: User query parameter 𝑘 , query point 𝑑𝑞 , privacy budget 𝜀, and max error probability 𝜆

Output: Query results 𝑟

2 𝑟 ← ObliviousPriorityQueue.Init(𝑘);
3 𝑙𝑏𝑄𝑢𝑒𝑢𝑒 ← ObliviousPriorityQueue.Init(𝑘);
4 𝑘𝑀𝑎𝑝 ← Map.Init();

// Phase 1: Lower bound estimation

5 for 𝑖 ∈ {1, · · · ,𝑚} do
6 {𝑙𝑏}𝑖 ← 𝑃𝑖 .LocalKLB(𝑘, 𝑑𝑞);
7 for 𝑙𝑏 ∈ {𝑙𝑏}𝑖 do 𝑙𝑏𝑄𝑢𝑒𝑢𝑒.Enqueue(⟨𝑙𝑏, 𝑖⟩) ;
8 for 𝑖 ∈ {1, · · · ,𝑚} do
9 𝑘𝑖 ← Max( |{⟨𝑙𝑏, 𝑗⟩ ∈ 𝑙𝑏𝑄𝑢𝑒𝑢𝑒 ∧ 𝑖 = 𝑗}|, 1);

10 𝑘𝑀𝑎𝑝 [𝑖] ← 𝑘𝑖 ;

// Phase 2: First-round kNN computation

11 for 𝑖 ∈ {1, · · · ,𝑚} do
12 𝑘𝑖 ← 𝑘𝑀𝑎𝑝 [𝑖] − 2

𝜀 ln(2 · 𝜆) + Lap( 2𝜀 );
13 𝑘𝑖 ← Min(Max(𝑘𝑖 , 1), 𝑘)); // Make 1 ≤ 𝑘𝑖 ≤ 𝑘

14 𝑟𝑖 ← 𝑃𝑖 .LocalKNNwithPadding(𝑘𝑖 , 𝑘, 𝑑𝑞);
15 for ⟨𝑑𝑖𝑠𝑡, 𝑑⟩ ∈ {𝑟𝑖 } do
16 𝑟 .Enqueue(⟨𝑑𝑖𝑠𝑡, 𝑑⟩);
17 for 𝑖 ∈ {1, · · · ,𝑚} do
18 𝑖𝑠𝐼𝑛 ← 𝑟𝑖 .last() ∈ 𝑟 ;
19 𝑞𝑖 ← 𝑖𝑠𝐼𝑛 · 𝑟 .GetIndex(𝑟𝑖 .last()) + ¬𝑖𝑠𝐼𝑛 · 𝑘 ;
20 𝑘′

𝑖
← 𝑘𝑀𝑎𝑝 [𝑖] + 𝑘 − 𝑞𝑖 ;

21 𝑘𝑀𝑎𝑝 [𝑖] ← 𝑘′
𝑖
;

// Phase 3: Second-round kNN computation

22 Repeat Lines 11-16;

23 return 𝑟 ;

where 𝜉 ∼ 𝐿𝑎𝑝 ( 𝛥𝑓

𝜀
) and 𝛥𝑓 is the sensitivity of function 𝑓 .

To prevent adversaries from inferring the number of results returned by each 𝑃𝑖 by observing

the network access pattern, we add dummy results to pad the result set from each 𝑃𝑖 to a uniform

length of 𝑘 (Line 14) before transmitting to the broker. This ensures that the network access pattern

remains invariant, regardless of the underlying databases.

With the above modifications, DANN* can achieve differential obliviousness for all participants

in 𝐹 , which we will prove in Section 4.4. Meanwhile, DANN* still keeps the efficiency of DANN for

handling federated kNN queries. We will show it in Section 6.

Theorem 4.11. (DANN* cost). For any arbitrary federated database D, the DANN* algorithm has
an expected time cost 𝑂 (𝑘 +𝑚2 − 4

𝜀
· ln (2 · 𝜆)).

