
Distributed kNN Query Authentication
Ce Zhang, Cheng Xu, Jianliang Xu, Byron Choi

Department of Computer Science, Hong Kong Baptist University, Hong Kong
{cezhang, chengxu, xujl, bchoi}@comp.hkbu.edu.hk

Abstract—With the prevalence of location-based services and
geo-functioned devices, the trend of spatial data outsourcing is
rising. In the data outsourcing scenario, result integrity must be
ensured by means of a query authentication scheme. However,
most of the existing studies are confined to a centralized envi-
ronment. In this paper, we investigate the query authentication
problem in distributed environments and focus on the k nearest
neighbor (kNN) query, which is widely used in spatial data
analytics. We design a new distributed spatial authenticated
data structure (ADS), distributed MR-tree, to facilitate efficient
kNN processing. Furthermore, we propose a basic algorithm
to process authenticated kNN queries based on the new ADS.
Apart from the results, some verification objects are generated
to guarantee the results’ integrity. We also design two optimized
algorithms to reduce the size of verification objects as well as the
verification cost. Our experiments validate the good performance
of the proposed techniques in terms of query cost, communication
overhead, and verification time.

Index Terms—kNN, Query Authentication, Distributed Sys-
tems

I. INTRODUCTION

The amount of spatial data has been increasing at an
exponential pace owing to the prevalence of geo-functioned
devices such as smartphones and IoT sensors. Querying the
huge spatial datasets for big data analytics is often out of the
computation capacity of a traditional data owner (DO). Mean-
while, it is normally unaffordable for a small- or medium-
business DO to maintain large datasets. As a remedy, database
outsourcing has been widely adopted to alleviate the DO’s
computation overhead and the maintenance cost [1]. More
specifically, a third-party service provider (SP) is employed
and the owner transfers the data and index to the SP. The
client sends queries to the SP, which processes the queries
and returns the results to the client on behalf of the DO.

However, the SP is out of the control of the DO and
the query results can be tampered with or incomplete. The
SP might want to reduce the computation resources and, as
a result, return only a subset of the results. The SP can
also be sponsored by the DO’s rivals and return fictitious
results so as to favor those sponsors. As such, the client
should verify the results’ soundness and completeness. The
soundness implies that all the results are originated from the
DO. The completeness means that none of the true results
are missing. To achieve this, there have been many works on
authenticated query processing [1]–[12]. The basic idea is that
the DO sends the authenticated data structure (ADS), along
with the outsourced data, to the SP. After receiving a query
from the client, the SP returns the query results as well as a

verification object (VO) for the client to verify the soundness
and completeness of results.

To date, most of the authenticated query processing studies
are confined to a centralized environment. Due to the large
amount of data, the SP can opt to store and process data in a
distributed framework. For example, systems such as Spatial
Hadoop [13] and Geospark [14] provide spatial queries based
on a cluster framework. Therefore, distributed spatial query
authentication should be developed to satisfy the SP’s guar-
antee of soundness and completeness. However, the challenge
is that the ADS should be designed to well fit the distributed
setting and facilitate distributed query processing. Moreover,
the VO size should be small enough so that the communication
overhead between the SP and the client is light and the client’s
verification time is short.

In this paper, we consider the distributed query authenti-
cation problem for kNN (k nearest neighbor) queries. We
propose a new distributed ADS, i.e., distributed MR-tree. It
has local and global layers and perfectly suits the distributed
master-slave system. After receiving a kNN query from the
client, the master node emits a message to some slaves, which
will process the query and generate the partial results and
VOs. The reducer then consolidates all the partial results as
well as the partial VOs and sends them to the client for result
verification. We also propose two optimized algorithms to
reduce the VO size. The two optimized algorithms spend more
query time in return for smaller VOs. The experiments show
that the optimized algorithms outperform the basic algorithm
in terms of the VO size and only sacrifice a little query cost.
Furthermore, it is demonstrated that the system scales well
with the node number in terms of the system throughput.

The paper’s contributions are summarized as follows:
• For the first time in the literature, we study the problem

of authenticated kNN query processing in a distributed
environment.

• We propose distributed MR-tree as an ADS to suit the
distributed query processing environment.

• We develop a basic algorithm and two optimization
techniques to efficiently process authenticated kNN
queries in a distributed fashion.

• We conduct extensive experiments to validate the per-
formance of the proposed techniques in terms of query
cost, communication overhead, and verification time.

The rest of this paper is organized as follows. In Section II,
we introduce the cryptographic primitives, spatial ADS, and
local authenticated kNN processing as the preliminaries. In
Section III, we show the design of the distributed MR-tree, the

basic algorithm to process the authenticated kNN queries, and
the client verification algorithm. Two optimized algorithms are
introduced in Section IV. Section V presents the experiment
results. The related work is discussed in Section VI. Finally,
Section VII concludes the paper.

II. PRELIMINARIES

A. Cryptographic Primitives

Hash Function: A one-way hash function H(·) transforms
an arbitrary message m to a fixed-length digest H(m). One-
way indicates that given a message m, the computation of
H(m) is easy. However, to get m from H(m) is computa-
tionally infeasible. In this paper, we use SHA-1 as the hash
function, which maps a given message to a 160-bit digest.

Digital Signature: The asymmetric signature is used to
verify the integrity of the data. The owner of data keeps a
secret key and publishes the corresponding public key to the
verifier. The owner signs the data using the secret key and
the verifier can decrypt the signature using the public key and
verify the integrity of the data. RSA is one of the popular
asymmetric signature algorithms.

