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Abstract—The rise of decentralized finance (DeFi), Web 3.0,
and other blockchain-based applications has led to an increased
demand for on-chain data analysis across multiple blockchains.
Conducting advanced queries, such as data aggregation and
correlation analysis, is essential for gaining valuable insights in
this context. However, multi-chain queries pose several challenges
for the querying system, including compatibility with existing
blockchains, supporting diverse query types, and ensuring the
integrity of query results. To tackle these challenges, we propose
a novel paradigm called verifiable virtual filesystem (V2FS). V2FS
extends the POSIX I/O interface, shifting the focus from verifying
computation to verifying data. This innovative approach empowers
query clients to leverage an off-the-shelf database engine to
evaluate queries using verifiable data retrieved from an indexing
service provider (ISP). Our solution ensures strong integrity
guarantees and can be smoothly integrated with existing database
engines to support various query types. To achieve blockchain
compatibility, we utilize the DCert framework to certify blocks
from different blockchains, making our system applicable to
various blockchain systems. Furthermore, we propose cache-based
algorithms and a bloom filter-integrated algorithm to optimize
query performance and minimize network communication costs.
Security analysis and empirical study validate the effectiveness
and efficiency of the proposed system.

I. INTRODUCTION

The emergence of decentralized finance (DeFi), Web 3.0,
and other blockchain-based applications in recent years has
sparked a significant need for on-chain data analysis. As various
blockchains continue to advance at a rapid pace, the demand
for querying data across multiple chains has grown. This entails
the capability to conduct advanced queries like data aggregation
and correlation analysis across multiple chains. Such multi-
chain queries, as exemplified by the following scenarios, have
the potential to yield valuable insights for both clients and
businesses.

Example 1. In the NFT realm, digital artworks can be
transferred through various NFT marketplaces and blockchains.
A collector can issue a multi-chain query to verify the ownership
and provenance of an NFT [1]. Figure 1(a) presents a SQL
query to inquire about the ownership history of the NFT with
the ID ‘0x1af7’ across two blockchains.

Example 2. A DeFi application can use data from various
blockchains to assess the risk associated with a particular
asset portfolio, optimize trading strategies, or closely monitor
liquidity pools across multiple networks [2]. Figure 1(b) shows

SELECT
tx_id, owner_addr, ts

FROM(
SELECT tx_id, owner_addr, ts
FROM polygon
WHERE nft_id='0x1af7'
UNION ALL
SELECT tx_id, owner_addr, ts
FROM solana
WHERE nft_id='0x1af7'
)

ORDER BY ts

(a) Query 1

SELECT SUM(value) FROM(
SELECT value, blk_ts
FROM eth_transactions
WHERE blk_ts>='2023-01-01'
AND blk_ts<='2023-12-31'
UNION ALL
SELECT value, blk_ts
FROM bsc_transactions
WHERE blk_ts>='2023-01-01'
AND blk_ts<='2023-12-31'
)
GROUP BY DAY(blk_ts)

(b) Query 2
Fig. 1: Example Queries
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a query where a DeFi user searches the daily total value locked
from two blockchains to make investment decisions.

However, conducting multi-chain queries presents several
challenges for the querying system. First, the system must be
compatible with existing blockchains, without requiring any
modifications to their underlying structures or protocols. This
ensures smooth integration with various blockchain networks.
Second, the system should support a wide range of query types
to meet the diverse and evolving data analysis needs of clients.
Ideally, the system should be flexible enough to integrate with
a variety of existing database engines to provide comprehensive
query capabilities. Third, as an integral part of the decentralized
blockchain ecosystem, it should enable clients to verify the
integrity of query results derived from the source chains.

One notable solution proposed to address these challenges
is The Graph (TG) [15]. It is a decentralized protocol that
provides clients a standardized interface for querying data from
diverse blockchain networks. As illustrated in Figure 2, the
protocol operates through a network of nodes called indexers.
The indexers are incentivized to index data from multiple
source chains and respond to client queries based on the
indexed data. This design allows for high compatibility with
existing blockchain systems. Moreover, the protocol employs
the GraphQL query language to support client applications.
To ensure the trustworthiness of query results provided by



TABLE I: Comparison with Existing Query Authentication Systems

Category Representative Systems Query Type Blockchain Compatibility Source Chains Database Compatibility Security Assumption Instant Verification

Outsourced
Database

IntegriDB [3] Semi-SQL N/A N/A ✗ Cryptography ✓
FalconDB [4] Semi-SQL N/A N/A ✗ Incentive Model+Cryptography ✗

vSQL [5] SQL N/A N/A ✗ Cryptography ✓
VeriDB [6] SQL N/A N/A ✗ Auditing+TEE ✗

SQL Ledger [7] SQL N/A N/A ✗ Auditing+Trusted Storage ✗
LedgerDB [8], GlassDB [9] Read N/A N/A ✗ Auditing ✗

Blockchain
Database

vChain [10], vChain+ [11] Boolean Range ✗ Single ✗ Cryptography ✓
GEM2 [12] Range ✗ Single ✗ Cryptography ✓

[13] Keyword ✗ Single ✗ Cryptography ✓
LVQ [14] Membership ✗ Single ✗ Cryptography ✓
TG [15] GraphQL ✓ Multiple ✗ Arbitration ✗

Ours Various Types ✓ Multiple ✓ TEE ✓

indexers, TG incorporates a dispute mechanism that enables
clients to challenge query responses from indexers. Accepted
disputes result in penalties imposed on the responsible indexers
for any inaccurate or incorrect information. This mechanism
incentivizes indexers to uphold the integrity of the query
answers. However, the current dispute resolution process in TG
has certain weaknesses. First, it is impractical for the protocol
to verify every single query, so only a sample of queries is
checked, which results in limited integrity guarantee for the
majority of unverified query results. Second, the query dispute
period can last up to seven epochs, with each epoch spanning
approximately 24 hours. Furthermore, the dispute resolution
process involves multiple parties, leading to additional delays
and inefficiencies.

To enable strong integrity assurance, we may consider using
verifiable computation (VC) techniques to authenticate the
computation process involved in query evaluation. Several
works have been proposed to design dedicated authenticated
data structures for specific query types within a single
blockchain system [10]–[14], [16], [17]. Alternatively, to
support verification for arbitrary queries, general VC schemes
can be employed [5], [18], [19]. The basic idea is to convert
computing tasks into Boolean or arithmetic circuits that can
be verified using generated cryptographic proofs.

However, general VC-based approaches suffer from high
time complexity, which makes them impractical for real-world
query services. For instance, processing Query #2 of the TPC-H
benchmark with a scale factor of 1 using vSQL [5] takes over
30 minutes. Moreover, general VC schemes impose significant
constraints, such as limiting the instruction set, prohibiting
dynamic loops or dynamic memory allocation, and imposing
an upper bound on the circuit size. Consequently, implementing
general VC-based solutions for diverse query engines entails
considerable engineering challenges and is often infeasible in
real-world applications.

To fully address the need for blockchain compatibility,
database compatibility, and strong integrity assurance, in this
paper, we propose a novel paradigm called verifiable virtual
filesystem (V2FS). The key idea behind V2FS is to shift
the focus from verifying computation to verifying data. In
this paradigm, to ensure query integrity, the client leverages
an off-the-shelf database engine to evaluate queries using
verifiable data obtained from an indexing service provider
(ISP). Acting as a middleware between the client’s query

evaluation layer and the ISP’s storage layer, V2FS fetches
data on an as-needed basis and verifies its integrity using a
Merkle-based authenticated data structure. On one hand, the
proof generation and verification process can be completed
in logarithmic time, enabling efficient and strong integrity
guarantee. On the other hand, V2FS is a plug-able module that
can be easily integrated with diverse database engines to support
a wide range of query types. Meanwhile, to achieve blockchain
compatibility, our system utilizes the DCert framework [20] to
certify blocks from different blockchains, making it applicable
to various blockchain systems. In addition, we propose several
optimizations to enhance system performance, including two
cache-based algorithms that reduce network communication
overhead and a bloom filter-based enhancement that further
reduces network costs.