Proof. As DANN* uses Laplace noise to maintain the differential privacy of each round’s local

NN count, the expectation of the Laplace noise is 0. To bound the error, each NN count is offset by

− 2

𝜀
· ln (2 · 𝜆). Therefore, given Theorem 4.8, the total number of local kNN computations required

for the two rounds is bounded by 𝑂 (𝑘 +𝑚2 − 4

𝜀
· ln (2 · 𝜆)). □
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4.4 Security Analysis of DANN*
We now prove that DANN* satisfies (𝜀, 𝛿)-differential obliviousness.

Definition 4.12 (Sensitivity of 𝑘𝑖 ). The sensitivity of the function 𝑓 : D ↦→ R∗ is the maximum

difference of the adversary’s view in 𝑘𝑖 of neighboring databases D1 and D2. Formally, it is defined

as:

𝛥𝑓 = max

∥D1−D2 ∥=1

∥ 𝑓 (D1) − 𝑓 (D2)∥1 (5)

As 𝑘𝑖 is the local NN count of 𝑃𝑖 , it is not hard to have 𝛥𝑓 = 1 in our algorithm of two neighboring

databases.

Lemma 4.13. For any neighboring databases D1 and D2, the Laplace mechanism satisfies (𝜀, 0)-
differential privacy.

Proof. Let 𝑝D1
and 𝑝D2

denote the probability density functions of F (D1, 𝑓 , 𝜀) and F (D2, 𝑓 , 𝜀),
respectively. Thus, F (D1, 𝑓 , 𝜀) = 𝑓 (D1) + 𝜉1 and F (D2, 𝑓 , 𝜀) = 𝑓 (D2) + 𝜉2. Then, for any output

𝑧 ∈ R∗, we have:

𝑝D1
(𝑧)

𝑝D2
(𝑧) =

𝑃𝑟 [𝑓 (D1) + 𝜉1 = 𝑧]
𝑃𝑟 [𝑓 (D2) + 𝜉2 = 𝑧] =

𝑃𝑟 [𝜉1 = 𝑧 − 𝑓 (D1)]
𝑃𝑟 [𝜉2 = 𝑧 − 𝑓 (D2)]

=

𝜀
2𝛥𝑓
· 𝑒−

𝜀
𝛥𝑓
( |𝑧−𝑓 (D1 ) | )

𝜀
2𝛥𝑓
· 𝑒−

𝜀
𝛥𝑓
( |𝑧−𝑓 (D2 ) | )

= 𝑒
𝜀
𝛥𝑓
( |𝑧−𝑓 (D2 ) |− |𝑧−𝑓 (D1 ) | )

≤ 𝑒
𝜀
𝛥𝑓
( | 𝑓 (D1 )−𝑓 (D2 ) | )

≤ 𝑒
𝜀
𝛥𝑓
·𝛥𝑓

= 𝑒𝜀

where the inequality follows from the triangle inequality and the last simplification of the equation

follows from Definition 4.12. Therefore, the mechanism satisfies (𝜀, 0)-differential privacy. □

Theorem 4.14. For any neighboring databasesD1 andD2, DANN* achieves full obliviousness with
respect to A𝑏 .

Proof. This claim directly stems from the obliviousness claim of the oblivious priority queue. By

employing the oblivious priority queue, altering the program flow to depend solely on the number

of data providers, and padding the data transmission in DANN*, A𝑏 cannot derive additional

significant advantages via the access pattern. Hence, we have:

Pr[AccessΠ (D1) ∈ 𝑆] ≤ 𝑃𝑟 [AccessΠ (D2) ∈ 𝑆] + 𝛿

Here, 𝛿 accounts for a negligible probability that stems from the fully oblivious operations and 𝑆

represents any subset of possible memory access patterns. Therefore, for any federated databases

D1 and D2 of the same size, we have:

𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D1),D1) = 1] ≤ 𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D2),D1) = 1] + 𝛿

which meets the requirement of Definition 3.2. As such, DANN* achieves full obliviousness with

respect to A𝑏 . □

Theorem 4.15. For any neighboring databases D1 and D2, DANN* achieves (𝜀, 0)-differential
obliviousness with respect to A𝑝 .
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Proof. As mentioned above, A𝑝 can know its 𝑘𝑖 and 𝑘
′
𝑖 in both rounds. Here 𝑘𝑖 and 𝑘