H0 = h(H1|H2)

H1 = h(H3|H4)

H3 = h(d1)

d1

H4 = h(d2)

d2

H2 = h(H5|H6)

H5 = h(d3)

d3

H6 = h(d4)

d4

Fig. 1. Merkle Hash Tree

Merkle Hash Tree: A Merkle Hash Tree (MHT) [15] is
used to authenticate a series of data points. It is a binary tree
and is built in a bottom-up manner. Each leaf node of an
MHT stores the hash value of the corresponding data point.
The hash value of an internal node is the hash function of
the concatenation of its two child nodes’ hash values. The
root hash value is signed by the data owner. Given a data
point and its sibling hash values on the path from the root
to the object, the verifier can reconstruct the root hash value
and check whether it is the same as the decrypted signature.
If they match, the authenticity of the data point is assured.
Figure 1 shows a Merkle Hash Tree. We assume the query
is d2. The hash values of the grey nodes in Figure 1 are
added into the VO, which contains (H3,d2,H2). The client
can compute the root hash value by h(h(H3|h(d2))|H2) and
check its consistency with the decrypted signature. Here h(·)
denotes the hash function.

B. Spatial Authenticated Data Structure

MR-tree [3], which is the combination of the R-tree and the
Merkle Hash tree, is often used to process authenticated spatial
queries. Each leaf node stores the pointers pointing to the data

points and the hash value of the binary concatenation of the
data points. The hash value of an internal node is computed
by hashing the concatenation of each child node’s MBR and
hash value. We give an example based on Figure 2, which
depicts the data points and their corresponding MR-tree. The
leaf node N3’s hash value is H(a|b|c), where ‘|’ represents
the binary concatenation. The non-leaf node’s hash value
H(N1) = H(N3|H(N3)|N4|H(N4)). Here N3, N4 represent
the MBR of node N3 and N4, respectively. We only show three
hash values in Figure 2 and other hash values are computed
similarly.

C. Local Authenticated kNN Processing

There are mainly two different methods of authenticated
kNN processing based on the MR-tree. The algorithm pro-
posed by Yang et al. [3] mainly focuses on the authenticated
range query and transforms the kNN query to a range query.
The method separates the generation of the results and the
VO. It first retrieves kNN results by using any kNN search
method. Based on the k results, we can draw a circle centered
at the query point q with the radius of the distance between
q and the kth result. Then, the authenticated range query is
executed to generate the VO set. Another method is to generate
the results and the VO set together while traversing the whole
MR-tree. Su et al. [5] proposed the authentication of top-k
spatial keyword queries and we can transform this query to
the authenticated kNN query easily. Algorithm 1 shows the
procedure of generating the VO and results altogether.

Algorithm 1 Local Authenticated kNN Query
Input k, Point q, Root of MR-tree
Output RS, V O

1: RS = ∅ ; counter = 0;
2: V O = (’[’, each root entry Ri, Ri.hash, ’]’)
3: PQ Enqueues each Root entry Ri;
4: while counter < k && PQ 6= ∅ do
5: Dequeue priority queue PQ and get object
6: if object is an MBR Ri then
7: Enqueue each Rj or Oj in Ri’s child node into

PQ
8: Replace Ri, Ri.hash with ’[’, each Rj ,Rj .hash (or

Oj) in Ri’s child node, and ’]’ in V O
9: else

10: RS.add(Oi)
11: counter++
12: end if
13: end while
14: return (RS, V O)

The algorithm traverses the MR-tree in a best first search
manner [16]. We maintain a priority queue PQ. In the while
loop, the current nearest object to the point q is dequeued
from the priority queue PQ. If the object is a node rather
than a data point, each of its child node Rj will be enqueued
to the PQ. Otherwise, the object is added to the result set
because it is a point. The while loop terminates until k results

N1

N3

a

b
c

N4
d

e

f

N2N5

g
h

i
N6

j

k
l

Q

(a) (b)

Fig. 2. Local authenticated kNN processing

are collected or the PQ is empty. The VO set changes along
with the expansion of the object. The sign marks ’[’ and ’]’
are used to decide the scope of entries in a node and they can
help the client reconstruct the root hash value. The VO set is
initialized with ’[’, each root entry Ri, Ri.hash, and ’]’. When
the object is dequeued from the PQ, we replace Ri, Ri.hash
with ’[’, each Rj and Rj .hash (or Oj) in Ri’s child node, and
’]’.

We give an example of the local authenticated kNN pro-
cessing using Figure 2. Assume that k=2 and the red point
Q is the query point. At first, the PQ contains N1, N2

and the V O is [[N1,H(N1)], [N2,H(N2)]]. Next, N1 is
removed and N3, N4 are added into the PQ. The V O changes
to [[[N3,H(N3)],[N4,H(N4)]],[N2,H(N2)]. Finally, points c
and b are computed as the results and the V O updates to
[[[a,b,c],[N4,H(N4)]],[N2,H(N2)]]. The grey nodes in Figure
2(b) are included in the V O. We omit the client verification
part here as we will illustrate the verification for the distributed
kNN authentication in Section III-D.

III. DISTRIBUTED KNN AUTHENTICATION

A. Problem Formulation

There are three parties in our system: the data owner (DO),
the third-party distributed service provider (SP), and the client.
The DO builds the ADS and signs the ADS to ensure the
integrity of the data. The ADS and the signature are then
sent to the SP. The distributed SP provides the service of
storage and query processing. Since the SP is configured in a
distributed environment, it consists of several types of nodes:
Master, Slave, and Reducer. The Master node in the SP is
mainly responsible for dispatching jobs to the corresponding
slaves. The Slave nodes are the workers, which process the
actual queries. The Reducer consolidates all the partial results
as well as the VOs computed by the Slaves and sends them
to the client. Finally, the client can verify the soundness and
completeness of the results by using the VO, the DO’s public
key, and the root signature sent by the SP.
Threat Model In this system, we consider the DO as the

trusted party. The SP is untrusted and can return incorrect

results. Given the whole dataset D, the client’s query point q,
and the parameter k, the SP returns several results. If the result
number does not match the value k, the client can find that
some results are missing. Suppose Rk = {r1, r2, ..., rk} are
the k true kNN results. The SP can (1) return a point p and p /∈
D; (2) return a point p ∈ D but dist(q, p) > dist(q, rk),where
dist(·, ·) denotes the Euclidean distance. The first and second
cases violate the soundness and completeness conditions,
respectively.