To summarize, the contributions of this paper are as follows:
• Designing a system that utilizes verifiable data for multi-

chain query authentication. To the best of our knowledge,
our system is the first to achieve blockchain compatibility,
database compatibility, and strong integrity guarantee
simultaneously (see Table I for a comparison with existing
systems).

• Proposing V2FS, a novel paradigm that facilitates ver-
ifiable query processing. V2FS can be integrated with
various database query engines to support a wide range
of query types.

• Proposing two cache-based algorithms and a bloom filter
integrated algorithm to optimize query performance and
reduce network communication costs.

• Conducting an extensive experimental evaluation to vali-
date the effectiveness and efficiency of our system.

The rest of the paper is organized as follows. Section II
gives some preliminaries and reviews existing systems for
query verification. Section III offers the system overview.
Section IV presents the detailed system design, followed by the
cache-based algorithms and bloom filter integrated algorithm
in Section V. Security analysis and experimental evaluation are
discussed in Section VI and Section VII, respectively. Finally,
we conclude the paper in Section VIII.

II. PRELIMINARIES AND RELATED WORK

In this section, we introduce some necessary preliminaries
for the proposed system. We also review some systems that
support verifiable query processing and highlight the novelty
of our system.



Fig. 3: Merkle Tree

A. Preliminaries

Cryptographic Hash Function: A cryptographic hash
function H(·) is an algorithm that maps an arbitrary-length
message m to a fixed-length hash digest H(m). It is collision-
resistant, meaning that the likelihood of a polynomial-time
adversary finding two distinct messages m1 ̸= m2 with the
same hash digest H(m1) = H(m2) is negligible.

Merkle Tree [21]: A Merkle tree is a tree structure used for
efficient data authentication. Figure 3 shows an example of a
Merkle tree containing four data objects, which is constructed
in a bottom-up manner. Each leaf node stores the hash digest
of an indexed data object. Each non-leaf node stores a hash
digest computed from its child nodes (e.g., h0 = H(h1||h2),
where “||” denotes the string concatenation operation). The
root hash digest (i.e., h0) is published and used to authenticate
the indexed data objects. For instance, to authenticate the data
object with value p2, a Merkle proof {h1, H(p3)} (depicted
in shaded nodes in Figure 3) is returned. By reconstructing
the root hash using the Merkle proof and p2, one can verify
the integrity of the object value p2. If the reconstructed root
hash matches the public root hash, it indicates p2 exists in
the Merkle tree and has not been tampered with. When a data
object is updated, the digests of all its ancestors should be
updated. To compute the updated digests of internal nodes
and the root, the sibling hashes of the ancestors are used. For
example, when p1 is updated to p′1, h′

1 and h′
0 can be computed

using the sibling digests H(p0) and h2, respectively.
Intel SGX [22]: Intel Software Guard Extensions (SGX)

is an implementation of a Trusted Execution Environment
(TEE) designed to protect the integrity and privacy of remote
application execution, even in the presence of an untrusted host
system. Within SGX, sensitive code and data are placed within
an isolated memory region known as an enclave. This enclave
is securely reserved from RAM and remains inaccessible to the
external environment, including privileged system code and the
operating system. This ensures that computations performed
inside the enclave are executed correctly. However, transitioning
in and out of the enclave can introduce performance overhead,
primarily due to the usage of outside calls, or OCalls, which
enable the program to access the data outside the enclave. To
mitigate this performance impact, it is advisable to reduce
the frequency of OCalls and minimize the potential for
performance degradation.

DCert [20]: DCert is a decentralized certification framework
that is compatible with any existing blockchain systems. It
enables lightweight clients to validate the current state of the
blockchain in constant time without the need of synchronizing
the entire blockchain history. The framework employs trusted
hardware (e.g., Intel SGX) to recursively certify a block by

validating the integrity of the current block header, state
transitions from the preceding block to the current block, and
the preceding block’s certificate. To check the integrity of
the blockchain state, lightweight clients only need to verify
and store the latest block header hdri and its certificate Ci

blk.
Specifically, DCert consists of the following algorithms:

• DCert.certify(blki−1, Ci−1
blk , blk

i, skDCert) → Ci
blk:

On input the previous block blki−1, its certificate Ci−1
blk ,

the new block blki, and the private key skDCert of the
certificate issuer, it outputs blki’s certificate Ci

blk.
• DCert.valid(Ci

blk, hdr
i, pkDCert) → {0, 1}: On input

a certificate Ci
blk, the new block header hdri, and the

public key pkDCert of the certificate issuer, it returns 1 if
and only if Ci

blk is valid with respect to hdri and pkDCert.
DCert can be extended to support verifiable query processing
over blockchain data by certifying additional authenticated
indexes. However, its support is limited to handling one query
type at a time, necessitating the design and implementation of
a corresponding verifiable query processing algorithm for each
new query type. Additionally, DCert lacks the capability to
integrate multiple blockchains as data sources simultaneously.

Bloom Filter [23]: A bloom filter (BF) is a space-efficient
probabilistic data structure used for testing set membership.
It can efficiently determine if an item is not a member of a
set without storing the set’s actual elements. A BF utilizes an
m-bit vector and k distinct hash functions to represent a large
set of items efficiently and compactly. Each item is mapped
to k positions in the vector using the hash functions, and the
corresponding bit values are set to 1. To check the membership
of a given item x in the set, x is input into the hash functions
to generate k positions. If any of the positions have a value
of 0, it indicates that x is not a member of the set. Otherwise,
the membership of x in the set is undetermined due to the
possibility of false positives.

B. Related Work

Table I shows a comparison of various systems that support
verifiable query processing, including our proposed system.
Broadly, these systems fall into two categories: outsourced
databases in the cloud environment and blockchain databases.
We now give a brief review of each of these systems.

Outsourced Databases. Several works have been proposed
to support verifiable query processing in cloud-based out-
sourced databases [3]–[9]. IntegriDB [3] employs cryptographic
set accumulators to enable verifiable queries. FalconDB [4]
uses the same cryptographic tool but introduces an incentive
model to improve performance. However, both of them only
support a subset of SQL queries. To support general SQL
queries, vSQL [5] leverages general verifiable computation
cryptographic primitives. Nevertheless, due to the high complex-
ity of the cryptographic primitives involved, vSQL suffers from
extremely long, impractical proving time as mentioned in the
introduction. Apart from relying on cryptographic primitives,
other techniques like TEE and periodic auditing of database
operations have also been proposed. VeriDB [6] provides
efficient SQL query verification by leveraging TEE to execute



queries and auditing the related I/O access periodically. SQL
Ledger [7] proposes using trusted storage to store the digests
of all historical data for auditing purposes. LedgerDB [8] and
GlassDB [9] also utilize auditing techniques but are limited
to simple read-value queries. Although these techniques can,
in theory, be applied in a blockchain system to support data
queries, they all rely on dedicated custom query engines, with
most of them targeting a single query type.

Blockchain Databases. Several studies have explored verifi-
able query processing over blockchain databases. vChain [10]
and vChain+ [11] use cryptographic set accumulators to
facilitate verifiable boolean range queries. GEM2-tree [12], [13]
address the scenario of a hybrid-storage blockchain, aiming to
reduce on-chain storage costs in Ethereum. LVQ [14] focuses on
Bitcoin transaction analysis and uses a bloom filter-integrated
authenticated index to verify transaction membership. Despite
ensuring integrity, these works are restricted regarding query
types due to their specialized index design. Moreover, many of
these solutions demand dedicated custom blockchain structures,
making them incompatible with existing blockchain networks.
Additionally, these works usually consider a single blockchain
data source. As mentioned in Section I, TG [15] is a new
decentralized protocol for indexing blockchain data. It utilizes
indexer nodes to integrate data from multiple blockchains and
offers relatively flexible query services. A dispute resolution
mechanism is used to ensure the trustworthiness of query
results. However, this mechanism does not provide integrity
assurance for all queries and can be subject to lengthy dispute
resolution delays during query verification.