′
𝑖 can be

considered a counting query, and the sensitivity of a counting query is 1 (a single element addition

or deletion can affect at most one count). Lemma 4.13 suggests a (
𝜀
2
, 0)-differential privacy counting

query can be achieved by adding noise with the parameter of
2

𝜀
. Two rounds of 𝑘𝑖 and 𝑘

′
𝑖 can be

considered a combination of two counting queries. With Lemma 4.13, we have:

𝑝D1
(𝑘𝑖 )

𝑝D2
(𝑘𝑖 )
·
𝑝D1
(𝑘 ′𝑖 )

𝑝D2
(𝑘 ′

𝑖
) ≤ 𝑒

𝜀
2 · 𝑒 𝜀

2 = 𝑒𝜀

So the access pattern revealed to A𝑝 has:

𝑃𝑟 [AccessΠ (D1) ∈ 𝑆] ≤ 𝑒𝜀𝑃𝑟 [AccessΠ (D2) ∈ 𝑆]
Therefore, we have:

𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D1),D1) = 1] ≤ 𝑒𝜀𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D2),D1) = 1]
which meets the requirement of Definition 3.3. Hence, DANN* achieves (𝜀, 0)-differential oblivious-
ness with respect to A𝑝 . □

Theorem 4.16. (DANN* security) DANN* is (𝜀, 𝛿)-differentially oblivious for any neighboring
databases D1 and D2.

Proof. With Theorem 4.14, DANN* achieves full obliviousness with respect to A𝑏 ; and with

Theorem 4.15, DANN* achieves (𝜀, 0)-differential obliviousness with respect to A𝑝 . Therefore, for

any adversary, we have:

𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D1),D1) = 1] ≤ 𝑒𝜀𝑃𝑟 [𝑆𝑖𝑚Π (L,AccessΠ (D2),D1) = 1] + 𝛿
so DANN* is (𝜀, 𝛿)-differentially oblivious. □

5 IMPLEMENTATION
We have implemented a prototype system for FedKNN that incorporates our proposed algorithms,

as illustrated in Figure 3. The system was built using the Rust programming language on the Linux

platform. FedKNN consists of a broker and multiple data providers.

Broker Implementation. The broker side of FedKNN comprises three main components: a

query interface, a query optimizer, and security primitives. The query interface serves as the

interaction point between FedKNN and users. It is responsible for processing and forwarding user

query requests, as well as returning query results to users upon completion. The query optimizer
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Table 3. Statistics of Datasets

Dataset |𝐷 | Data Type M(𝑥,𝑦)

AIDS 42,689 Graph Graph Edit Distance

SYN 1,000,000 Graph Graph Edit Distance

DBLP 6,553,812 Sequence Edit Distance

GENOME 320,000 Sequence Edit Distance

OSM 1,189,761 Spatial Euclidean Distance

encompasses cost estimation and the three kNN algorithms proposed in Section 4. Cost estimation

consists of local kNN estimation and network estimation. The former measures each data provider’s

local kNN computation time using sample queries. In contrast, the latter measures the network

latency and transmission speed between the broker and data providers. Based on the cost estimation,

FedKNN automatically selects the baseline algorithm when the local kNN computation cost is

lower than the communication cost (e.g., when using Euclidean distance for spatial data), since

the baseline algorithm minimizes communication costs. Otherwise, if the local computation cost

is higher than the communication cost (e.g., when using the graph edit distance for graph data),

FedKNN selects either the DANN or DANN* algorithm to process queries, based on whether the

user desires to protect data access patterns. DANN addresses the inefficiency of the baseline and

offers a secure solution against the first threat mentioned in Section 2.3, except for access pattern

attacks. On the other hand, DANN* is specifically designed to counter access pattern attacks. In

scenarios where access pattern threats are not a concern, DANN is preferable due to its superior

query performance compared to DANN*. Finally, the security primitives provide oblivious data

processing and differential privacy, which are used during secure computation in FedKNN. Both the

FedKNN algorithms and the security primitives components operate within the Intel SGX enclave

to ensure the integrity and prevent privacy leakage during query execution.