The system’s performance can be measured in these metrics:
(1) ADS construction time; (2) query processing cost; (3)
client’s verification time; (4) VO size. We assume that there is
no data update in this system. Therefore, the ADS construction
is a one-off operation by the DO and the cost can be amortized
by the queries. The VO size can influence the communication
overhead between the SP and the client as well as the time
of client’s verification. Therefore, the VO size should be
minimized.

B. Distributed MR-Tree

To adapt the MR-tree index structure to the distributed
environment, the index structure has two layers: the local
index and the global index. The DO first employs the Grid
partition or the Sort-Tile-Recursive [17] method to partition
the entire dataset into several splits. These methods guarantee
that there is no overlap between any two partitions’ minimum
bounding rectangles (MBRs). Thanks to this non-overlapping
characteristic, only a few partitions are used to process the
kNN query, which saves the computation resources. The local
indexes are constructed using the data points in each partition.
The global index is then constructed, and it contains each local
MR-tree’s root MBR and, root hash value, and the pointers
towards each local index. After the construction of the index
structure, the DO signs the root node of the global index using
the private key. Then, the signature and the entire index will
be sent to the SP. The Master of the SP is responsible for
dispatching the local indexes to the Slaves according to the
current workload of the distributed system. Since the global
index is small, it will be stored in the main memory of all the

N1
N2

N3

N4

N5
N6

N7 N8

a

b

c
d

e
f

g

h
i

j

k

l

m

n

o

p

q

r

G3 G4

G1 G2

(a) (b)

Fig. 3. Data points and index

nodes, which can speed up the kNN query processing. Figure
3(a) shows the four partitions using the Grid partition method.
Figure 3(b) depicts the entire structure of distributed MR-tree.
In each partition, the data points are used to build a local MR-
tree. We use N1, N2, N3 and N4 to represent the four local
indexes. The global index is a directory table and can prune
the search space.

C. Authenticating Distributed kNN Query Processing

For easy illustration, we first give some definitions, which
will be used in the authenticating distributed kNN query
processing.

Definition 1: Given a query point q and a set of local
MR-trees T={T1, T2, ... , Tn}, Ti is a home index if
dist(q, Ti.MBR) < dist(q, Tj .MBR) where i, j ∈ [1..n]
and j 6= i. Here the dist(·, ·) denotes the minimum distance
between a point and a rectangle.

Definition 2: Given a query point q and a set of current
partial kNN results {r1, r2, ..., rk}, a rcircle is a circle centered
at q with the radius of dist(q, rk). Here the dist(·, ·) denotes
the Euclidean distance.

Definition 3: Given a rcircle and a set of local MR-trees
T={T1, T2, ... , Tn}, CT is a set of candidate trees if CT ⊆
T and for each CTi ∈ CT , CTi.MBR ∩ rcircle 6= ∅ and
CTi 6=home index.

Definition 4: Given a set of slave nodes Slaves = {Slave1,
..., Slaven}, a home slave HSlave ∈ Slaves is the slave
which stores the home index. And a set of candidate slaves
CSlaves ⊆ Slaves are the set of slaves which stores
candidate trees CT.

Definition 5: We define the VO computed by HSlave is
hV O; the VO computed by CSlaves is cV O; the VO of non-
processed slaves is nV O.

Definition 6: We define the results computed by HSlave are
in {rsh}; the results computed by CSlaves are in {rsc}.

We assume that in the distributed system, queries are
executed by the slaves who store the corresponding local
indexes. For example, since the HSlave stores the home index,

the first local kNN query should be sent to the HSlave by
the Master and the HSlave will execute the query locally.

Fig. 4. Framework of distributed authenticated kNN query

Our query authentication framework consists of three main
procedures: (1) the HSlave processes the local authenticated
kNN query to compute {rsh} and hV O; (2) CSlaves process
additional range queries to compute {rsc} and the cV O; (3)
the Reducer finally selects the k nearest results from the
partial results and generates the overall VO. Figure 4 depicts
the overview of the basic distributed kNN query processing.

The main objective is to use a small amount of partitions
to compute the correct kNN results as well as the VO. The
non-overlapping characteristic of the partition method prunes
some local indexes, which saves the computation resources.
The HSlave first finds the local kNN results in the home
index which contains the correct results in a high probability.
However, if there are some other points which are closer
than the ones in {rsh}, CSlaves need to process extra range
queries to find the correct results. The rcircle is used to check
whether CSlaves should process the extra queries. Algorithm
2 summarizes the procedure of the Master node and the
Reducer node. The procedure of the HSlave and the CSlave
is omitted because they simply compute the local queries and
send the partial VO and results to the Reducer.