In summary, existing systems lack the capability to simul-
taneously support all desired features, including blockchain
compatibility, multi-source integration, database compatibility,
strong integrity assurance, and instant verification. In contrast,
our proposed system is the first to encompass all of these
features simultaneously.

III. SYSTEM OVERVIEW

This section provides an overview of our designed system.
We start by introducing the design goals in Section III-A.
Then, we present an overview of how our system achieves
these design goals, followed by a discussion on the threat
model in Section III-B.

A. Design Goals

We aim to achieve the following design goals for our system:
• Blockchain compatibility: The system should seamlessly

integrate with existing blockchain networks, facilitating
queries that span across multiple blockchain sources.

• Database compatibility: The system should be flexible
enough to accommodate diverse database engines to
support a wide range of query types.

• Strong integrity guarantee: Clients should have the
ability to efficiently verify the integrity of query results,
ensuring the trustworthiness of information originating
from the decentralized blockchain environment.
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B. Design Overview

To meet the design goals, we devise a new system as depicted
in Figure 4, which consists of five types of parties:

• Source Chains: These are existing blockchains that serve
as data sources.

• DCert Certificate Issuers (DCert CIs): They are used to
certify the latest states of source chains using the DCert
framework [20].

• V2FS Certificate Issuers (V2FS CIs): They are used
to certify the integrity of the proposed verifiable virtual
filesystem (V2FS).

• Indexing Service Providers (ISPs): Similar to the
indexers in TG [15], they are responsible for indexing the
data from source chains and supporting verifiable queries.

• Query Client: It is a lightweight node with limited storage
space. The query client keeps track of the latest block
headers of source chains and processes queries using the
data and certificate obtained from the ISP.

We achieve our design goals through the following ap-
proaches. To ensure blockchain compatibility, we adopt the
DCert framework [20], which allows for efficient blockchain
certification without modifying the underlying blockchain
systems. Multiple DCert CIs can be associated with each
blockchain. In the event that one of the DCert CIs becomes
unavailable or crashes, the remaining DCert CIs are still oper-
ational to provide blockchain certification services. Similarly,
multiple V2FS CIs can be deployed to ensure the resilience and
robustness of our system in certifying the integrity of V2FS.
For ease of composition, in the following, we assume that a
single DCert CI is employed for each blockchain and a single
V2FS CI is employed in the system.

Whenever a new block is created in a source chain, it is
synchronized to the corresponding DCert CI, V2FS CI, and
ISP ( 1 , 2 , and 3 depicted in Figure 4), while the block
header is broadcasted to the query client ( 4 ). Upon receiving
a new block, the DCert CI constructs a DCert certificate (Cblk)
and transmits it to the V2FS CI ( 5 ). The DCert certificate
enables the V2FS CI to efficiently validate the current state of



the corresponding blockchain.
To achieve maximum database compatibility hence support-

ing a wide range of query types, we propose a novel solution
called verifiable virtual filesystem (V2FS). It extends the POSIX
I/O interface to separate data storage from query processing,
making it compatible with various database engines. The key
idea of V2FS is to empower the query client to leverage an
off-the-shelf database engine to process queries using data
obtained from the ISP. As illustrated in Figure 5, the query
client is responsible for the computing layer, which evaluates
queries using a database engine. Meanwhile, the storage layer,
which maintains underlying data synchronized from the source
chains, is managed by the ISP. The storage is organized and
stored as regular files, with the query client fetching necessary
pages of these files from the ISP through V2FS as needed.

To establish strong integrity guarantee, we integrate a Merkle-
based Authenticated Data Structure (ADS) into the storage layer
of V2FS. We introduce an SGX-enabled V2FS CI to maintain
the ADS in the form of a V2FS certificate (CV2FS). This
certificate is used to validate the ADS root against the current
global states across all source chains. As shown in Figure 5,
the V2FS CI’s SGX enclave consists of a database engine
and an ADS engine, while the storage layer is located outside
the enclave to minimize enclave memory usage. Since the
outside-enclave storage is inherently untrusted, V2FS enables
the enclave program to verify the data retrieved from the
outside-enclave storage. When a new block is discovered in
a source chain, the V2FS CI updates the ADS based on the
blockchain data and securely constructs a new certificate CV2FS
inside the SGX enclave ( 6 ). This certificate is then sent to the
ISP, which will be used for verification during subsequent query
processing. Similarly, the ISP utilizes an identical database
engine and ADS engine to maintain its own storage upon
receiving a new block ( 3 ).1 During query processing, the query
client firstly requests the V2FS certificate CV2FS from the ISP
and verifies CV2FS w.r.t. the latest block headers {hdr} observed
from the blockchain networks ( 7 ). Then, it locally evaluates
the query using the data retrieved from the ISP. Specifically,
whenever the database engine performs read operations, V2FS
sends a corresponding read request R to the ISP ( 8 ). In
response, the ISP provides the requested pages {P} of the
filesystem ( 9 ). At the end of query processing, the ISP sends
a verification object (VO) consisting of a Merkle proof πq to
the query client ( 10 ). Finally, the query client can validate
the integrity of received pages using πq and CV2FS to ensure
the integrity of the entire query processing.

Threat Model. Without loss of generality, we assume that
the integrity and availability of the underlying blockchains
are guaranteed. This implies that all parties can receive up-
to-date blockchain data from the networks. Furthermore, we
assume the security of the underlying cryptographic primitives,
such as collision-resistant hash functions and the integrity of
Intel SGX [24]–[26]. On the other hand, the ISP is considered
untrusted, meaning it has the potential to behave arbitrarily, e.g.,

1If the database engine is non-deterministic, the ISP can directly synchronize
the storage layer updates from the V2FS CI to ensure data consistency.
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Fig. 6: Example of the V2FS ADS
returning tampered or incomplete data. Similarly, the V2FS CI
is also untrusted, as it may return arbitrary data to the SGX
enclave or attempt to forge certificates. Finally, we assume that
the query client, being read-only end users, is honest and has no
intention to act against themselves. The integrity of the query
results is established w.r.t. the source data in the blockchains
under the following two security criteria: (i) soundness: all of
the query results are correct and none of them are tampered
with; (ii) completeness: no valid result is missing.

IV. SYSTEM DESIGN

In this section, we delve into the detailed system design,
including the architecture of V2FS, its maintenance mechanism,
and its utilization for supporting verifiable query processing.

A. Verifiable Virtual Filesystem (V2FS)

In our system, V2FS is designed as a middleware to enable
the utilization of off-the-shelf database engines for verifiable
queries. To achieve this, V2FS extends the widely-adopted
POSIX I/O interface and effectively separates the data storage
from query processing. This design enables smooth integra-
tion with existing database engines, thus enhancing database
compatibility. Moreover, it adopts a common filesystem as its
primary I/O interface, which stores raw data from source chains
along with metadata such as schema and indexing information.
All of these data are organized as regular files and incorporate
a Merkle-based Authenticated Data Structure (ADS). In the
following, we introduce the ADS of V2FS, an SGX-generated
certificate to attest to the integrity of V2FS, and an interface
for interacting with the V2FS storage layer.

V2FS ADS. In the traditional POSIX I/O, files are commonly
organized as pages, which are fixed-length contiguous blocks
of data. When accessing files, the database engine uses the
file path and offset to locate the required pages. Therefore, we
build a two-layer tree structure as the ADS to authenticate the
entire filesystem. The ADS consists of a lower-layer Merkle
tree built on the pages of each file and an upper-layer Merkle
trie built on the file path.

Figure 6 shows an example of our designed ADS. For ease of



illustration, we assume that the storage layer contains three files
and the file /var/main.sqlite has four pages. The lower-layer
ADS is a complete binary tree. Each leaf node contains a digest
computed using the corresponding page, while each non-leaf
node contains a digest computed using its two children. For
example, h9 = H(p0) and h7 = H(h9||h10). The root digests
of lower-layer trees serve as the leaves of the upper-layer ADS.
Each node in the upper-layer ADS contains a segment of the file
path, whose digest is computed using the file path segment and
its children. For example, h2 = H(var||H(h4||h5)). The root
digest of the upper-layer ADS (e.g., h0) is used to authenticate
all the files in the storage layer.

