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Motivation and System Model

e Issues of Current Blockchain System: e Challenges: 1 © Synchronize |
—Every node keeps a full replication of transaction —Transaction contains arbitrary logic = A
history and ledger states. = Novel proof techniques to ensure integrity of transaction execution . M; S T P - t © Vi & sopend o ledger
—Every node needs to validate each transaction in —Transaction introduces arbitrary sized read/write set © Send TX © Fxcoue TX é " I -y "
block. = Extra design to support on-chain commitment updates e e e EE—
— High storage (ETH full node: 870GB) and execution —Transaction should be processed 1n parallel % Smidtzt — © validate & append to ledger
overhead. = New method for validating and committing concurrent transactions i), | *‘%:éf* M i . Nodes 1
* Stateless design: * Transaction Processing Workftlow: Clom zo o TXE O ree™ S ?Bdt { o e & ppend o g .
—Move ledger states and transaction executions off- @ Send TX @ Verifiable TX execution €@ Broadcast S SRR E C IR
chain to a subset of nodes. @ Validate & append to ledger @ Synchronize
— Reduce the on-chain load. Fig. I+ System Model
Off-chain Transaction Execution Node Synchronization
* Inside TEE: * Block Observer
— Generate the read/write set {7}, , {w}, w.r.t. the current state Hypq. — Validate and log blocks created by the block proposers.
— Get the read set Merkle proof 7eaq and verify 1t w.r.t. {T}ta:’ — Compress i+ to reduce network transmission.
— Compute the TEE proof mregg wort. {7}, . {w}, , Hog. « Storage Node
* Outside TEE: — Execute the similar procedure as on-chain transaction commitment.
—Get the write set Merkle proof myite. — Keep transaction data and state data.
* Broadcast {Tsupmit = (¢ Tinputs {7}z 10} Holds TTEE, Twrite): — Maintain full Merkle tree instead of partial tree 7.
— mreg ensures the execution integrity and the read integrity.
—{r},.,{w},. ., Hog, Twrite provide enough information for
on-chain validation and commitment. .
Implementation
Storage Node @ Block Proposer +28 Block Observer
e Implement in Rust program language ShimChain
On-chain Transaction Commitment (LOC: 26,000). _ [T Exeoution [Block Popose [Block Synchroniaaton]
* Two consensus protocols are implemented: Off-chain State On-chain State
e Challenges: PoW., Raft. Consensus TX Engine
— How to update the state commitment without access to the full tree? e Source code is available at Low-level Modules
— How to check conflict among transactions and ensure serializability? https://git.io/slimchain. Storage  Merkle Trie  Network  SGX Enclave

e Our Solution: Keep track of temp state of recent £ blocks.
Fig. 3: System Architecture of SlimChain

—T.,: apartial Merkle tree w.r.t. the write set in the past £ blocks.
- M, ., M;_.,,: map between block height to read, write addresses.

- M, .;, M, .;: map between read, write addresses to an ordered list of block heights. .
Performance Evaluation

* Procedure:
— Discard TX is older than recent &k blocks. Classic = _ Stateful - Classic = Stateful = Slimchain =
. abrict imchain =3 | | | | |
— Validate m1eg, Twrite- 20K | | | |
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— Check conflict of {r}, ,{w},..

o OCC: Check whether other committed transactions have modified the data that the
current transaction accessed.
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o SSI: Check write-write conflict and whether there are rw-dependencies both pointing
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to and originating from the current transaction. DN CPU IO DN CPU 10 KV  SB
_ Update ledger state commitment over 7:0 and generate new block. (a) Smart Contract (Permissioned) (b) Smart Contract (Permissionless)
o Update 7, take the Merkle proof e and write set {w},, to apply the writes from Fig. 4: Consensus Node Storage Size (B/tx) vs. Smart Contract
the transaction.
. . . Classic mm Stateful == Classic = SlimChain —
o Tidy 7,,: remove the write addresses whose age is more than & blocks. Fabog 3 Sloohain o S S = ol m
28 T1oag | | Stateful — wait-prop 0 net+raft =
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Example of Transaction Commitment S 600 (e | ot | ] g |, e s ,la
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TX List {txl} {th} {tX3,tX4} txq {1@} {@1 :02} H99 Hygo 0 | 1 I—@ 1'_L-
M, 100: {10} 100: {10}, 101: {10} 101: {10}, 102: {00, 10} B, {10} {0005} Hoo [HlleTiIUeT: |_- Fig. 5: Throughput/Latency vs. Smart Contract (Permissioned)
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Fig. 2: Example of Transaction Commitment Fig. 6: Throughput/Latency vs. Smart Contract (Permissionless)


https://git.io/slimchain