After receiving the kNN query from the client, the Master
locates the home index and sends the kNN query request to

N1
N2

N3

N4

N5
N6

N7 N8

a
b

c
d

e
f

g

h
i

j

k

l

m

n

o

p

q

r

Q

G3 G4

G1 G2

(a) case 1

N1
N2

N3

N4

N5
N6

N7 N8

a

b

c
d

e
f

g

h
i

j

k

l

m

n

o

p

q

r

Q

G3 G4

G1 G2

(b) case 2

N1
N2

N3
N4

N5
N6

N7 N8

a

b

c
d

e
f

g

h
i

j

k

l

m

n

o

p

q

r

Q

G3 G4

G1 G2

(c) special case

Fig. 5. Three cases of kNN processing

Algorithm 2 Distributed Authenticated kNN Procedure
Master Procedure
Input k, Point q
Output kNN request, range query requests

1: Send kNN request to HSlave
2: Receive rcircle, decide CT list and CSlaves
3: if CT 6= ∅ then
4: Send range query with rcircle to the CSlaves
5: end if

Reducer Procedure
Input rsh, hV O, rcircle, rsc, cV O
Output RS, V O

1: Receive rsh, hV O, rcircle from HSlave
2: Compute CT list using rcircle and global index
3: if CT==∅ then
4: Add hV O and nV O to V O
5: Send rsh and V O to the Client
6: else
7: Receive {rsc} and cV O from CSlaves
8: Add k nearest results in rsc ∪ rsh to RS
9: Add hV O, cV O, nV O to V O

10: Send RS and V O to the Client
11: end if

the HSlave. The hV O, {rsh} and rcirlce will be computed
by HSlave using Algorithm 1 and are sent to the Reducer.
Also, the rcirlce is sent to the Master. Given the rcircle, the
candidate trees and the corresponding CSlaves are identified
(Definition 3 and 4) by the Master. When the CT list is not
empty, the rcircle is sent to the CSlaves by the Master.
Each of the CSlaves computes the local range query in
parallel. The Reducer consolidates rsh, {rsc}, hV O, cV O,
and nV O. Then, it selects k nearest results from the union of
{rsh} and {rsc}. The final VO list consists of hV O, cV O,
and nV O. The nV O can be derived using the global index
and the rcircle. If a local index’s MBR does not intersect

with the rcircle, the MBR and hash value of the index will
be added into nV O.

Figure 5 shows some cases of the distributed kNN pro-
cessing. In case 1, we assume that k equals 3 and Q is
the query point. According to Definition 1, the home index
is N2. Then the Master sends the kNN request to the
corresponding HSlave. The {rsh} includes {b,c,a} and the
hV O is {[[a,b,c], [N8,H(N8)]]}. Since the rcircle has no
intersection with other local tree’s MBR, the CT list is
empty. The non-processed VO set nV O is {[N1,H(N1)],
[N3,H(N3)], [N4,H(N4)]}. Finally, the Reducer sends the
union of hV O and nV O and the results to the client.

In case 2, we assume that k equals 4. The query point
Q locates in N2. The corresponding HSlave computes the
rsh = {b, c, a, e} and also the hV O={[[a,b,c],[d,e,f]]}. The
radius of rcircle is the distance between Q and point e.
Using the global index and rcircle, the Master node finds
the CT = {N1, N4} and sends the range query requests to
the CSlaves. The two local result sets {rsc}N1

= {g, h, i}
and {rsc}N4

= {p} are computed by each CSlave. Mean-
while, cV O={[[N5,H(N5)],[g,h,i]],[p,q,r]} is computed. The
Reducer selects the 4 nearest result points from the union
of partial results and the final result set is RS = {b, c, a, i}.
The local tree N3 does not intersect with the rcircle, so that
[N3,H(N3)] will be added to the nV O. The final VO consists
of hV O, cV O, and nV O.

There is a special case of the distributed kNN processing
when the number of data points in a partition is less than k. A
skewed distribution of data points may lead to this case. The
previous algorithm cannot compute the correct kNN results.
In this case, we double the radius of the rcircle and process
the range query iteratively. The Reducer checks the result
number and sends the message to the Master if the result
number is less than k. The Master doubles the rcircle′s
radius and the new rcircle is sent to the updated CSlaves.
This process runs iteratively until the result number exceeds
k. Figure 5(c) illustrates the special case. Assume that k is 4
and Q is the query point. N3 is the home index. During the

third iteration, we find 8 points and the iteration terminates.
Finally, the Reducer selects 4 nearest points and returns the
final RS and V O to the client. In this special case, the VO size
is rather large since the radius of rcircle grows exponentially.
To avoid this case, in our experiments we use the Sort-Tile-
Recursive (STR) [17] partition method to split the dataset. The
STR partition splits the near data points in the same partition
and each partition has nearly the same number of data points.

D. Client Verification

The client uses the VO to verify the results’ soundness and
completeness. The soundness is verified first by reconstructing
the root hash value of the distributed MR-tree. The root hash
value is the hash value of the concatenation of each local
tree’s MBR and hash value. If the reconstructed hash value
matches the root hash decrypted by the public key of the DO,
the soundness is satisfied. The completeness can be verified
in the following method. All of the data points and MBRs are
extracted from the VO set and the client selects the first k
nearest data points and compares them with the RS. If they
match, it means that no other points are closer than the RS
data points. Also, all of the MBRs must be farther than the
kth result point. Algorithm 3 summarizes the procedure of
client’s verification.

Algorithm 3 Client Verification
Input k, Point q, RS, V O
Output Boolean

1: DOroot = decryptedByPublicKey(sig)
2: root = reconstruct(V O)
3: if DOroot 6= root then
4: return False;
5: end if
6: Extract datapoints and MBRs from V O and put them into

rs, mbr list
7: Sort rs by distance to q
8: for i = [1 : k] do
9: if RS[i] 6= rs[i] then

10: return False
11: end if
12: end for
13: for obj in mbr do
14: if dist(q, kobj[k]) > dist(q, obj) then
15: return False
16: end if
17: end for

Take Figure 5(b) as an example. The overall VO consists
of hV O={[[a,b,c], [d,e,f]]}, cV O={[[N5,H(N5)], [g,h,i]],
[p,q,r]} and nV O = {[N3, H(N3)]}. The client can recom-
pute N2 using hV O. N7, N8 as well as their corresponding
hash values are derived by {a,b,c} and {d,e,f}, respectively.
H(N7) is the hash value of the concatenation of points a, b,
and c. Similarly, H(N8) can be computed. N2 and H(N2)
are generated by N7, N8, and their hash values. Points g, h,
and i are used to compute N6 and H(N6). N1 with its hash

value can be derived by N5, N6, and their hash values. N4 and
H(N4) are computed using points p, q, and r in cV O. The
N3 and H(N3) are given in nV O. Therefore, the root hash
value is computed using four local MR-trees’ root hash values
and MBRs. After that, the data points and MBRs are extracted
from the union of VO. The correct results are {b,c,a,i} and
all of the non-result points will be checked whether they are
closer than point i. Meanwhile, the MBR of N5 and N3 are
checked whether they are farther from point i.