Data Provider Implementation. On the data provider’s side, FedKNN interacts with the un-

derlying database through three APIs, i.e., LocalKLB, LocalKNN, and LocalKNNwithPadding, to
execute FedKNN’s queries. FedKNN does not make any assumptions about the databases used by

data providers, allowing it to support heterogeneous databases and various data types.

6 EVALUATION
6.1 Experimental Setup
Datasets and Query Workload. We conduct experiments on three different types of data: graph,

sequence, and spatial data. Graph and sequence data represent the data types where local kNN

computation costs are dominant, while spatial data represents the data type where communication

costs are dominant. We use two datasets for graph data: a real-world dataset AIDS and a synthetic

graph dataset SYN. We use two real-world datasets for sequence data: DBLP and GENOME. For
spatial data, we use OpenStreetMap (OSM) data as our experiment dataset. Table 3 provides the

statistical information of all datasets. Below are detailed descriptions of each dataset:

• AIDS: An open NCI database of antivirus screening chemical compounds published by the

Developmental Therapeutics Program inOctober 1999.
3
This dataset is widely used by previous

graph similarity search works [9, 34].

3
https://cactus.nci.nih.gov/download/nci/AID2DA99.sdz
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• SYN: A synthetic dataset generated by GraphGen.4 To evaluate the scalability of different

algorithms under various scales, we sampled subsets under different ratios: 20%, 40%, 60%,

80%, and 100%. We use 60% as the default.

• DBLP: A dataset containing a bibliographic collection of computer science research publica-

tions, which include information such as authors, titles, and publishing details.
5

• GENOME: A dataset consisting of large-scale genome sequences obtained from Chromosome

20 of 50 individuals from the Personal Genomes Project.
6

• OSM: A dataset commonly used for spatial analysis [16, 41]. For our experiment, we extracted

all locations of points of interest from the OpenStreetMap in East Asia.

For all datasets, we employ a Zipf distribution to distribute the data among the data providers to

form the data federation. As for the query workload, we randomly sample 50 data objects from

each dataset to serve as query data objects.

Metrics.We evaluate the query processing efficiency in terms of the average running time of the

query workload, which is defined as the latency from when the broker receives the query from a

user to when it returns the query results to the user.

Algorithms for Evaluation.We compare our three algorithms in FedKNNwith the state-of-the-art

algorithm Hu-Fu [41], which is a secure multiparty computation (SMC)-based system for federated

spatial queries. Hu-Fu tackles the federated kNN queries by transforming them into multiple rounds

of range data counting, to search an appropriate range and then retrieve data objects within that

range. To ensure a fair comparison, we implemented and extended the kNN algorithm of Hu-Fu in

Rust to support graph data and sequence data. We also replaced SMC with Intel SGX to perform

secure counting and set union operations. We refer to this algorithm as HuFu-Ext. It is important

to note that HuFu-Ext offers weaker security compared to differential obliviousness, as it discloses

the distances associated with kNN searches in each round. In contrast, in our FedKNN, the baseline

offers full obliviousness and DANN* offers differential obliviousness.

Regarding kNN search, we use the library
7
from the state-of-the-art method [9] for graph

similarity computation and extend it to support local graph kNN search. For sequence data, we

adopt the source code of [53] as the local computation algorithm, which is a state-of-the-art

approach for sequence kNN search. For spatial data, we use PostGIS
8
as the underlying kNN

search engine. Regarding the lower-bound estimation in DANN and DANN*, we employ different

algorithms based on the type of data. Specifically, we use the label-based filtering algorithm [9] for

graph data, the q-gram-based filtering algorithm [53] for sequence data, and the R-tree for spatial

data.

Environment. We run the broker on an Intel SGX-enabled Azure Standard_DC4s_v3 instance
with four CPU cores and 32GB RAM, which is deployed in the East US region. Each data provider

𝑃𝑖 runs on an Azure Standard_E4ds_v4 instance deployed in the West US region that has 4-vCPU

and 32GB RAM. The broker and data providers are connected via a wide-area network and the

average latency is 64ms.

