
SlimChain: Scaling Blockchain Transactions through Off-Chain Storage and
Parallel Processing

Cheng Xu1,2, Ce Zhang2, Jianliang Xu2, and Jian Pei1

1Simon Fraser University, Canada 2Hong Kong Baptist University, Hong Kong
{chengxu, cezhang, xujl}@comp.hkbu.edu.hk jpei@cs.sfu.ca

SlimChain: Scaling Blockchain Transactions through Off-Chain Storage and
Parallel Processing

Cheng Xu1,2, Ce Zhang2, Jianliang Xu2, and Jian Pei1

1Simon Fraser University, Canada 2Hong Kong Baptist University, Hong Kong
{chengxu, cezhang, xujl}@comp.hkbu.edu.hk jpei@cs.sfu.ca

Motivation and System Model
• Issues of Current Blockchain System:

– Every node keeps a full replication of transaction
history and ledger states.

– Every node needs to validate each transaction in
block.

– High storage (ETH full node: 870GB) and execution
overhead.

• Stateless design:
– Move ledger states and transaction executions off-

chain to a subset of nodes.
– Reduce the on-chain load.

• Challenges:
– Transaction contains arbitrary logic
⇒ Novel proof techniques to ensure integrity of transaction execution

– Transaction introduces arbitrary sized read/write set
⇒ Extra design to support on-chain commitment updates

– Transaction should be processed in parallel
⇒ New method for validating and committing concurrent transactions

• Transaction Processing Workflow:
1 Send TX 2 Verifiable TX execution 3 Broadcast
4 Validate & append to ledger 5 Synchronize

Client 1

𝑡𝑥 input

Smart Contract

State Database

⟨{𝑟 }𝑡𝑥 , {𝑤 }𝑡𝑥 ,
𝐻old, 𝜋write,

𝜋TEE ⟩
2 Execute TX

Node 1

⟨𝑡𝑥input, 𝜎𝑡𝑥 ⟩
1 Send TX

Client 2

𝑡𝑥 input

Smart Contract

State Database

⟨{𝑟 }𝑡𝑥 , {𝑤 }𝑡𝑥 ,
𝐻old, 𝜋write,

𝜋TEE ⟩
2 Execute TX

Node 2

⟨𝑡𝑥input, 𝜎𝑡𝑥 ⟩
1 Send TX

Storage Nodes

4 Validate & append to ledger

Node 3

4 Validate & append to ledger

Node 4

4 Validate & append to ledger

Node 5

Consensus Nodes

3 Broadcast

5 Synchronize

1

Fig. 1: System Model

Off-chain Transaction Execution
• Inside TEE:

– Generate the read/write set {r}tx, {w}tx w.r.t. the current state Hold.
– Get the read set Merkle proof πread and verify it w.r.t. {r}tx.
– Compute the TEE proof πTEE w.r.t. {r}tx, {w}tx, Hold.

• Outside TEE:
– Get the write set Merkle proof πwrite.

• Broadcast txsubmit = ⟨txinput, {r}tx, {w}tx, Hold, πTEE, πwrite⟩:
– πTEE ensures the execution integrity and the read integrity.
– {r}tx, {w}tx, Hold, πwrite provide enough information for

on-chain validation and commitment.

On-chain Transaction Commitment
• Challenges:

– How to update the state commitment without access to the full tree?
– How to check conflict among transactions and ensure serializability?

• Our Solution: Keep track of temp state of recent k blocks.
– Tw: a partial Merkle tree w.r.t. the write set in the past k blocks.
–Mi 7→r,Mi 7→w: map between block height to read, write addresses.
–Mr 7→i,Mw 7→i: map between read, write addresses to an ordered list of block heights.

• Procedure:
– Discard TX is older than recent k blocks.
– Validate πTEE, πwrite.
– Check conflict of {r}tx, {w}tx.
◦OCC: Check whether other committed transactions have modified the data that the

current transaction accessed.
◦ SSI: Check write-write conflict and whether there are rw-dependencies both pointing

to and originating from the current transaction.
– Update ledger state commitment over Tw and generate new block.
◦Update Tw: take the Merkle proof πwrite and write set {w}tx to apply the writes from

the transaction.
◦Tidy Tw: remove the write addresses whose age is more than k blocks.

Example of Transaction Commitment

Block Height 100 101 102

TX List {𝑡𝑥1 } {𝑡𝑥2 } {𝑡𝑥3, 𝑡𝑥4 }
𝑴𝒊→𝒓 100: {10} 100: {10}, 101: {10} 101: {10}, 102: {00, 10}

𝑴𝒊→𝒘 100: {01} 100: {01}, 101: {00} 101: {00}, 102: {10, 11}

𝑴𝒓→𝒊 10: {100} 10: {100, 101} 10: {101, 102}, 00: {102}

𝑴𝒘→𝒊 01: {100} 00: {101}, 01: {100} 00: {101}, 10: {102}, 11: {102}

T𝒘

𝐻100

0 1

0 1 0 1

𝑣0 ℎ (𝑣2) 𝑣0 𝑣0

𝐻101

0 1

0 1 0 1

ℎ (𝑣5) ℎ (𝑣2) 𝑣0 𝑣0

𝐻102

0 1

0 1 0 1

ℎ (𝑣5) 𝑣0 ℎ (𝑣6) ℎ (𝑣7)