E. Robustness Analysis

Lemma 1: If there is no need to invoke the range queries
(CT = ∅), the local kNN result rsh will be the final correct
results.

Proof: This can be proved by contradiction. If there is
a point p which is one of the correct kNN results but not
included in the local kNN result, it is either inside or outside
the partition. If it is inside the partition, it should be outside
the rcircle since all of the points in the rcirlce are added into
rsh. There are k points inside the rcircle, so p must be at least
(k + 1)th nearest point. This contradicts the assumption that
it is one of the correct results. If it is outside the partition, as
there is no intersection among the partitions, it must be farther
than the current kth result and this contradicts the correct result
assumption.

Lemma 2: All of the correct kNN results must reside in the
rcircle.

Proof: This can be proved by contradiction. Suppose
there is a correct kNN result p which resides outside the
rcircle. The radius of rcircle is computed by the distance
between the kth current nearest point and the query point.
There are at least k data points inside the rcircle because
apart from the k local results, there are probably some points
in other partitions that are closer than the current kth point.
Since p is outside the rcircle, it is at least the (k+1)th nearest
point, which contradicts the assumption.

Theorem 1: Algorithm 2 can produce the correct result set.
Proof: This can be proved using Lemmas 1 and 2.

Algorithm 3 summarizes the procedure of client verifica-
tion. The root hash reconstruction guarantees the soundness
of the results and the distance comparison protects the
completeness. We give the following theorem of its correct-
ness of verification.

Theorem 2: Algorithm 3 verifies the soundness and
completeness of the results and can detect the threats men-
tioned in Section III-A.

Proof: If the adversary returns a fictitious point, which is
not included in the dataset, the reconstructed root hash must be
different from the decrypted hash value received from the SP
because of the collision-resistance characteristic of the hash
function. If one data point changes, its corresponding hash
value will be different, resulting in the change of the root
hash value of MR-tree. Without knowing the secret key, the SP
cannot generate a valid signature of the wrong root hash value,
which means that the signature is unforgeable. Therefore, the
violation of soundness can be detected. If the reconstructed

hash value matches the one decrypted, the incorrect result
point must reside in the VO set but farther than the correct
results. After the client sorts all the data points in the VO
set by distance and gets the first k nearest points, the client
can notice the difference between k points extracted from the
VO and the points in RS. Then the results cannot pass the
verification of the completeness.

IV. OPTIMIZATION OF VO SIZE

The VO size determines the communication cost and also
the client verification time. In this section, we focus on the
optimization of the VO size. Intuitively, the rcircle decides the
VO size. A larger rcircle makes more nodes to be visited and
hence and more data points to be added to the VO. Therefore,
the objective is to reduce the radius of the rcircle. As we
can see in Figure 5(b), the rcircle is much bigger than the
circle with the radius of the distance between Q and point i.
This is because the distance between Q and e is larger than
the distance between Q and i. In Algorithm 2, the rcircle is
decided by the local results in home index and will not change
during the whole procedure. To compute the minimum rcircle,
the optimized algorithm adds the sequential computation of
the rcircle before the parallel authenticated range query in
Algorithm 2.

Algorithm 4 VO Optimization Algorithm
Master Procedure
Input k, Point q
Output kNN request, range query requests

1: Send kNN request to HSlave
2: Receive rcircle
3: Compute CT list and decide CSlaves
4: if CT 6= ∅ then
5: Sort CT list with minimum distance
6: for i = 1; i ≤ |CT |; i++ do
7: if !rcircle.intersects CT [i].MBR then
8: break
9: end if

10: Send rcircle to CSlave[i]
11: Receive rsc and rsh+ = rsc
12: Select kth nearest point kobj in rsh
13: Update rcircle’s radius with dist(kobj, q)
14: end for
15: Recompute CSlaves using final rcirclef
16: Send rcirclef to HSlave and CSlaves
17: end if

Algorithm 4 summarizes the procedure of the Master
node. The procedure of slaves is omitted because they simply
compute the partial results and VOs. First, the Master sends
the kNN request to the HSlave and uses the received rcircle
to decide the candidate tree list CT and CSlaves. If the
CT list is not empty, the Master sequentially updates the
rcircle. Since the closer local indexes have the kNN results
in a higher probability, the CT list is sorted with the minimum
distance. In the for loop in Algorithm 4, the rcircle will be

sequentially sent to each CSlave and the rsc will be added
into rsh to find the current kth nearest point kobj, which is
used to update the rcircle. Note that the for loop terminates
immediately when the updated rcircle does not intersect with
the CT [i].MBR. This prunes some search space and improves
the performance. The CSlaves list is recomputed after the
computation of the final rcircle. Since the rcircle changes,
the rsh and hV O are recomputed. Also, the Reducer should
discard the previously received rsh and hV O when it finds
that CT list is not empty. The Master sends the rcirclef
to the HSlave and the CSlaves, which compute the range
query and VOs in parallel. The Reducer receives all kinds of
results and V Os from the Slaves. Then it selects k nearest
results and adds them to the RS list. The nV O is also added
into the V O. Finally, the RS and V O are sent to the Client.