6.2 Preliminary Results
In our first set of experiments, we aim to validate the local kNN computation cost and Lemma 4.7.

Specifically, we use the AIDS dataset and 60% of the SYN dataset and run the local kNN algorithm

on a single server.

4
https://www.cse.cuhk.edu.hk/∼jcheng/graphgen1.0.zip

5
https://dblp.uni-trier.de/db/

6
https://github.com/kedayuge/Search

7
https://github.com/LijunChang/Graph_Edit_Distance

8
https://www.postgis.org/
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In the local kNN cost experiment (Figure 4(a)), we can observe that the cost of kNN search is

generally proportional to the value of 𝑘 . When 𝑘 varies from 4 to 256, the running time increases

95× on AIDS and 19× on SYN. In the experiment of verifying Lemma 4.7, we set𝑚 to 8 and the

Zipf factor to 0.0 and 0.6 to simulate uniformly distributed data and skewed data, respectively. As

shown in Figure 4(b), the second-round

∑
𝑖 𝑘
′
𝑖 is much smaller than the expected value of 𝑂 (𝑚2)

(i.e., 64). Moreover, even when 𝑘 is large,

∑
𝑖 𝑘
′
𝑖 remains small compared with 𝑘 .

6.3 Performance of kNN Algorithms
In this section, we conduct experiments to compare the performance of the kNN algorithms on

the four datasets where the local computation cost dominates. We also perform experiments using

the OSM dataset to evaluate the performance when the communication cost dominates. For all

algorithms, unless otherwise specified, we set 𝑘 to 128,𝑚 to 8, and the Zipf distribution factor to

0.0 and 0.6 to simulate uniformly distributed data and skewed data, respectively. For DANN*, we

set 𝜀 to 1.0 and 𝜆 to 0.05 by default.

Impact of varying 𝑘 . We vary 𝑘 from 4 to 256 and show the running time of the four algorithms in

Figure 5 and Figure 6. For the two uniformly distributed graph datasets shown in Figure 5, DANN*

is up to 7.5× and 2.3× faster than the baseline and HuFu-Ext on AIDS. Similarly, it is up to 8.2×
and 3.9× faster than the baseline and HuFu-Ext on SYN. In the case of skewed distribution, DANN*

achieves a similar performance improvement, being 6.1× and 2.1× faster than the baseline and

HuFu-Ext on AIDS. On the larger dataset SYN, DANN* exhibits even greater performance gains,

being 8.6× and 4.8× faster than the baseline and HuFu-Ext.

We can also make two interesting observations. First, DANN* starts outperforming HuFu-Ext

when 𝑘 ≥ 16 on both datasets and distributions. This is because DANN* requires at least one data

object per data provider, so the minimum number of kNN computations is related to the number of

data providers𝑚. In the experimental setup where𝑚 = 8, DANN* does not have an advantage for

𝑘 = 4 and 𝑘 = 8. Instead, HuFu-Ext converts the kNN query into multiple rounds of data counting

to find the appropriate query range, reducing the local computation overhead for the data providers

that do not need to provide data. As a result, HuFu-Ext outperforms DANN* when 𝑘 ≤ 𝑚. Second,

as 𝑘 increases, the running time of DANN* gets closer to that of the non-secure DANN algorithm.

This is because the noise and the noise offset have a higher impact on the local NN count of DANN*

when 𝑘 is small, but this impact is mitigated as 𝑘 grows.

The results for sequence data are similar to those for graph data, with DANN* consistently

outperforming the baseline and HuFu-Ext. Specifically, on DBLP and GENOME, DANN* achieves
a 1.9× and 29% speedup over the baseline and a 2.7× and 36% speedup over HuFu-Ext, as shown

in Figure 6. We also observe that HuFu-Ext underperforms the baseline for sequence data, due

to its large search space for finding a suitable range boundary, which incurs an excessive local

computation overhead and slows down the query. On the other hand, the limited performance of
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the lower-bound distance estimation algorithm [53] employed for sequence data restricts DANN*’s

ability to accurately predict the distribution of kNN results, which reduces DANN*’s advantage

over the baseline algorithm.