Full Merkle Trie
(in storage nodes)

𝐻100

0 1

0 1 0 1

𝑣1 𝑣2 𝑣3 𝑣4

𝐻101

0 1

0 1 0 1

𝑣5 𝑣2 𝑣3 𝑣4

𝐻102

0 1

0 1 0 1

𝑣5 𝑣2 𝑣6 𝑣7

Consensus Node Temporary States

𝒓 𝒕𝒙 𝒘𝒕𝒙 𝑯old 𝝅write

𝑡𝑥1 {10} {01 : 𝑣2 } 𝐻99 𝐻99 0 1 0 1 ℎ (𝑣0)

𝑡𝑥2 {10} {00 : 𝑣5 } 𝐻99 𝐻99 0 1 0 1 ℎ (𝑣1)

𝑡𝑥3 {10} {10 : 𝑣6 } 𝐻100 𝐻100 0 1 0 1 ℎ (𝑣3)

𝑡𝑥4 {00} {11 : 𝑣7 } 𝐻100 𝐻100 0 1 0 1 ℎ (𝑣4)

𝑡𝑥5 {00} {10 : 𝑣8 } 𝐻100 𝐻100 0 1 0 1 ℎ (𝑣3)

Transactions

Prefix: 1

0 1

ℎ (𝑣3)

+
Prefix: 1

0 1

ℎ (𝑣4)

⇒
Prefix: 1

0 1

ℎ (𝑣3) ℎ (𝑣4)

Compressed 𝜋write for block102

1

Fig. 2: Example of Transaction Commitment

Node Synchronization
• Block Observer

– Validate and log blocks created by the block proposers.
– Compress πwrite to reduce network transmission.

• Storage Node
– Execute the similar procedure as on-chain transaction commitment.
– Keep transaction data and state data.
– Maintain full Merkle tree instead of partial tree Tw.

Implementation
• Implement in Rust program language
(LOC: 26,000).

• Two consensus protocols are implemented:
PoW, Raft.

• Source code is available at
https://git.io/slimchain. Storage Merkle Trie Network SGX Enclave

Low-level Modules

TX Execution Block Propose Block Synchronization

Off-chain State On-chain State

Consensus TX Engine

SlimChain

Storage Node Block ObserverBlock ProposerTX

Block
Block

1

Fig. 3: System Architecture of SlimChain

Performance Evaluation

0

5K

10K

15K

20K

DN CPU IO KV SB

S
to

ra
g
e
 S

iz
e
 (

B
/t
x
)

(a) Smart Contract (Permissioned)

Classic
Fabric#

Stateful
Slimchain

5.1k 5.1k

15.2k

10.9k

9.2k

3.8k 3.8k

8.7k

6.0k
4.8k

3.1k 3.1k 3.5k 3.4k 3.3k

65 65 65 65 65
0

5K

10K

15K

20K

DN CPU IO KV SB

S
to

ra
g
e
 S

iz
e
 (

B
/t
x
)

(b) Smart Contract (Permissionless)

Classic Stateful Slimchain

5.0k 5.1k

15.0k

10.9k

9.2k

3.3k 3.3k

6.9k

5.0k
4.2k

63 63 63 63 63

Fig. 4: Consensus Node Storage Size (B/tx) vs. Smart Contract

0

300

600

900

1200

DN CPU IO KV SB

T
h
ro

u
g
h
p
u
t
(t

p
s
)

(a) Smart Contract

Classic
Fabric#

Stateful
Slimchain

790

111
188

387 413

1277
1221

562

753
858

489 487 465 440 462

1284 1259

685

987 1022

0

2

4

6

8

10

DN CPU IO KV SB

L
a
te

n
c
y
 (

s
)

(b) Smart Contract

 3.8

 5.2

 9.5
 9.0

 7.0

 2.2 2.2

 6.4

 3.7 3.4

 6.6

 8.1
 7.4 7.3

 8.2

 2.2 2.2

 3.8

 2.5 2.4

Classic
Fabric#
Stateful

SlimChain
exec

wait-prop

propose
validate
net+raft

Fig. 5: Throughput/Latency vs. Smart Contract (Permissioned)

0

100

200

300

400

500

DN CPU IO KV SB

T
h
ro

u
g
h
p
u
t
(t

p
s
)

(a) Smart Contract

Classic Stateful Slimchain

177

29
58

92 102

444 441

299
337

317

462 454

316
342

321

0

50

100

150

200

DN CPU IO KV SB

L
a
te

n
c
y
 (

s
)

(b) Smart Contract

40.3

160.2

84.4

26.2 27.5 32.0 31.4
20.028.3 27.3 35.3

23.9 21.8

Classic
Stateful

SlimChain

exec
wait-prop

mining

propose
validate

net

542.2 236.1

Fig. 6: Throughput/Latency vs. Smart Contract (Permissionless)

https://git.io/slimchain