Figure 6 shows an example of the VO optimization. We
assume that k = 4 and the query point Q lies in N2. The
home index is N2 and the ordered CT list is {N1,N4}.
The outer dashed circle is the initial rcircle computed us-
ing the {rsh}. The hV O is {[[a,b,c],[d,e,f]]}. Then the
range query will be processed on N1 first. The result of
the range query rsc is {g, h, i}. The Master next finds
the point i, which is the 4th result in the union of {rsc}
and {rsh}. The rcircle will be updated to the smaller
dashed circle in Figure 6. Since the updated rcircle does
not intersect with the next local index N4 in the CT list,
the for loop terminates. The CT list and the CSlaves are
recomputed. The rcirclef will be sent to the HSlave and
CSlave storing N2 and N1, respectively. The Reducer re-
ceives rsh={a,b,c}, hV O=[[a,b,c][N8,H(N8)]], rsc={i}, and
cV O=[[N5,H(N5)][g,h,i]]. The final results contain {b,c,a,i}.
The nV O contains [N3,H(N3)] and [N4,H(N4)]. The up-
dated rcircle avoids the visit of local index N4 and also
the subtree N8. Therefore the VO size is reduced by this
algorithm.

N1
N2

N3

N4

N5
N6

N7 N8

a
b

c
d

e
f

g

h
i

j

k

l

m

n

o

p

q

r

Q

G3 G4

G1 G2

Fig. 6. Example of optimization of VO size

In Algorithm 4, the rcircle is updated iteratively in the for
loop. The definition of the rcircle remains to be the same. As
such, the correctness of results and VO generation can still be
proved using Lemmas 1 and 2.

Obviously, Algorithm 4 spends more time than Algorithm

2 in query processing because of the sequential update of
rcircle. If the |CT | is large, the sequential update consumes
too much time. Therefore, we design a hybrid algorithm,
in which the rcircle is updated only for l times, where
1 ≤ l ≤ |CT |. Here the value l denotes the level of sequential
processing. After l sequential queries, we resort to Algorithm
2 for parallel processing of distributed authentication. The
hybrid algorithm uses less range queries to find the optimized
rcircle and it balances the trade-off between the VO size and
the query time. Note that if the |CT | equals one, the hybrid
algorithm and the optimized algorithm are the same because
there is only one update of the rcircle.

V. PERFORMANCE EVALUATION

This section evaluates the proposed distributed query au-
thentication algorithm and optimization techniques. We per-
form the query evaluation on a computer with Dual 6-core
Intel Xeon E5-2620 2.4GHz CPU with 128G RAM. The SP
runs on Apache Spark platform locally and we set the slaves
(workers) to be 8 in the system. The DO side is set up on
a desktop computer with Intel Core i7 CPU and 4GB RAM,
running Linux. The dataset of all of the experiments is a New
York map file from OpenStreetMap containing 11.56 million
data points. We assume that there is no update of the dataset
since the bulk loading of ADS construction is quite efficient.
Therefore, we employ bulk-loaded STR-tree as our R-tree,
which is implemented in JAVA. Moreover, we select the STR
as the partition method. The fan-out of the MR-tree is set to
100. The hash function is 160bit SHA-1 and we use 1024-bit
RSA algorithm to sign the root hash value. Both SHA-1 and
RSA are imported from the java.security package. The index
construction, query processing time, result verification time,
and VO size are measured.

A. Cost of Index Construction

 0

 5

 10

 15

 20

 25

 30

 1.28 3.84 6.4 8.96 11.52

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

cardinality (millions)

MR−tree
R−tree

(a)

Fig. 7. DO’s construction time

Figure 7 shows the DO’s construction time of the MR-tree
as well as the R-tree for comparison. The construction time
grows linearly with the increasing cardinality. It takes less
than half a minute to construct 11.52 million records, which
is acceptable. The construction of ADS is a one-time process
and further queries can amortize its cost. The construction time
of MR-tree is around 20% longer than that of R-tree. This
is because building the MR-tree involves the computation of

hash values and binary concatenation. Table I shows the index
size with different dataset cardinalities. When the cardinality
is 11.52 million, the size of MR-tree is only 4 MB larger than
the R-tree. The reason is that the SHA-1 hash value is only
160 bit, which is rather small. As a result, it takes the DO and
the SP only a few MB to store the extra authenticated data
structure.

TABLE I
THE SIZE OF INDEX WITH DIFFERENT CARDINALITIES

Cardinality (Million) 1.28 3.84 6.4 8.96 11.52
MR-tree (MB) 69.8 209.4 349 488.6 628.2
R-tree (MB) 69.4 208.2 347 485.8 624.6

B. Distributed Authenticated kNN Query Cost

In this section, we evaluate the query cost of distributed
authenticated kNN queries. The selection of the query point
influences the query cost in our distributed setting. We call a
kNN query as an ERQ if the CT 6= ∅ during its processing.
If the query point is near the center of the partition’s MBR
and also the k is rather smaller, the query can be an ERQ in a
small probability. However, if the query point is near the edge
of the partition’s MBR, even the k is small, it can be an ERQ
in a higher probability. The range queries in an ERQ take
more time. To test the average performance of the query cost
with different k settings, we randomly select 1,000 data points
located in the root MBR of the entire dataset and average the
query time. We denote Algorithm 2 and Algorithm 4 as the
basic and optimized algorithm, respectively. We compare the
query cost performance of the basic, optimized, and hybrid
algorithm, where l is set to one for simplicity.

Figure 8(a) shows that the query cost increases with the k’s
growth. Intuitively, searching more points in a local MR-tree
takes longer time. Also, the number of ERQs increases with
the larger k and each ERQ takes more time. Table II shows
the number of ERQs in the 1,000 query points with increasing
k. Furthermore, the basic algorithm runs faster than the other
two optimized algorithms. The optimized algorithm and hybrid
algorithm run more range queries to reduce the rcircle and
this leads to more local query time. The hybrid algorithm
and optimized algorithm are the same when |CT | = 1, since
both of them run one range query to reduce the rcircle. The
efficiency of the hybrid algorithm is not obvious on average
because the number of cases of |CT | > 1 is much less than
the case of |CT | = 1 (see Table II).