Impact of varying 𝑚. We vary the number of data providers 𝑚 from 4 to 16 to evaluate the

scalability of the algorithms with respect to multiple data providers. For graph data, we show the

results in Figure 7. On AIDS, DANN* is up to 9.8× and 8.3× faster than baseline and 3.1× and 3.2×
faster than HuFu-Ext as𝑚 increases. On SYN, DANN* is up to 8.2× and 9.3× faster than the baseline

and 3.1× and 3.3× faster than HuFu-Ext. We can observe that the running time of both DANN* and

HuFu-Ext decreases as𝑚 increases. For DANN*, this is because the time complexity is independent
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Fig. 12. Scalability Test

of𝑚. Therefore, increasing𝑚 reduces the amount of data that each data provider needs to process

when the total amount of data is fixed. This leads to faster local kNN computation, reducing the

overall query time. For HuFu-Ext, this is because it searches the kNN range in a global view, and

𝑚 does not affect the value of the kNN range. As a result, the reduced data on each data provider

improves the query performance. However, the baseline algorithm’s total local computation is

linear to𝑚. Hence, as𝑚 grows, the overall computation increases, which may result in local kNN

computations involving more complex data objects that are not in the final results. This can cause

the running time to increase.

For sequence data, we observe similar results as for graph data, as shown in Figure 8. For DBLP,
when increasing𝑚, DANN* achieves up to a 2.4× and 1.9× speedup over the baseline and a 2.7× and
1.9× speedup over HuFu-Ext. A similar trend is found for the GENOME dataset. Under a uniform

distribution, we achieve up to a 39% and 35% speedup over the baseline and HuFu-Ext, respectively.

Under a skewed distribution, we achieve up to 26% and 25% speedup over the baseline and HuFu-Ext,

respectively. For both types of data, we confirm that DANN* offers better performance when the

number of data providers increases.

Impact of varying 𝜀 on DANN*. In this experiment, we vary the privacy budget 𝜀 from 0.001 to 2.0

to test the effect of different 𝜀 settings on our DANN* algorithm. We use DANN as the performance

lower bound and the baseline as the upper bound. We conducted experiments on SYN. The results
are shown in Figure 9. With a large privacy budget (𝜀 ≥ 0.8), DANN* is essentially in line with the

efficiency of the non-secure DANN algorithm, as the additional noise and noise offset only added

less than 11% overhead to the computation. With a lower privacy budget (0.8 > 𝜀 ≥ 0.1), DANN*

still maintains high efficiency compared to the baseline and HuFu-Ext on both data distributions.

When the privacy budget is further reduced, DANN* begins to approach the baseline and coincides

with it when 𝜀 = 0.01, which means DANN* is fully oblivious at that point. This experiment

demonstrates that DANN* can maintain its efficiency with low privacy budgets, and it outperforms

other baselines even when the privacy budget is as low as 𝜀 = 0.1.

Impact of local kNN computation cost. We also test the performance of the kNN algorithms on

spatial data where the communication cost dominates. The results are shown in Figure 10. The

baseline algorithm has the best performance, up to 2.5× and 11.9× faster than DANN* and HuFu-Ext,
respectively. This is because the baseline algorithm only requires one round of communications

to complete the query. In contrast, DANN and DANN* require three rounds of communications,

which makes their performance worse than the baseline. On the other hand, HuFu-Ext has the

worst performance because it needs to find the appropriate search range to complete the kNN query

through binary search, which incurs high communication costs. This experiment also highlights

the importance of the cost estimation module in the FedKNN query optimizer, which can improve

the performance of our system’s kNN queries for different types of data.
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Table 4. Breakdown of Running Time (s) on SYN

Algorithm
Uniform Skew

Network Local Search LB Aggregation Network Local Search LB Aggregation

HuFu-Ext 0.76 13.69 \ 0.01 0.84 15.04 \ 0.01

Baseline 0.15 27.13 \ 0.03 0.14 31.31 \ 0.03

DANN 0.43 4.57 0.08 0.04 0.46 5.13 0.10 0.04

DANN* 0.45 4.95 0.08 0.04 0.45 5.70 0.09 0.04

Impact of network latency. To assess the impact of WAN distance and network latency on

algorithm performance, we perform tests using data providers located in seven Azure regions: East