To support client queries and blockchain updates simulta-
neously, our designed ADS utilizes multiversion concurrency
control. Specifically, each update introduces new pages with
a corresponding ADS tree path and a new Merkle root. To
maintain query consistency, the previous version of the updated
pages is retained and can be accessed through the previous
Merkle root, ensuring snapshot isolation. Once the query is
finished, the old pages are removed to free up storage space.

V2FS Certificate. A V2FS certificate CV2FS is used to
certify the integrity of the filesystem w.r.t. the global states
of all source chains. Assume there are n blockchains in the
system. As shown in Figure 6, CV2FS consists of the fol-
lowing elements: ⟨hADS, [(dig1, hgt1), . . . , (dign, hgtn)], sig⟩.
Here hADS represents the root digest of the ADS;
[(dig1, hgt1), . . . , (dign, hgtn)] are the pairs of digest and
height of the latest block header in each blockchain. Specifically,
digi represents the blockchain state, while hgti is used to verify
whether the current block conforms to the consensus protocol.
Lastly, sig is a signature of the content of the certificate,
signed by the SGX secret key sksgx kept inside the enclave.
The client can validate CV2FS using the SGX public key pksgx
and certify the V2FS integrity against the latest blockchain
headers observed in the network.

V2FS Interface. The V2FS interface is used to interact with
the V2FS storage layer during blockchain state updates and
query processing. To ensure compatibility with the standard
POSIX I/O, it provides the following callbacks:

• int open(const char *path): Given a file path, it
returns a file descriptor associated with the specified file.

• off_t seek(int fd, off_t offset): On input a
file descriptor and an offset, it adjusts the current cursor
of the file to the offset.

• ssize_t read(int fd, void *buf, size_t
count): Similar to the standard read operation, it reads
data from a file into a provided buffer. In addition, the
read operation records some auxiliary ADS information,
which is used for integrity verification at a later stage.

• ssize_t write(int fd, const void *buf,
size_t count): Unlike the standard write operation
that directly writes the pointed data into the specified
file, our write operation writes data into an internal
buffer, which will be processed in batch at a later stage
to update the filesystem and corresponding ADS.

• int close(int fd): It closes the file and releases the

Algorithm 1: V2FS Maintenance – Initialize (V2FS CI)

1 Function initialize()
/* Enter the enclave */

2 Fetch CV2FS, blk′
j , C′blkj ,pkDCertj ;

3 pksgx ← load_pk(); verify_sig(CV2FS, pksgx);
4 ⟨hADS, [(dig1, hgt1), . . . , (dign, hgtn)], sig⟩ ← CV2FS;
5 DCert.valid(C′blkj , blk

′
j .hdr, pkDCertj );

6 assert hgtj + 1 = blk′
j .hgt;

7 assert digj = blk′
j .prev dig;

8 Initialize read and write page collections Pr , Pw;
/* Exit the enclave */

file descriptor.
How to use the V2FS interface for V2FS maintenance

and query processing will be elaborated in Section IV-B and
Section IV-C, respectively.

B. V2FS Maintenance

To facilitate verifiable queries over multi-chain data, we
utilize an an off-the-shelf database engine with V2FS to manage
and index data received from source chains. During this process,
V2FS not only updates corresponding files in the filesystem
but also performs ADS bookkeeping for subsequent query
verification. In a decentralized environment where the V2FS
CI is untrusted, we employ an SGX-powered enclave to handle
database updates. The database engine runs inside the protected
enclave, carrying out computations based on the new block
while utilizing V2FS for data access through read and write
operations. These operations are translated into corresponding
OCalls to interact with the outside-enclave storage layer. To
mitigate the performance impact caused by frequent OCalls, we
introduce two page collections, namely Pr and Pw, within the
enclave to minimize cross-enclave operations. Once finishing
the database computation, the enclave program asks the external
storage layer to generate Merkle proofs for the accessed pages
during computation. Additionally, the storage layer provides
the corresponding Merkle paths for updating the ADS. If these
Merkle proofs can be successfully verified against the previous
ADS root signed by the previous CV2FS, the enclave program
proceeds to compute a new ADS root based on the contents of
Pw and the associated Merkle paths. Subsequently, a new C′

V2FS
is generated for the updated database and ADS. Thanks to
the blockchain’s inherent transaction serialization, the database
engine is relieved from managing concurrency issues.

Upon receiving a new block, the V2FS CI follows three
phases to maintain the V2FS storage layer, its ADS, and
construct a new V2FS certificate C′

V2FS. First, an initialize
phase prepares all necessary data structures and executes setup
procedures. Then, in the compute phase, a corresponding
callback outlined in the V2FS interface is invoked whenever the
database engine accesses data in V2FS. These callbacks provide
standard POSIX I/O operations with additional functionalities
related to integrity assurance. Finally, a finalize phase is
invoked to perform certificate generation.

Algorithms 1 to 3 present the detailed implementation of
V2FS maintenance at the V2FS CI. In the initialize phase
(Algorithm 1), the enclave program first gathers necessary



Algorithm 2: V2FS Maintenance – Interface (SGX)

1 Function open(path)
2 fd← ocall_open(path); return fd;
3 Function seek(fd, offset)
4 fd.offset← offset; return offset;
5 Function read(fd, buf, count)
6 readCnt← 0;
7 while readCnt < count do
8 pid← Calculate the page id w.r.t. fd.offset;
9 if ⟨fd.path,pid⟩ ∈ Pw or Pr then

10 page← Retrieve the page from Pw or Pr;
11 else
12 page← ocall_get_page(hADS,fd.path,pid);
13 Pr.insert(⟨fd.path,pid⟩,page);
14 Copy data from page to buf;
15 Increment readCnt, buf, and fd.offset;
16 return readCnt;
17 Function write(fd, buf, count)
18 writeCnt← 0;
19 while writeCnt < count do
20 pid← Calculate the page id w.r.t. fd.offset;
21 if fd.offset or buf does not align to a page then
22 if ⟨fd.path,pid⟩ ∈ Pw or Pr then
23 page← Retrieve the page from Pw or Pr;
24 else
25 page← ocall_get_page(hADS,fd.path,pid);
26 Pr.insert(⟨fd.path,pid⟩,page);
27 else
28 page← an empty page;
29 Copy data from buf to page;
30 Increment writeCnt, buf, and fd.offset;
31 Pw.insert(⟨fd.path,pid⟩,page);
32 return writeCnt;
33 Function close(fd)
34 return ocall_close(fd);

information to establish the current context (Line 2). This
includes: (i) the previous V2FS certificate CV2FS, (ii) the new
block blk′j from the j-th blockchain, (iii) the new block’s
DCert certificate C′

blkj
generated by the corresponding DCert

CI, and (iv) the public key of the DCert CI pkDCertj . Next,
these data obtained from untrusted sources need to undergo
validation to ensure their integrity, which includes the following
checks: (i) the previous V2FS certificate is valid against the
SGX public key (Line 3); (ii) the new block is indeed signed
by its corresponding DCert CI (Line 5); and (iii) the new
block satisfies the chain condition in relation to its previous
block embedded in the previous CV2FS (Lines 6 to 7). These
checks are crucial for establishing the presence of a valid state
transition history for the V2FS ADS since the genesis block
of the source chain. Finally, the two page collections Pr and
Pw are initialized (Line 8).

In the compute phase, the database engine within the
enclave processes updates from the new block to maintain
the database’s bookkeeping. This phase iteratively invokes
the following standard POSIX I/O callbacks to access the
storage layer and perform necessary operations for V2FS ADS
maintenance (Algorithm 2).

