SLIMCHAIN: ScALING BLoCKCHAIN TRANSACTIONS THROUGH OFF-CHAIN STORAGE AND
PARALLEL PROCESSING

Cheng Xu'?, Ce Zhang?, Jianliang Xu?, and Jian Pei'

!Simon Fraser University, Canada “Hong Kong Baptist University, Hong Kong
{chengxu, cezhang, xujl}@comp.hkbu.edu.hk jpei@cs.sftu.ca

Motivation and System Model

e Issues of Current Blockchain System: e Challenges: 1 © Synchronize |
—Every node keeps a full replication of transaction —Transaction contains arbitrary logic = A
history and ledger states. = Novel proof techniques to ensure integrity of transaction execution . M; S T P - t © Vi & sopend o ledger
—Every node needs to validate each transaction in —Transaction introduces arbitrary sized read/write set © Send TX © Fxcoue TX é " I -y "
block. = Extra design to support on-chain commitment updates e e e EE—
— High storage (ETH full node: 870GB) and execution —Transaction should be processed 1n parallel % Smidtzt — © validate & append to ledger
overhead. = New method for validating and committing concurrent transactions i), | *‘%:éf* M i . Nodes 1
* Stateless design: * Transaction Processing Workftlow: Clom zo o TXE O ree™ S ?Bdt { o e & ppend o g .
—Move ledger states and transaction executions off- @ Send TX @ Verifiable TX execution €@ Broadcast S SRR E C IR
chain to a subset of nodes. @ Validate & append to ledger @ Synchronize
— Reduce the on-chain load. Fig. I+ System Model
Off-chain Transaction Execution Node Synchronization
* Inside TEE: * Block Observer
— Generate the read/write set {7}, , {w}, w.r.t. the current state Hypq. — Validate and log blocks created by the block proposers.
— Get the read set Merkle proof 7eaq and verify 1t w.r.t. {T}ta:’ — Compress i+ to reduce network transmission.
— Compute the TEE proof mregg wort. {7}, . {w}, , Hog. « Storage Node
* Outside TEE: — Execute the similar procedure as on-chain transaction commitment.
—Get the write set Merkle proof myite. — Keep transaction data and state data.
* Broadcast {Tsupmit = (¢ Tinputs {7}z 10} Holds TTEE, Twrite): — Maintain full Merkle tree instead of partial tree 7.
— mreg ensures the execution integrity and the read integrity.
—{r},.,{w},. ., Hog, Twrite provide enough information for
on-chain validation and commitment. .
Implementation
Storage Node @ Block Proposer +28 Block Observer
e Implement in Rust program language ShimChain
On-chain Transaction Commitment (LOC: 26,000). _ [T Exeoution [Block Popose [Block Synchroniaaton]
* Two consensus protocols are implemented: Off-chain State On-chain State
e Challenges: PoW., Raft. Consensus TX Engine
— How to update the state commitment without access to the full tree? e Source code is available at Low-level Modules
— How to check conflict among transactions and ensure serializability? https://git.io/slimchain. Storage Merkle Trie Network SGX Enclave

e Our Solution: Keep track of temp state of recent £ blocks.
Fig. 3: System Architecture of SlimChain

—T.,: apartial Merkle tree w.r.t. the write set in the past £ blocks.
- M, ., M;_.,,: map between block height to read, write addresses.

- M, .;, M, .;: map between read, write addresses to an ordered list of block heights. .
Performance Evaluation

* Procedure:
— Discard TX is older than recent &k blocks. Classic = _ Stateful - Classic = Stateful = Slimchain =
. abrict imchain =3 | | | | |
— Validate m1eg, Twrite- 20K | | | |

15.0k

o
A\
|

15.2k

o
A
|
|

— Check conflict of {r}, ,{w},..

o OCC: Check whether other committed transactions have modified the data that the
current transaction accessed.