US 2 (EUS2), Canada Central (CAC),West Central US (WCUS), West US (WUS), France Central (FRC),

JapanWest (JPW), and South Africa North (SAN). The latency between the data providers located in

these regions and the broker deployed in East US ranges from 7ms to 243ms.
9
The evaluation results

are shown in Figure 11. In the case of a uniform distribution, as the network latency increases,

the query time of the baseline, HuFu-Ext, DANN, and DANN* algorithms increases by 3%, 41%,

34%, and 36%, respectively. For the skewed distribution, the query time increases by 3% for the

baseline, 33% for HuFu-Ext, 28% for DANN, and 23% for DANN*. It is important to note that the

baseline algorithm, which requires only one communication round, is the least affected by latency.

HuFu-Ext is the most sensitive to latency due to its multi-round range query transformation. DANN

and DANN*, with three rounds of communication, are also impacted by latency but remain faster

than both the baseline and HuFu-Ext in all cases tested.

Breakdown time of algorithms. We further conduct experiments to analyze the time taken

by various components of each algorithm using the SYN dataset. As shown in Table 4, it is clear

that the local kNN search is the most time-intensive component for all algorithms, significantly

dominating the overall query time. Specifically, the local kNN search accounts for over 99% and

94% of the query time for the baseline and HuFu-Ext algorithms, respectively. The time spent on

network and broker aggregation is insignificant in both algorithms. In contrast, both DANN and

DANN* effectively reduce the time required for the local kNN search by 63%–83% through the use

of a lower-bound estimation phase. Furthermore, the estimation process incurs only a very small

overhead, representing less than 2% of the total query time. Consequently, the overall query time

of DANN and DANN* is greatly improved compared to the baseline and HuFu-Ext algorithms.

6.4 Performance on Scalability Test
To evaluate the performance of all algorithms on large-scale data, we vary the sample ratio of

SYN from 20% to 100%. Other parameters remain the same as in Section 6.3 and Figure 12 shows

the results. Similar to the previous results, we observe that under the same dataset size, DANN*

is significantly better than the baseline and HuFu-Ext. When the data is uniformly distributed,

DANN* is up to 6.3× and 3.1× faster than the baseline and HuFu-Ext. DANN* is up to 6.5× and

2.9× faster when the data distribution is skewed.

It is also observed that DANN* and HuFu-Ext are not sensitive to the growth of the data size.

DANN*’s running time is increased by only 11% and 16% as the data volume of SYN grows from

200,000 to 1,000,000, while HuFu-Ext is increased by 17% and 19%, respectively. This is because

both algorithms tend to search the results of kNN queries in a small search space, and hence the

data size does not significantly affect their efficiency. In contrast, for the baseline algorithm, the

growth in data size leads to a more significant reduction in efficiency. For example, when the data

size grows from 200,000 to 1,000,000, the running time of the baseline increases by 37% and 39% for

9
https://learn.microsoft.com/azure/networking/azure-network-latency
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Fig. 13. Ablation Studies of FedKNN on Four Datasets

the two data distributions, respectively. This is because the baseline requires the same number of

local results from each data provider, so as the data size increases, the local kNN computation time

also increases. This can affect query efficiency, making it slower as the data size grows.

6.5 Ablation Studies of FedKNN
Finally, we conduct ablation studies to examine which component contributes to the performance

improvement of DANN and DANN* in federated kNN queries. By setting all return values of

the lower-bound distance to infinity, we simulate the scenario where our DANN and DANN*

algorithms remove lower-bound estimation. We denote these modified algorithms as DANN (No

LB) and DANN* (No LB), respectively.

We evaluate the performance on four skewed datasets where local computation costs dominate.

The results are shown in Figure 13. We observe that on the graph datasets AIDS and SYN, the use

of lower-bound estimation significantly reduces the query time of DANN and DANN*, achieving

savings of up to 81% and 78%, respectively. When it comes to sequence data, the lower-bound

distance estimation algorithm is less effective, as mentioned in Section 6.3. Consequently, the

impact of using lower-bound estimation on the query performance of our algorithms is diminished.