The open operation invokes an OCall to open the target file
outside the enclave and returns its file descriptor. The seek
operation updates the offset of the corresponding file. During

Algorithm 3: V2FS Maintenance – Finalize (V2FS CI)

1 Function finalize()
2 πr ← Generate Merkle proof for pages in Pr;
3 πw ← Generate Merkle proof for path w.r.t. pages in Pw;

/* Enter the enclave */
4 verify_merkle(πr,Pr, hADS);
5 verify_merkle(πw,Pw, hADS);
6 h′

ADS ← Calculate new root hash using πw and Pw;
7 sksgx ← load_sk();
8 sig′ ← sign(sksgx, H(h′

ADS||H(· · · ||dig′j ||hgt′j || · · · )));
9 C′V2FS ← ⟨h

′
ADS, [. . . , (dig

′
j , hgt

′
j), . . . ], sig

′⟩;
/* Exit the enclave */

10 Flush Pw to storage and update ADS accordingly;
11 Broadcast C′V2FS to ISP;

the read operation, the algorithm retrieves all the relevant
pages and reads the acquired data into a designated buffer.
If the data spans multiple pages, the algorithm iterates until
all the data has been read. In each iteration, the page id is
first calculated based on the offset of the specific file (Line 8).
If the page is present in Pw or Pr, it implies that the page
either (i) is an updated or newly created page, or (ii) has been
previously retrieved and remains unchanged. In such cases, it
is directly fetched from Pw or Pr for subsequent data reading
(Lines 9 to 10). Otherwise, an OCall is invoked to retrieve the
page from the external storage layer, and the received page is
inserted into Pr for future use (Lines 12 to 13). Finally, the
acquired data in the page is copied to the pointed buffer with
the corresponding offsets being incremented (Lines 14 to 15).
In the write operation, the data to be written is organized
as pages and inserted into Pw. In each iteration, if the current
offset of the file or the destination buffer does not align with
a page boundary, the corresponding page needs to be retrieved
first, using a procedure similar to the read operation (Lines 21
to 26); otherwise, since the data to be written covers the entire
page, an empty page is used to avoid unnecessary page retrieval
(Line 28). Subsequently, the data to be written is copied to the
page, and the corresponding offsets are incremented (Lines 29
to 30). Finally, the page is inserted into Pw (Line 31), to
be further processed in the finalize phase in batch. The
close operation invokes an OCall to close the target file.

The finalize phase verifies the integrity of the accessed
pages and constructs a new V2FS certificate C′

V2FS based on
Pw (Algorithm 3). Specifically, the enclave program invokes an
OCall to request two Merkle proofs: (i) πr to authenticate the
read pages in Pr (Line 2) and (ii) πw to include the neighboring
nodes in the Merkle path associated with the pages in Pw within
the ADS (Line 3). The two proofs are then verified against
hADS in the previous CV2FS (Lines 4 to 5) inside the enclave.
Next, the new ADS root h′

ADS is computed by applying the
updates in Pw and re-constructing the digest using πw’s tree
nodes in a bottom-up fashion (Line 6). With the updated h′

ADS,
a new certificate C′

V2FS is signed using the SGX secret key of
the V2FS CI (Lines 7 to 9). Finally, the pages in Pw are flushed
to the external storage with the ADS updated accordingly and
C′
V2FS is broadcasted to the ISP (Lines 10 to 11).

On the ISP’s side, the database engine follows a similar



Algorithm 4: Query Processing (Query Client)

1 Function initialize()
2 Fetch {hdri};
3 CV2FS ← Request certificate from the ISP;
4 pksgx ← load_pk(); verify_sig(CV2FS, pksgx);
5 ⟨hADS, [(dig1, hgt1), . . . , (dign, hgtn)], sig⟩ ← CV2FS;
6 for i in [1..n] do
7 assert digi = H(hdri);
8 assert ⟨hdri, hgti⟩ conforms to the consensus protocol;
9 digsToVerify← [];

10 Function read(fd, buf, count)
11 readCnt← 0;
12 while readCnt < count do
13 pid← Calculate the page id w.r.t. fd.offset;
14 page← access_page(hADS,fd.path,pid);
15 Copy data from page to buf;
16 Increment readCnt, buf, and fd.offset;
17 digsToVerify.append(H(page));
18 return readCnt;
19 Function finalize()
20 πq ← Request VO from the ISP;
21 verify_merkle(πq,digsToVerify, hADS);

procedure to process the new block to maintain its database’s
bookkeeping and update the V2FS ADS accordingly. Since
we do not rely on the trustworthiness of the ISP, no SGX is
needed and no Merkle proof is involved.

Example. In the example shown in Figure 6, suppose
that a new block involves (i) reading p0; (ii) writing p3;
and (iii) reading the updated p3 (denoted as p′3) in the file
/var/main.sqlite. For simplicity, we assume that p′3 aligns to
a page boundary. In the initialize phase, the V2FS CI
verifies the previous V2FS certificate and the new block w.r.t.
its DCert certificate. Additionally, it initializes Pr and Pw

as empty. During the compute phase, the enclave program
first invokes an OCall to read p0 from the external storage,
followed by inserting p0 to Pr. Next, in the write operation,
the data is written to an empty page, which is then inserted
to Pw. When reading the updated p3, it is directly fetched
from Pw since p′3 exists in Pw. After the compute phase is
finished, Pr = {p0} and Pw = {p′3}. In the finalize phase,
two Merkle proofs πr = {/, h1, var, h4,main.sqlite, h8, h10}
and πw = {/, h1, var, h4,main.sqlite, h7, h11, h12} are gen-
erated and passed to the enclave. To verify the integrity
of the accessed pages, the enclave program uses πr and
πw to reconstruct the ADS root and compares it with
hADS. Upon successful verification, the enclave program
computes the new ADS root h′

ADS = H(/||H(h1||H(var
||H(h4||H(main.sqlite||H(h7||H(h11||H(p′3)))))))) and gen-
erates a new V2FS certificate C′

V2FS using h′
ADS. Following this,

the pages in Pw are flushed to the external storage and the
ADS is updated accordingly.

C. Query Processing

As depicted in Figure 5, the query client employs the same
database engine as the V2FS CI and ISP for query processing.
Since the storage layer is located at the ISP, the database
engine retrieves pages from the ISP on demand through V2FS
via network communication. Moreover, the ISP provides the

necessary Merkle proofs πq as a verification object (VO) and
the corresponding CV2FS for integrity validation. To reduce the
communication cost, rather than generating a VO for each page
access, the ISP consolidates all Merkle proofs and transmits
a single VO at the end of query processing. With the VO,
the query client can verify the database engine’s use of data
from the latest blocks in the source chains through CV2FS, and
ensure the correctness of all received pages using the Merkle
proofs πq and hADS in CV2FS. Since the query client engages in
read-only operations based on a consistent snapshot identified
by the root hash in the block header, the need for transaction
management is eliminated. Consequently, our system does not
require additional concurrency techniques on the client side,
such as those mentioned in [27], [28].

Similar to the V2FS maintenance, query processing using
V2FS follows three phases, as illustrated in Algorithm 4. In the
initialize phase, the query client requests and verifies the
V2FS certificate from the ISP. Specifically, it first fetches the
latest block headers {hdri} for all source chains (Line 2). Next,
it requests CV2FS from the ISP and validates it against the SGX
public key (Lines 3 to 4). To certify the integrity of the ISP’s
V2FS w.r.t. the current consensus, the query client compares
the block digest in CV2FS with the corresponding block header
hdri observed in the network and checks if hdri complies
with the blockchain consensus protocol (Lines 7 to 8). Finally,
a digsToVerify collection is created to store the digests of
all retrieved pages. During the query processing, POSIX I/O
callbacks are invoked to access data from the ISP. Operations
like open, seek, and close function in the standard manner.
The read operation, on the other hand, requests corresponding
pages from the ISP based on the accessed file path, offset,
and the ADS root. Multiple iterations are performed if the
requested data spans multiple pages (Lines 13 to 16). After
that, the digests of these pages are stored to digsToVerify
for later verification (Line 17). In the finalize phase, the
query client verifies the integrity of all retrieved pages. To do
so, it requests the VO from the ISP and verifies the digests
stored in digsToVerify using the Merkle proof πq and the
ADS root hADS extracted from CV2FS (Lines 20 to 21).

V. QUERY OPTIMIZATIONS

Since network communication is the bottleneck during query
processing, this section proposes two cache-based strategies
and a bloom filter approach to enhance system performance.