10.9k
10.9k 09

| 8.7k

9.2k
5.1k g 51K 3.8k Ij%)k Iégk) | 5.0k 5.1k
) 5 5 4 3 3k 3k
ﬁas Iﬁb‘s 65 65 65 0 &63 @63
KV SB

OO
e

N
{ -

.0k

X
R

2K

)

A
)
A

Storage Size (B/tx)
S
=
&

Storage Size (B/tx)
o
~

OO
SRR

VAN

o SSI: Check write-write conflict and whether there are rw-dependencies both pointing

AV
0

163 63 63
. . 0 '
to and originating from the current transaction. DN CPU IO DN CPU 10 KV SB
_ Update ledger state commitment over 7:0 and generate new block. (a) Smart Contract (Permissioned) (b) Smart Contract (Permissionless)
o Update 7, take the Merkle proof e and write set {w},, to apply the writes from Fig. 4: Consensus Node Storage Size (B/tx) vs. Smart Contract
the transaction.
. . . Classic mm Stateful == Classic = SlimChain —
o Tidy 7,,: remove the write addresses whose age is more than & blocks. Fabog 3 Sloohain o S S = ol m
28 T1oag | | Stateful — wait-prop 0 net+raft =
— 1277 422 | | | | |
_.8— 1200 987 1022] 10 L 9.
§_ 900 799 685 75 ssé_ ‘Ui 81 6
- (@) =
- - AN i 56 i c 6 K
Example of Transaction Commitment S 600 (e | ot |] g |, e s ,la
< 300 | - = - 8
= 111 12 2 B
Consensus Node Temporary States Transactions 0 DN CPU To) KV SB 0
Block Height 100 101 102 rex Wex Holg Twrite (a) Smart Contract (b) Smart Contract
TX List {txl} {th} {tX3,tX4} txq {1@} {@1 :02} H99 Hygo 0 | 1 I—@ 1'_L-
M, 100: {10} 100: {10}, 101: {10} 101: {10}, 102: {00, 10} B, {10} {0005} Hoo [HlleTiIUeT: |_- Fig. 5: Throughput/Latency vs. Smart Contract (Permissioned)
M., 100: {01} 100: {01}, 101: {00} 101: {00}, 102: {10, 11}
! 10} {10: H o a1 L
M, ; 10: {100} 10: {100, 101} 10: {101, 102}, 00: {102} o ey G0se) Heo (A =L m- Classic == Stateful =1 Slimchain =3 Classic — _exec J propose
Moo 01: {100} 00: {101}, 01: {100} ©0: {101}, 10: {102}, 11: {102} || ¥+ {@@} {11:07} Hioo |Hio [0 1] e rl‘- ' | | | | S”r?]tg;]e;iunl _ Waﬁﬁiﬂﬁﬁg g Va“dﬁteet %
Hroo Hion Hioo txs {00} {10:vs} Hioo [Fioo|-{o]1]Yo[7] D] Z 500 - g2 0 - 200 | 5@2 T 1505 |
AE o] o1 = 400 |- 342 o1] =]
Tw 01 01 o|1] [o]1 Compressed my,rite for blockigz é_ 29316 337 317 0 150 | % .
o] [@Re])] [i | | Eioof
Prefix: 1 Prefix: 1 Prefix: 1 8 200 | - GC) \l
= re 40.3
Hioo Hio1 Hip2 o1 + o |1 _ ol 1 IE 100 L s 92 10 1 3 50 | 26'228_3\27'2573\ 2.:95.3
Full Merkle Trie 0|1 0|1 0|1 ‘ - ‘ - 29 j@g@@g@
(in storage nodes) K K K o1 E E 0 0
EESE JEEE EERE N cPy 0 KV s NcRy 0
(a) Smart Contract (b) Smart Contract

Fig. 2: Example of Transaction Commitment Fig. 6: Throughput/Latency vs. Smart Contract (Permissionless)

https://git.io/slimchain