We achieve savings of 42% and 40% on DBLP, and 15% and 14% on GENOME. Conversely, without

the use of lower-bound estimation, DANN (No LB) and DANN* (No LB) perform similarly or even

worse than HuFu-Ext. This highlights the critical role of lower-bound estimation in reducing local

kNN computations and improving the query performance of our algorithms.

7 RELATEDWORKS
Secure Federated Analytics. Federated data analytics facilitates collaboration among mutually dis-

trusting participants, allowing them to use their combined data to answer queries. A series of related

works have explored secure federated analytics for relational databases [3, 4, 13, 24, 35, 42, 54]

and spatial databases [41]. Some works [3, 4, 24, 35, 41, 42] based on secure multi-party compu-

tation (SMC). Specifically, SMCQL [3] translates SQL queries into garbled circuits for two-party

relational database queries. Conclave [42], built on OblivC [51], supports secure querying among

up to three parties. Senate [35] and Scape [24] address the threat of malicious participants in data

federations. SAQE [4] tackles approximate query problems by combining SMC and differential

privacy, achieving a balance between performance and accuracy. SECRECY [32] considers the

scenario of outsourcing SQL query computations. Hu-Fu [41] optimizes federated spatial queries

by decomposing them into plaintext and secure operators. On the other hand, some other works

leverage hardware enclaves (e.g., Intel SGX) [13, 54]. Despite the encryption of data within en-

claves, hardware enclaves cannot protect access patterns. To tackle this problem, Opaque [54] and

OCQ [13] employ oblivious algorithms within enclaves to achieve oblivious cooperative analytics.

Another related topic is federated kNN learning [15, 33, 37]. However, these works are not directly
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comparable to our study, due to the different query requirements (exact search vs. approximate

search [15]), data partition schemes (horizontal vs. vertical [33]), and computation paradigms (kNN

search vs. NN classification [37]).

Privacy-Preserving Queries over Outsourced Data. Privacy-preserving queries over outsourced data
constitute another pertinent field of related works [10, 18, 23, 29, 31, 39, 43–45]. Numerous practical

strategies have been developed, including SMC, searchable encryption [40], and homomorphic

encryption [19], among others. While these techniques can be adapted to the federated setting, their

inherent focus on strong security guarantees and the limitation of the number of participants might

negatively impact performance. To enhance utilization, the concept of differential obliviousness

is proposed in [8], which requires only the access patterns during query processing to satisfy

differential privacy, Some works on relational databases have adopted this model [36, 46].

Differentially Private Padding Mechanism. Adding positive differential privacy noise is essential

in many application scenarios, including private set intersection [22, 25] and database queries [6].

The state-of-the-art mechanism for positive differentially private padding is the improved Bayesian-

update mechanism proposed in [22]. The core idea is to incorporate prior knowledge of the actual

result distribution to minimize the offset caused by the simple Laplace mechanism. Nevertheless,

the simple Laplace mechanism continues to be widely used [6, 25], as the prior knowledge required

by [22] is unattainable in many scenarios. Similarly, in the context of federated kNN queries, it is

not possible to obtain the distribution of actual results beforehand.

8 CONCLUSION
In this paper, we have proposed FedKNN, an efficient and secure system for performing kNN queries

on federated databases. Our proposed Distribution-Aware kNN (DANN) algorithm minimizes local

kNN computations by estimating the distribution of query results across data providers through

a fast pre-processing round. We have also developed a secure version of DANN, called DANN*,

which satisfies differential obliviousness to ensure the privacy of data providers. Moreover, we

have implemented a prototype system for FedKNN that incorporates our proposed algorithms.

Our evaluation shows that FedKNN outperforms current state-of-the-art solutions, achieving up

to 9.8× and 4.8× improvement on federated graph kNN search compared to the baseline and the

state-of-the-art solution, respectively, and up to 2.4× and 2.7× improvement on federated sequence

kNN search. We believe that our work provides a valuable contribution to the field of federated

kNN search.
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