A. Query Processing with Cache

Query with Intra-query Cache. During query processing,
it has been observed that certain pages are accessed repeatedly
within a single query. For example, in the case of query #5
from the TPC-H benchmark, 68% of the retrieved pages are
accessed more than once. To address this issue, we propose the
use of an intra-query cache. This cache stores recently visited
pages in memory. When a page is needed, the query client can
first check if it is already present in the intra-query cache. If
it is found, the need to request the page from the ISP can be
eliminated, leading to improved efficiency.



Query with Inter-query Cache. Since pages may be
frequently accessed across multiple queries, an inter-query
cache can be implemented to store commonly accessed pages.
However, a key issue arises when these cached pages may
become stale due to blockchain updates occurring between
query executions. To tackle this problem, we propose a novel
inter-query cache structure that supports efficient freshness
checks. The main idea is to enable the query client to exchange
information with the ISP such that the freshness of multiple
pages can be confirmed by a single request. The designed inter-
query cache, depicted in Figure 7, comprises multiple complete
Merkle subtrees that include both the cached pages and their
ancestor nodes in the ADS. Each node in the cache is associated
with a freshness flag, denoting either fresh or unknown status.
At the beginning of each query, all nodes in the cache are
marked as unknown. Algorithm 5 illustrates the page accessing
with the inter-query cache. During query processing, there are
three possible scenarios when V2FS accesses a specific page.
If the requested page is not in the cache, V2FS requests the
page from the ISP and adds it into the cache as fresh (Lines 3
to 5); if the requested page exists in the cache and is marked
as fresh, V2FS simply returns the cached page to the database
engine (Line 7); and finally if the requested page is present in
the cache but marked as unknown, a query needs to be made
to the ISP to determine whether the page has been altered.

To validate the freshness of a cached page, the query client
sends the complete Merkle path associated with the requested
page to the ISP (Lines 8 to 9). The ISP then traverses this
path in a top-down manner. If a digest in the path matches its
counterpart in the current ADS, it indicates that the requested
page, along with other pages covered by the matching node,
has not been updated since the last query. In this case, the
ISP returns the location and digest of the first matching node,
confirming the freshness of the entire subtree. Additionally, the
ISP generates a Merkle proof for the matching node, which will
be consolidated and sent to the query client in the finalize
phase to reduce the VO size (Lines 22 to 23). Conversely,
if none of the digests in the path match their corresponding
nodes in the ADS, it signifies that the requested page has been
updated. Consequently, the updated page is returned to the
query client (Lines 24 to 26).

On the query client’s side, when the ISP responds with a
matching node, its digest is added to digsToVerify, to be
verified in the finalize phase to ensure the integrity of the
ISP’s response. At the same time, the cached page is passed to
the database engine for query processing (Lines 11 to 13). In
case that the ISP responds with a new or updated page, V2FS
adds or refreshes the page in the cache, and returns it to the
database engine (Lines 15 to 17). It is important to note that
whenever a page is inserted into the cache or an existing node
is verified as fresh, all its descendant nodes in the cache can be
marked as fresh as well. Meanwhile, all ancestors and siblings
of the same node are removed from the cache, resulting in the
split of child nodes into separate trees. When contiguous fresh
pages in the cache can form a complete subtree, such a tree
is marked as fresh and its root is added to digsToVerify

Algorithm 5: Access Page with Inter-query Cache

/* Performed by the query client */
1 Function access_page(hADS, fPath, pid)
2 if ⟨fPath,pid⟩ /∈ cache then
3 page← Request page from the ISP;
4 cache.insert(⟨fPath,pid⟩,page);
5 return page;
6 page← cache.get(⟨fPath,pid⟩);
7 if page is fresh then return page ;
8 digsPath← Digests in the path of the requested page;
9 response← Ask the ISP to validate digsPath w.r.t. hADS;

10 if response is a digest then
11 cache.set_fresh(node w.r.t. response.dig);
12 digsToVerify.append(response.dig);
13 return page;
14 else
15 page← response.page;
16 cache.insert(⟨fPath,pid⟩,page);
17 return page;
/* Performed by the ISP */

18 Function validate(hADS, fPath, pid, digsPath)
19 while digsPath.is_not_empty() do
20 dig← digsPath.pop();
21 if dig matches the corresponding node in the ADS then
22 π ← gen_proof(dig); Merge π to πq;
23 return dig;
24 page← get_page(hADS,fPath,pid);
25 π ← gen_proof(H(page)); Merge π to πq;
26 return page;

to replace all of its descendants. When the cache reaches its
capacity, a common LRU strategy is employed to evict cached
pages along with all their ancestors.

Example. Consider the example in Figure 7. Assume the
current cache contains six pages (p0 to p5) and the upcoming
query requests pages p0, p4, and p5. Before the next query is
processed, all cached pages are initially marked as unknown.

• 1 When requesting p0, the query client sends the path
{h0, h1, h5} to the ISP for validation. Suppose that the
ISP responds that h1 matches the corresponding node
in the ADS. The query client then updates all the nodes
covered by h1 as fresh and retrieves p0 from the cache
to the database engine. Meanwhile, the query client adds
h1 to digsToVerify for verification at a later stage
as well as removes h0 and h2 from the cache.

• 2 Next, to access p4, the query client sends the path
{h3, h9} to the ISP for validation. Suppose that p4 had
been updated to p′4. The ISP returns the updated p′4 to
the query client. The query client then replaces p4 by p′4
and removes h3. Meanwhile, h′

9 = H(p′4) is added to
digsToVerify.

• 3 Then, to access p5, the query client sends h10 to the ISP.
Suppose that p5 is unchanged, the query client can build
a new subtree consisting of {h′

9, h10, h
′
3}. Additionally,

h′
3 is added to digsToVerify to replace h′

9.
• 4 At the end, the ISP returns a Merkle proof πq , which

contains {h′
2, h4}, where h4 is h3’s sibling digest, to attest

the nodes in digsToVerify. On the client-side, hADS
can be reconstructed and verified using {h1, h

′
3} and πq .
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B. Bloom Filter Integrated Freshness Checking

To further reduce network communication costs, we propose
using page update information to check the freshness of cached
pages. To achieve this, we introduce the concept of a versioned
bloom filter (VBF) and design a VBF-integrated algorithm for
freshness checking. The VBF, which summarizes the historical
update information of all pages, is managed by the V2FS CI
inside the SGX enclave. After processing each new block, the
enclave constructs a V2FS certificate with two additional fields:
(i) a monotonically increased version number vC

V2FS
; and (ii) a

constant-sized VBF that encodes the page update history w.r.t.
the version number. Specifically, during the V2FS maintenance,
whenever a page indexed by ⟨fPath,pid⟩ is written, the
index key is added to the VBF by setting the corresponding
slots with the current version number vC

V2FS
.

To utilize the VBF, each leaf node in the query client’s cache
is augmented with two extra fields: (i) Vn, denoting the most
recent CV2FS version number when the corresponding page
is marked as fresh, and (ii) Sn, representing the set of slot
indexes in the VBF w.r.t. the corresponding page’s index key
⟨fPath,pid⟩. During query processing, if V2FS identifies a
required page in the cache that is marked as unknown, the VBF
is used as the first step to check its freshness. The query client
first retrieves the leaf node n associated with the accessed
page in the cache. Then, it compares the version number Vn

with the values stored at the corresponding slots of Sn in
the VBF. If none of these values are greater than Vn (i.e.,
Vn ≥ VBF[pos], ∀ pos ∈ Sn), it indicates that the page in
the cache is fresh, as it has not been updated since version Vn.
Consequently, the query client marks the page as fresh and
fetches it directly from the cache for query processing. Note
that since the VBF is part of CV2FS and can be verified by the
SGX public key, there is no need to add the corresponding
leaf node to digsToVerify. However, if any of the values
is greater than Vn, the VBF cannot guarantee the freshness of
the target page in the cache due to potential false positives of
the bloom filter. In this case, the query client falls back to the
freshness validation algorithm introduced in Algorithm 5.