TABLE II
ERQs IN THE 1000 QUERY POINTS

k 32 64 128 256 512 1024
|CT | = 1 38 44 51 59 77 88
|CT | = 2 0 0 1 1 2 3
|CT | = 3 0 0 0 0 1 2

total # ERQs 38 44 52 60 80 93

Figure 8(b) shows the average VO size with the three
algorithms. Both of the optimized and hybrid algorithm reduce

 0

 2

 4

 6

 8

 10

 12

 14

32 64 128 256 512 1024

Q
u
e
ry

 C
o
s
t(

m
s
)

k

basic
hybrid

optimized

(a) Query cost

 0

 50

 100

 150

 200

32 64 128 256 512 1024

V
O

 s
iz

e
(K

B
y
te

s
)

k

basic
hybrid

optimized

(b) VO size

 0

 5

 10

 15

 20

 25

 30

 35

32 64 128 256 512 1024

V
e
ri
fi
c
a
ti
o
n
 C

o
s
t(

m
s
)

k

basic
hybrid

optimized

(c) Verification cost

Fig. 8. Query authentication performance

the VO size. In most cases, the query is not an ERQ (see Table
II, there are only 93 ERQ queries out of the 1,000 queries
when k = 1, 024), which leads to the same VO size using the
basic and two optimized algorithms. When k reaches 1,024,
the basic algorithm outputs 174.32 KB VO on average and the
two optimized algorithms output 147.82 KB and 147.72 KB on
average, respectively. The curve of the hybrid and optimized
algorithm overlap heavily because of the limited number of
cases that |CT | > 1.

In order to compare the hybrid and optimized algorithm, we
set k = 1, 024 and choose three types of query points with
different |CT | from the previous selected 1000 queries and
evaluate the VO size and query cost. The rhyb is defined as
V Obasic−V Ohybrid

V Obasic
and ropt is similar. The tbas, thyb, and topt

represent the query cost of the three algorithms, respectively.
In Table III, both the optimized and hybrid algorithm output
smaller VO (rhyb > 0, ropt > 0) and take more query time
(thyb > tbas, topt > tbas), compared with the basic algorithm.
Moreover, the hybrid algorithm takes less query time (thyb ≤
topt) and outputs larger VO (rhyb ≤ ropt), compared to the
optimized algorithm.

TABLE III
COMPARISON OF ERQ WITH DIFFERENT |CT |

type rhyb ropt tbas(ms) thyb(ms) topt(ms)
|CT | = 1 14.1% 14.1% 14.19 18.78 18.8
|CT | = 2 30% 40.2% 16.62 19.38 23
|CT | = 3 32.5% 43.3% 16.7 21.08 25.9

Figure 8(c) shows the average client verification time. Since
the hybrid algorithm and the optimized algorithm output nearly
the same size of VO on average, the two curves overlap.
Obviously, the verification time is proportional to the VO size.
The reduction of verification time becomes more obvious when
k is larger and this corresponds to the reduction of VO size.
When k is larger, the number of points in the VO increases.
Also, each extra range query leads to visit of the corresponding
index and contributes to a larger VO. Therefore, the client
takes more time to reconstruct the root hash value of each
local index. To verify the completeness of the results, the
client should sort the results and also the points inside the VO.
Therefore, the total verification time increases with larger k.

Finally, we evaluate how the three algorithms scale out
with the slave node size varying from 2 to 8. The node size
influences the performance of parallel computing and also the
throughput of the system. If the number of slave nodes is
small, there will be more partitions (local indexes) distributed
into the same node, which leads to slower processing of the
range query due to the limited cores. We test the throughput
when k = 32 and k = 1, 024. The throughput is calculated as
the number of jobs completed per minute.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

n=2 n=4 n=8T
h

ro
u

g
h

p
u

t
(J

o
b

s
 p

e
r

m
in

u
te

)

node

basic
hybrid

optimized

(a) k = 32

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

n=2 n=4 n=8T
h

ro
u

g
h

p
u

t
(J

o
b

s
 p

e
r

m
in

u
te

)

node

basic
hybrid

optimized

(b) k = 1024

Fig. 9. Throughput with different nodes

Figure 9 shows the throughput of the three algorithms under
different node numbers. We can infer that the three algorithms
scale well with the node number. The throughput of the
hybrid and optimized algorithm is less than the throughput of
the basic algorithm since the two optimized algorithms need
more range queries to reduce the rcircle. The throughput of
the three algorithms has similar performance when k = 32,
because the ratio of ERQ is small. However, the throughput
of the basic algorithm is obviously higher than the throughput
of two optimized algorithms when k = 1, 024 since the ratio
of ERQ is higher and there are more cases of |CT | > 1.

VI. RELATED WORK

Authenticated query processing has been extensively inves-
tigated to verify the authenticity of the results computed by
the service provider in the data outsourcing scenario. The
Merkle Hash Tree (MHT), which is one of the important
ADSs, has been proposed in [15] to verify a series of data
points. By adding the signature chains as the authentication
information to the spatial data structure, Cheng et al. [6]
proposed VKDtree and VRtree to verify the results in multi-
dimensional databases. Yang et al. [3] combined the MHT

with the traditional spatial data structure R-tree and proposed
the MR-tree with its variant to efficiently verify the spatial
data. Cheng and Tan [2] extended the signature chain method
and proposed a kNN authentication mechanism on multi-
dimentional databases. A set of data pairs are returned to the
client apart from the k results to guarantee the authenticity
and the completeness.