VI. SECURITY ANALYSIS

This section analyzes the security of the V2FS-based query
processing algorithms.

Theorem 1. The V2FS certificate construction algorithm pro-
posed in our system is secure, if the underlying cryptographic
primitives, the DCert, and the trusted hardware are secure.

Proof. We prove this theorem by contradiction. If an adversary
can forge a V2FS certificate, it means either (i) the adversary
can persuade the database engine in the enclave of the V2FS
CI to accept tampered pages, or (ii) the V2FS certificate is
built on a blockchain state that is not accepted by the current
network. The former case is impossible since the V2FS CI
requires sufficient Merkle proofs to authenticate all accessed
pages during database maintenance. On the other hand, the
client will check the blockchain headers embedded in CV2FS
against the current consensus in the network, which makes the
latter case impossible.

Theorem 2. The VBF integrated freshness checking algorithm
proposed in our system does not have a false-negative error.

Proof. We also prove this theorem by contradiction. Assume
that the VBF integrated freshness checking algorithm produces
false-negative errors. This implies that there exists a leaf node
n in the cache where Vn = v1 and Sn = {pos1, . . . , posm}
satisfying the condition v1 ≥ VBF[posi] for any i = 1, . . . ,m
Additionally, the page pn associated with n has been updated
with v2 where v2 > v1. However, when the page is updated at
v2, the corresponding position (Sn) in the VBF should be set
to v2. This leads to a contradiction that all the values of the
corresponding slots in Sn are less than v1.

Theorem 3. The verifiable query processing algorithms pro-
posed in our system are secure, if the underlying cryptographic
primitives, the DCert, and the trusted hardware are secure.

Proof. Since our system uses an off-the-shelf database engine
to process the queries, a tampered or incomplete query result
indicates that there are incorrect pages accessed by the database
engine. We show this cannot happen for all three proposed
algorithms by contradiction.

In Algorithm 4, all of the accessed pages are authenticated
based on a Merkle proof w.r.t. CV2FS. Therefore, incorrect page
access can only happen when the corresponding Merkle proof is
forged to convince a tampered or missing page or the adversary
persuades the client with a forged CV2FS. A successfully forged
Merkle proof indicates that there exist two versions of the
Merkle tree yielding the same root hash hADS. This means a
successful hash collision in the underlying cryptographic hash
function, which contradicts our assumption. On the other hand,
CV2FS cannot be forged as proved in Theorem 1.

Similarly, when the cache is used during query processing in
Algorithm 5, all the cache freshness checks are authenticated as
part of Merkle proofs. As such, an incorrect freshness response
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by the ISP can lead to the hash collision to the underlying
cryptographic hash function.

Finally, the VBF integrated query processing algorithm
is secure because the VBF integrated freshness checking
algorithm guarantees zero false-negative errors as proved in
Theorem 2. At the same time, the adversary cannot forge the
VBF, which is authenticated by CV2FS.

VII. PERFORMANCE EVALUATION

This section first covers the system implementation and ex-
periment setup, including the dataset, workloads, and evaluation
metrics. It then presents the system evaluation results.

A. System Implementation and Experiment Setup

Implementation. We have implemented our proposed system
in Rust programming language using the SQLite database [29].
The database engine in our system is implemented using the
Rusqlite library [30]. The V2FS ADS employs BLAKE2b [31]
as the cryptographic hash function and RocksDB [32] as the
underlying storage. Besides, the SGX enclave is implemented
using the Apache Teaclave SGX SDK [33]. The page size is
set to 4KB, following the default setting in SQLite. The cache
size is set to 1GB by default, as modern devices typically have
sufficient memory. We set the VBF with 100,000 slots and five
hash functions to achieve a false-positive probability of less
than 1%. The DCert CI is based on the implementation in [20].
The V2FS CI is deployed on a machine with an SGX-enabled
Intel Xeon Gold 6330 CPU and 64GB Enclave Page Cache,
while the ISP and query client are deployed on machines with
Intel i7-7567U CPU and 32GB RAM. The network bandwidth
between the ISP and the query client is 1Gbps.

Dataset. We evaluate the query performance of our sys-
tem using a dataset extracted from the Ethereum [34] and
Bitcoin [35] blockchains using Blockchain ETL [36]. The
dataset covers the period from May 12, 2023, to May 18, 2023,
comprising 16 tables with over 70 million records related to
Bitcoin and Ethereum.

Workloads and Evaluation Metrics. We test the queries
provided in the Awesome BigQuery Views project, which
includes eight types of SQL queries for on-chain data analy-
sis [37]. These queries encompass a broad range of relational
operations such as selection, projection, order, aggregation,
join, and union. The operations involved in each query are
summarized in Appendix B. A total of nine workloads are
generated for query evaluation. For each of the eight SQL
queries, a workload is developed by randomly generating 20
unique queries of the same type. These queries follow a Zipfian
distribution in terms of query time window to model a real-
world usage pattern. Additionally, a mixed workload (denoted

as “Mixed”) is generated to simulate a more complex and varied
query environment. It contains 40 randomly generated queries,
with five from each query type. The evaluation metrics include
(i) query latency, covering query execution, data transmission,
and verification time, (ii) number of network requests issued by
the query client for page transmission and freshness checking,
and (iii) the VO size.

B. Experimental Results

Database Update Cost. Figure 8 shows the database update
performance with and without SGX in the V2FS CI. We vary
the number of blocks inserted into the database to measure the
block processing time and the size of Merkle proofs generated
by the enclave. As the number of input blocks increases, the
database update time also increases. The enclave introduces
a performance degradation ranging from 3.2× to 10.4×, as
expected, due to the costly OCalls needed to interact with the
outside-enclave storage layer. Processing multiple blocks in
batches mitigates the performance degradation. This is because
the page collections introduced in Section IV-B can effectively
reduce the number of OCalls. The Merkle proof generation
time constitutes a small proportion (around 6%) of the entire
update time. With more input blocks, the Merkle proof size
slightly increases from 10.8KB to 12.5KB.

Query Performance. The query performance of our system
is shown in Figures 9 to 11, with a varying query time window
from 3 to 48 hours. Four methods are compared: (i) Baseline: no
optimization applied; (ii) Intra: utilizing an intra-query cache;
(iii) Inter: employing an inter-query cache; and (iv) Inter+Vbf :
incorporating an inter-query cache with the versioned bloom
filter. Due to space constraints, we present results for three
representative workloads: (i) Q1, comprising aggregate queries;
(ii) Q2, containing linear scan queries; and (iii) Q6, involving
nested queries. Additionally, we include the mixed workload
in the experiment. We break down the query latency into (i)
exec, computation conducted by the query client, and (ii) net,
network transmission between the ISP and the query client. For
Inter and Inter+Vbf methods, we further divide the network
requests into (i) check, network requests for freshness checking,
and (ii) page, network requests for page retrievals.

We make several interesting observations. First, as shown
in Figure 9, compared with Baseline, Inter and Inter+Vbf
improve the query performance by up to 4.1× and 6.1×,
respectively. The improvement is achieved by reducing page
transmissions through the inter-query cache. This can be
validated from Figure 10, where up to 88.9% of transmitted
pages are reduced by Inter and Inter+Vbf. The additional
performance boost in Inter+Vbf comes from the further reduced
network requests during freshness checking. As shown in
Figure 10, the utilization of VBF effectively reduces 99.7%
of network requests for freshness checking, resulting in up to
45.6% improvement in query performance compared to the
Inter method. Second, Intra improves query efficiency by up to
2.8×, reducing transmitted pages by up to 68.5%, except for Q1
and Q2. The limited effectiveness in Q1 and Q2 is due to the
fact that these queries rarely access the same page repeatedly
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Fig. 13: Impact of Cache Size and Database Update
in a single query, causing the intra-query cache to be less
effective in reducing page transmissions. Third, the network
transmission time dominates the query latency, except for Q1.
Queries in Q1 require only a few pages transmitted by network,
constituting up to 9.1% of the entire query latency. For other
queries, the network transmission takes up around 82.8% of the
query latency. Lastly, Figure 11 shows that while the query time
window extension results in an increase in VO size, it remains
within a reasonable range and does not require significant
bandwidth resources compared to page transmissions.

Figure 12 compares our system with the ordinary SQLite,
which doesn’t offer integrity guarantee. On the Mixed workload,
our system is 2.9× to 3.9× slower than SQLite. We believe
that this discrepancy in performance is acceptable owing to
the additional integrity guarantee offered by our system.

Impact of Cache Size and Database Update. We next
evaluate the impact of cache size and database update on query
performance. For cache size, we vary it from 256MB to 2GB

and analyze the query performance of the Mixed workload in
Figure 13(a). Initially, Intra shows improved query time with
larger cache sizes. However, its performance remains stable
after reaching a cache size of 512MB. This is because the intra-
query cache has become sufficiently large to accommodate all
the pages in a single query. On the other hand, Inter and
Inter+Vbf continue to benefit from larger cache sizes since
they can cache pages across queries.

Regarding the impact of database update, we measure the
query performance on the Mixed workload while varying
the amount of updated data. As shown in Figure 13(b),
Baseline and Intra perform consistently across different update
intervals. However, with more data updated to the database,
the effectiveness of Inter and Inter+Vbf in reducing page
transmissions decreases. The reason is twofold. Firstly, inserting
new data may cause cached pages to become stale, thereby
reducing the efficiency of freshness checking. Secondly, new
pages created by data updates will be requested, which further
limits the chance of visiting a cached page. Nevertheless, Inter
and Inter+Vbf still outperform Baseline and Intra.

VIII. CONCLUSION

In this paper, we present a pioneering system that enables
verifiable multi-chain queries and achieves blockchain compat-
ibility, database compatibility, and strong integrity guarantee
simultaneously. In particular, we propose V2FS, a novel virtual
filesystem that enables easy integration with diverse database
engines to support various verifiable queries over multi-chain
data. Two cache optimizations and a bloom filter-integrated
algorithm are also proposed to enhance query efficiency.
Extensive security analysis and empirical studies validate the
effectiveness and efficiency of our proposed system.
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APPENDIX A
HANDLING TEMPORARY FILES IN QUERY PROCESSING

This section discusses how to manage temporary files in
query processing. During query processing, such as external
sorting, it is possible that the query engine needs to use
temporary files due to limited in-memory resources. Our system
can facilitate this by enabling the query client to manage
temporary files within its local storage through the extended
POSIX I/O interface.

Algorithm 6 illustrates the POSIX I/O callbacks incorporated.
In the write operation, if the target file does not exist in
the query client’s local storage, V2FS creates a corresponding
local temporary file (Lines 2 to 3). Then, the algorithm iterates
to write data into the target file page by page. In each iteration,
if the current file offset or the destination buffer does not
align with a page boundary, the corresponding page needs
to be retrieved first. In case the page is present in a local
temporary file, it is directly retrieved (Lines 8 to 9). If not,
V2FS needs to request the page from the untrusted ISP and
put its digest to digsToVerify for subsequent verification
(Lines 11 to 12). On the other hand, if the data to be written
covers the entire page, an empty page is used (Line 14). After
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that, the data is copied into the page, with the corresponding
offsets incremented (Lines 15 to 16). Finally, the page is stored
in the corresponding local temporary file (Line 17).

The read operation with temporary file management works
as follows. Whenever a page is accessed, it is directly fetched
from the corresponding local file if it can be found locally
(Lines 23 to 24). Otherwise, the page is requested from the
ISP and its digest is inserted into digsToVerify pending
verification (Lines 26 to 27). Finally, the acquired data in the
page is copied to the pointed buffer, with the corresponding
offsets incremented (Lines 28 to 29). In the finalize phase,
all of the local temporary files created during this query will
be removed. The rest of the algorithm is the same as the one
described in Algorithm 4. Note that since temporary files are
populated with data computed by the query engine, there is
no need to verify the data retrieved from the local temporary
files.

APPENDIX B
TEST QUERIES AND ADDITIONAL EXPERIMENTS

Test Queries. Our experiments use eight types of SQL
queries for on-chain data analysis. They are listed at https:
//github.com/haixin-wang/v2fs-query. Table II summarizes the
relational operations involved in each query.

Query Performance for Other Queries. This subsection

reports the query performance results for workloads Q3,
Q4, Q5, Q7, and Q8. As illustrated in Figure 14, both the
Inter and Inter+Vbf methods exhibit substantial performance
improvements compared to Baseline, achieving up to 3.3×
and 4.1× speed-ups, respectively. These performance gains
are attributed to the efficient design of the inter-query cache,
which effectively reduces up to 82.4% of the transmitted
pages, as depicted in Figure 15. Furthermore, the integration
of the versioned bloom filter (VBF) further reduces network
transmission during freshness checking, resulting in a notable
up to 32% performance improvement compared to the Inter
method. As shown in Figure 15, the utilization of VBF
saves 99.4% of the network requests for freshness checking.
In addition, the Intra method demonstrates query efficiency
improvements of up to 1.77× over the Baseline, where the
improvement comes from the intra-query cache that reduces up
to 32.3% of the transmitted pages. Figure 16 provides insights
into the VO for each workload. The VO size increases with
the query time window, as more pages are involved. However,
it remains below 10MB, ensuring that it would not excessively
consume bandwidth resources in contrast to page transmissions.

Comparison with IntegriDB. In this subsection, we com-
pare the update and query performance of our V2FS with
IntegriDB [3], a state-of-the-art cryptography-based verifiable
database system that supports a wide range of SQL queries.
Note that our system not only supports verifiable query
processing, but also provides seamless blockchain integration.
For the assessment, we focus on the database components of our
system when comparing with IntegriDB. The synthetic dataset
and workload in [3] are used in the experiment, where we vary
the database size from 1,000 to 100,000 records to observe the
update cost and query processing time for both systems. As
shown in Figure 17(a), our system demonstrates a substantial

https://github.com/haixin-wang/v2fs-query
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Algorithm 6: Query Processing with Temporary Files (Query
Client)

1 Function write(fd, buf, count)
2 if fd.path does not exist locally then
3 Create a corresponding local temporary file;
4 writeCnt← 0;
5 while writeCnt < count do
6 pid← Calculate the page id w.r.t. fd.offset;
7 if fd.offset or buf does not align to a page then
8 if pid ∈ the local file at fd.path then
9 page← Retrieve the page from local file;

10 else
11 page← Request page from the ISP;
12 digsToVerify.append(H(page));
13 else
14 page← an empty page;
15 Copy data from buf to page;
16 Increment writeCnt, buf, and fd.offset;
17 Store ⟨pid,page⟩ to the local file at fd.path;
18 return writeCnt;
19 Function read(fd, buf, count)
20 readCnt← 0;
21 while readCnt < count do
22 pid← Calculate the page id w.r.t. fd.offset;
23 if pid ∈ the local file at fd.path then
24 page← Retrieve the page from local file;
25 else
26 page← Request page from the ISP;
27 digsToVerify.append(H(page));
28 Copy data from page to buf;
29 Increment readCnt, buf, and fd.offset;
30 return readCnt;
31 Function finalize()
32 Remove all local temporary files;
33 Fall back to Algorithm 4;

TABLE II: Operations in Test Queries

Operations Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

selection, projection ! ! ! ! ! ! ! !

join % ! ! ! ! ! ! !

order ! % % ! % ! ! !

union ! % ! ! ! ! ! !

aggregation % ! ! ! % ! ! !

improvement in the database update performance, achieving
update times that are 57.2× to 209× faster compared to
IntegriDB. Furthermore, as shown in Figure 17(b), our system
significantly surpasses IntegriDB in terms of query performance.
We achieve query processing speeds that are 1,560× to
8,823× faster than IntegriDB. The is because IntegriDB use
computationally heavy cryptographic accumulators to construct
the ADS and generate proofs. Conversely, our system makes
use of efficient hashing techniques to verify data integrity,
which significantly reduces the computation overhead.
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