More recently, moving kNN has been investigated by Yiu et
al. [4]. Hu et al. [18] embedded the Voronoi neighbor informa-
tion in the signature of the spatial datasets and proposed the
VN-Auth to verify kNN, range queries and other advanced
spatial queries. Hu et al. [10] addressed the preservation
of the location privacy while processing authenticated range
queries. Xu et al. [12] recently integrated the relational query
authentication with fine-grained access control. There are also
some other types of authenticated query processing. Chen et
al. [7] developed a novel top-k query authentication based on
the cryptography building blocks. Xu et al. [11] considered
both authenticity and confidentiality for aggregate queries over
set-valued data. Lin et al. [8] proposed a new ADS called MR-
Sky-tree to facilitate the location-based authenticated skyline
queries. Chen et al. [9] proposed the authenticated online data
integration, which can support multi-source query authentica-
tion.

Meanwhile, there are a large body of research on distributed
spatial queries. Aji et al. designed the Hadoop-GIS system
[19], which is a spatial data warehousing system and integrates
Hive. SpatialHadoop [13] adds the traditional spatial indexes
to the native Hadoop framework and supports a variety of
spatial queries like range query, kNN, spatial join etc. For in-
memory computation over cluster machines, GeoSpark [14]
has been proposed to support spatial queries like range, join,
and kNN queries. More recently, an more efficient in memory
spatial analytics system, called Simba [20], has been proposed.
It supports rich spatial queries and has better throughput than
SpatialHadoop and GeoSpark. Nevertheless, none of the sys-
tem supports the authenticated query processing to guarantee
the results’ integrity.

VII. CONCLUSION

In this paper, we investigate the authenticated kNN process-
ing in distributed environments. The distributed MR-tree has
been designed to speed up the processing of kNN queries.
We propose a basic algorithm to authenticate kNN queries in
a distributed fashion, as well as two optimization techniques
to reduce the VO size. Our experiments demonstrate that the
query costs of the three algorithms are all efficient. The two
optimization techniques reduce the VO size and the client’s
verification time. The hybrid algorithm balances the trade-off
between the query cost and the VO size. Furthermore, the
throughput of all the algorithms is investigated and the result
reveals that the system scales well with increasing the number
of nodes. In the future, we plan to design a distributed spatial
query authentication system to support more spatial queries
and efficient data updates.

ACKNOWLEDGEMENTS

This work was supported by Research Grants Council
of Hong Kong under GRF Projects 12244916, 12202414,
12232716, and CRF Project C1008-16G.

REFERENCES

[1] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine, “Authentic data
publication over the internet1,” Journal of Computer Security, vol. 11,
no. 3, pp. 291–314, 2003.

[2] W. Cheng and K. L. Tan, “Authenticating kNN query results in data
publishing,” in VLDB Conference on Secure Data Management, 2007,
pp. 47–63.

[3] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios, “Authenticated
indexing for outsourced spatial databases,” Vldb Journal, vol. 18, no. 3,
pp. 631–648, 2009.

[4] L. Y. Man, E. Lo, and D. Yung, “Authentication of moving kNN queries,”
in IEEE International Conference on Data Engineering, 2011, pp. 565–
576.

[5] S. Su, H. Yan, X. Cheng, P. Tang, P. Xu, and J. Xu, “Authentication
of top-k spatial keyword queries in outsourced databases,” in DASFAA,
2015, pp. 567–588.

[6] W. Cheng, H. Pang, and K.-L. Tan, “Authenticating multi-dimensional
query results in data publishing,” in IFIP Annual Conference on Data
and Applications Security and Privacy. Springer, 2006, pp. 60–73.

[7] Q. Chen, H. Hu, and J. Xu, “Authenticating top-k queries in location-
based services with confidentiality,” Proceedings of the Vldb Endow-
ment, vol. 7, no. 1, pp. 49–60, 2014.

[8] X. Lin, J. Xu, and H. Hu, “Authentication of location-based skyline
queries,” in ACM International Conference on Information and Knowl-
edge Management, 2011, pp. 1583–1588.

[9] Q. Chen, H. Hu, and J. Xu, “Authenticated online data integration
services,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 167–181.

[10] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-based
services without compromising location privacy,” in Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data.
ACM, 2012, pp. 301–312.

[11] C. Xu, Q. Chen, H. Hu, J. Xu, and X. Hei, “Authenticating aggregate
queries over set-valued data with confidentiality,” IEEE Transactions on
Knowledge and Data Engineering, 2017.

[12] C. Xu, J. Xu, H. Hu, and M. H. Au, “When query authentication
meets fine-grained access control: A zero-knowledge approach,” in
Proceedings of the 2018 ACM SIGMOD International Conference on
Management of Data. ACM, 2018.

[13] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A MapReduce framework
for spatial data,” in IEEE International Conference on Data Engineering,
2016, pp. 1352–1363.

[14] J. Yu, J. Wu, and M. Sarwat, “Geospark: a cluster computing framework
for processing large-scale spatial data,” in Sigspatial International Con-
ference on Advances in Geographic Information Systems, 2015, p. 70.

[15] R. C. Merkle, “A certified digital signature,” in Advances in Cryptology
- CRYPTO ’89, International Cryptology Conference, Santa Barbara,
California, Usa, August 20-24, 1989, Proceedings, 1990, pp. 218–238.

[16] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,”
ACM Transactions on Database Systems (TODS), vol. 24, no. 2, pp.
265–318, 1999.

[17] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez, “STR: A simple
and efficient algorithm for R-Tree packing,” in International Conference
on Data Engineering, 1997. Proceedings, 1997, pp. 497–506.

[18] L. Hu, W. S. Ku, S. Bakiras, and C. Shahabi, “Spatial query integrity
with voronoi neighbors,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 4, pp. 863–876, 2013.

[19] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz,
“Hadoop-gis: A high performance spatial data warehousing system over
mapreduce,” 2013, pp. 1009–1020.

[20] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient in-
memory spatial analytics,” in International Conference on Management
of Data, 2016, pp. 1071–1085.

